dataframe

package module
v1.0.8 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Aug 16, 2024 License: MIT Imports: 19 Imported by: 0

README

go-dataframe

A simple package to abstract away the process of creating usable DataFrames for data analytics. This package is heavily inspired by the amazing Python library, Pandas.

Generate DataFrame

Utilize the CreateDataFrame function to create a DataFrame from an existing CSV file or create an empty DataFrame with the CreateNewDataFrame function. The user can then iterate over the DataFrame to perform the intended tasks. All data in the DataFrame is a string by default. There are various methods to provide additional functionality including: converting data types, update values, filter, concatenate, and more. Please use the below examples or explore the code to learn more.

Import Package

import (
    "fmt"

    dataframe "github.com/datumbrain/go-dataframe"
)

Load CSV into DataFrame, create a new field, and save

path := "/Users/Name/Desktop/"

// Create the DataFrame
df := dataframe.CreateDataFrame(path, "TestData.csv")

// Create new field
df.NewField("CWT")

// Iterate over DataFrame
for _, row := range df.FrameRecords {
    cost := row.ConvertToFloat("Cost", df.Headers)
    weight := row.ConvertToFloat("Weight", df.Headers)

    // Results must be converted back to string
    result := fmt.Sprintf("%f", cwt(cost, weight))

    // Update the row
    row.Update("CWT", result, df.Headers)
}

df.SaveDataFrame(path, "NewFileName")

Concurrently load multiple CSV files into DataFrames

Tests performed utilized four files with a total of 5,746,452 records and a varing number of columns. Results indicated an average total load time of 8.81 seconds when loaded sequentially and 4.06 seconds when loaded concurrently utilizing the LoadFrames function. An overall 54% speed improvement. Files must all be in the same directory. Results are returned in a slice in the same order as provided in the files parameter.

filePath := "/Users/Name/Desktop/"
files := []string{
    "One.csv",
    "Two.csv",
    "Three.csv",
    "Four.csv",
    "Five.csv",
}

results, err := LoadFrames(filePath, files)
if err != nil {
    log.Fatal(err)
}

dfOne := results[0]
dfTwo := results[1]
dfThree := results[2]
dfFour := results[3]
dfFive := results[4]

Stream CSV data

Stream rows of data from a csv file to be processed. Streaming data is preferred when dealing with large files and memory usage needs to be considered. Results are streamed via a channel with a StreamingRecord type. A struct with only desired fields could be created and either operated on sequentially or stored in a slice for later use.

type Product struct {
    name string
    cost float64
    weight float64
}

func (p Product) CostPerLb() float64 {
    if p.weight == 0.0 {
        return 0.0
    }
    return p.cost / p.weight
}

filePath := "/Users/Name/Desktop/"

var products []Product

c := make(chan StreamingRecord)
go Stream(filePath, "TestData.csv", c)

for row := range c {
    prod := Product{
        name: row.Val("Name"),
        cost: row.ConvertToFloat("Cost"),
        weight: row.ConvertToInt("Weight"),
    }
    products = append(products, prod)
}

AWS S3 Cloud Storage

// Download a DataFrame from an S3 bucket
path := "/Users/Name/Desktop/" // File path
fileName := "FileName.csv" // File in AWS Bucket must be .csv
bucketName := "BucketName" // Name of the bucket
bucketRegion := "BucketRegion" // Can be found in the Properties tab in the S3 console (ex. us-west-1)
awsAccessKey := "AwsAccessKey" // Access keys can be loaded from environment variables within you program
awsSecretKey := "AwsSecretKey"
df := CreateDataFrameFromAwsS3(path, fileName, bucketName, bucketRegion, awsAccessKey, awsSecretKey)

// Upload a file to an S3 bucket
err := UploadFileToAwsS3(path, fileName, bucket, region)
if err != nil {
    panic(err)
}

Filter Out Dataframe Rows Using .Where()

df = df.Where("Last Name", "==", "Wiedmann")

Various methods to filter DataFrames

// Variadic methods that generate a new DataFrame
dfFil := df.Filtered("Last Name", "McCarlson", "Benison", "Stephenson")
dfFil := df.Exclude("Last Name", "McCarlson", "Benison", "Stephenson")

// Keep only specific columns
columns := [2]string{"First Name", "Last Name"}
dfFil := df.KeepColumns(columns[:])

// Remove multiple columns
dfFil := df.RemoveColumns("ID", "Cost", "First Name")

// Remove a single column
dfFil := df.RemoveColumns("First Name")

// Filter before, after, or between specified dates
dfFil := df.FilteredAfter("Date", "2022-12-31")
dfFil := df.FilteredBefore("Date", "2022-12-31")
dfFil := df.FilteredBetween("Date", "2022-01-01", "2022-12-31")

// Filter a numerical column based on a provided value
df, err := df.GreaterThanOrEqualTo("Cost", float64(value))
if err != nil {
    panic(err)
}

df, err := df.LessThanOrEqualTo("Weight", float64(value))
if err != nil {
    panic(err)
}

Add record to DataFrame and later update

// Add a new record
data := [6]string{"11", "2022-01-01", "123", "456", "Kevin", "Kevison"}
df = df.AddRecord(data[:])

// Update a value
for _, row := range df.FrameRecords {
    // row.Val() is used to extract the value in a specific column while iterating
    if row.Val("Last Name", df.Headers) == "McPoyle" {
        row.Update("Last Name", "SchmicMcPoyle", df.Headers)
    }
}

Concatenate DataFrames

// ConcatFrames uses a pointer to the DataFrame being appended.
// Both DataFrames must have the same columns in the same order.
df, err := df.ConcatFrames(&dfFil)
if err != nil {
    panic("ConcatFrames Error: ", err)
}

Rename a Column

// Rename an existing column in a DataFrame
// First parameter provides the original column name to be updated.
// The next parameter is the desired new name.
err := df.Rename("Weight", "Total Weight")
if err != nil {
    panic("Rename Column Error: ", err)
}

Merge two DataFrames

df := CreateDataFrame(path, "TestData.csv")
dfRight := CreateDataFrame(path, "TestDataRight.csv")

// Merge all columns found in right DataFrame into left DataFrame.
// User provides the lookup column with the unique values that link the two DataFrames.
df.Merge(&dfRight, "ID")

// Merge only specified columns from right DataFrame into left DataFrame.
// User provides columns immediately after the lookup column.
df.Merge(&dfRight, "ID", "City", "State")

// Inner merge all columns on a specified primary key.
// Results will only include records where the primary key is found in both DataFrames.
df = df.InnerMerge(&dfRight, "ID")

Various Tools

// Total rows
total := df.CountRecords()

// Returns a slice of all unique values in a specified column
lastNames := df.Unique("Last Name")

// Print all columns to console
df.ViewColumns()

// Returns a slice of all columns in order
foundColumns := df.Columns()

// Generates a decoupled copy of an existing DataFrame.
// Changes made in one DataFrame will not be reflected in the other.
df2 := df.Copy()

Mathematics

// Sum a numerical column
sum := df.Sum("Cost")

// Average a numerical column
average := df.Average("Weight")

// Min or Max of a numerical column
minimum := df.Min("Cost")
maximum := df.Max("Cost")

// Calculate the standard deviation of a numerical column
stdev, err := df.StandardDeviation("Cost")
if err != nil {
    panic(err)
}

DataFrame Comparison

Overview

We are performing a task that involves reading multiple CSV files and concatenating them into a dataframe. Subsequently, we are comparing the performance of four different dataframes: go-dataframe (Go), Gota (Go), Pandas (Python), and petl (Python). This issue aims to provide a summary of our findings and compare the CPU consumption of the three approaches.

Task Details

The task involves the following steps:

  1. Reading multiple CSV files into dataframes.
  2. Concatenating these dataframes into a dataframe.
  3. Writing the data from the dataframe to an output file.

CSV File Description:

To provide an initial understanding of the CSV files, we executed the following command on one of the files:

head -n 10 filename.csv

Output:

first_name,last_name,email,ssn,job,country,phone_number,user_name,zipcode,invalid_ssn,credit_card_number,credit_card_provider,credit_card_security_code,bban
Steven,Moody,tiffanygonzalez@example.org,350-01-9267,"Presenter, broadcasting",Brazil,+1-506-628-4713x59809,barrettdustin,91323,807-49-0000,3547052816387430,JCB 15 digit,035,DARN48905985684949
Jessica,Lee,morgananna@example.net,079-14-8787,"Administrator, arts",Nauru,001-741-688-4308x923,cshaffer,16377,041-36-0000,570340703620,VISA 13 digit,063,MDVS28676684054916
Julia,Salazar,clarkcassidy@example.com,752-80-5107,Industrial buyer,Malawi,(783)902-5253x881,rosstiffany,16346,226-66-0000,3556315847497140,JCB 16 digit,6309,PRRE86261218230808
Gordon,Wilson,wheelerandrea@example.com,506-71-9258,Transport planner,Ethiopia,001-417-632-4676,zharmon,97694,357-00-2323,348183228980368,JCB 16 digit,588,SDSD10099010640237
Jerry,Vega,kenneth30@example.com,482-80-7647,Drilling engineer,Guyana,9406957013,samanthabryant,36140,165-73-0000,4365253782063545,VISA 16 digit,037,ZWLA04927443404778
Gail,King,matthew31@example.net,299-67-3681,Administrator,Egypt,001-307-909-4257x3439,hreynolds,13001,696-02-0000,3538195498327397,JCB 15 digit,048,KIUZ58738028157566
Edwin,Harris,aespinoza@example.com,252-85-5915,"Engineer, production",South Africa,947-484-3427x05066,bridgesnicholas,72419,026-82-0000,3592690115377331,JCB 16 digit,294,QENL33163152289485
Mallory,Richard,amberwalters@example.org,199-53-6757,Energy manager,Slovenia,(624)349-1720x44315,nbrown,91155,569-27-0000,3581282497908686,VISA 13 digit,619,TUAY17591684176399
Melinda,Gray,brandon61@example.net,687-13-1148,Adult nurse,Germany,(851)302-1375x9683,taylor81,51633,212-00-1490,3577099599061586,Mastercard,7736,KLPN65278851131949

CPU Analysis:

Benchmarking Tool

Hyperfine is a benchmarking tool for the command line that helps you compare the performance of your system's commands. With hyperfine, it becomes easy to see how different command-line tools, scripts, and command arguments affect system performance.

How to install
brew install hyperfine
Results
2 Small Files

(10 runs | 10 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 1.148 ± 0.081 1.070 1.288 7.74 ± 0.62
gota 0.752 ± 0.096 0.690 1.021 5.07 ± 0.68
pandas 0.485 ± 0.024 0.456 0.515 3.27 ± 0.20
petl 0.148 ± 0.006 0.137 0.156 1.00
2 Files

(10 runs | 100,000 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 1.689 ± 0.089 1.579 1.874 1.00
gota 2.282 ± 0.130 2.124 2.507 1.35 ± 0.10
pandas 2.816 ± 0.100 2.693 2.997 1.67 ± 0.11
petl 2.294 ± 0.049 2.257 2.404 1.36 ± 0.08
5 Files

(10 runs | 100,000 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 2.583 ± 0.204 2.349 3.086 1.00
gota 4.884 ± 0.316 4.462 5.374 1.89 ± 0.19
pandas 6.527 ± 0.349 6.209 7.235 2.53 ± 0.24
petl 8.117 ± 0.616 7.290 9.225 3.14 ± 0.34
10 Files

(10 runs | 100,000 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 3.847 ± 0.253 3.585 4.280 1.00
gota 9.127 ± 0.231 8.828 9.450 2.37 ± 0.17
pandas 14.185 ± 1.546 12.161 15.737 3.69 ± 0.47
petl 24.496 ± 3.328 21.238 30.702 6.37 ± 0.96
25 Files

(10 runs | 100,000 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 8.212 ± 0.559 7.521 9.105 1.00
gota 32.663 ± 1.640 30.131 35.154 3.98 ± 0.34
pandas 30.790 ± 0.572 30.060 31.684 3.75 ± 0.26
petl 107.274 ± 3.292 100.848 111.170 13.06 ± 0.98
50 Files

(5 runs | 100,000 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 16.669 ± 1.990 14.858 19.575 1.00
gota 91.149 ± 4.158 88.691 98.500 5.47 ± 0.70
pandas 60.217 ± 2.036 58.558 62.916 3.61 ± 0.45
100 Files

(5 runs | 100,000 records each)

Framework Mean [s] Min [s] Max [s] Relative
go-dataframe 26.075 ± 0.522 25.426 26.518 1.00
pandas 116.856 ± 0.334 116.315 117.220 4.48 ± 0.09

CPU Memory Comparison Graphs

Benchmarking Tool

CMDBench is a quick and easy benchmarking tool for any command's CPU, memory and disk usage.

How to install
git clone https://github.com/manzik/cmdbench.git
cd cmdbench
pip install .
Results
2 Files

(100,000 records each)

go-dataframe gota pandas petl
go-dataframe gota pandas petl
5 Files

(100,000 records each)

go-dataframe gota pandas petl
go-dataframe gota pandas petl
10 Files

(100,000 records each)

go-dataframe gota pandas petl
go-dataframe gota pandas petl
25 Files

(100,000 records each)

go-dataframe gota pandas petl
go-dataframe gota pandas petl
50 Files

(100,000 records each)

go-dataframe gota pandas petl
go-dataframe gota pandas petl
100 Files

(100,000 records each)

go-dataframe pandas
go-dataframe pandas

References

Authors

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func Stream

func Stream(path, fileName string, c chan StreamingRecord)

Stream rows of data from a csv file to be processed. Streaming data is preferred when dealing with large files and memory usage needs to be considered. Results are streamed via a channel with a StreamingRecord type.

func UploadFileToAwsS3

func UploadFileToAwsS3(path, filename, bucket, region string) error

Types

type DataFrame

type DataFrame struct {
	FrameRecords []Record
	Headers      map[string]int
}

func CreateDataFrame

func CreateDataFrame(path, fileName string) DataFrame

Generate a new DataFrame sourced from a csv file.

func CreateDataFrameFromAwsS3

func CreateDataFrameFromAwsS3(path, item, bucket, region, awsAccessKey, awsSecretKey string) DataFrame

func CreateDataFrameFromBytes

func CreateDataFrameFromBytes(b []byte) DataFrame

Generate a new DataFrame sourced from an array of bytes containing csv data.

func CreateDataFrameFromCsvReader

func CreateDataFrameFromCsvReader(reader *csv.Reader) DataFrame

Generate a new DataFrame sourced from a csv reader.

func CreateNewDataFrame

func CreateNewDataFrame(headers []string) DataFrame

Generate a new empty DataFrame.

func LoadFrames

func LoadFrames(filePath string, files []string) ([]DataFrame, error)

Concurrently loads multiple csv files into DataFrames within the same directory. Returns a slice with the DataFrames in the same order as provided in the files parameter.

func Merge added in v1.0.2

func Merge(dfs ...DataFrame) (DataFrame, error)

Stack multiple DataFrames with matching headers

func (DataFrame) AddRecord

func (frame DataFrame) AddRecord(newData []string) DataFrame

Add a new record to the DataFrame

func (*DataFrame) AddRecordByReference added in v1.0.8

func (frame *DataFrame) AddRecordByReference(newData []string)

Add a new record to the DataFrame

func (*DataFrame) Average

func (frame *DataFrame) Average(fieldName string) float64

Return an average of type float64 of a numerical field.

func (*DataFrame) ColumnVal added in v1.0.5

func (frame *DataFrame) ColumnVal(fieldName string, headers map[string]int) []string

Return the values of the specified field

func (DataFrame) Columns

func (frame DataFrame) Columns() []string

Provides a slice of columns in order

func (DataFrame) ConcatFrames

func (frame DataFrame) ConcatFrames(dfNew *DataFrame) (DataFrame, error)

Stack two DataFrames with matching headers.

func (DataFrame) Copy

func (frame DataFrame) Copy() DataFrame

Generates a decoupled copy of an existing DataFrame. Changes made to either the original or new copied frame will not be reflected in the other.

func (*DataFrame) CountRecords

func (frame *DataFrame) CountRecords() int

func (DataFrame) Exclude

func (frame DataFrame) Exclude(fieldName string, value ...string) DataFrame

Generates a new DataFrame that excludes specified instances. New DataFrame will be kept in same order as original.

func (DataFrame) Filtered

func (frame DataFrame) Filtered(fieldName string, value ...string) DataFrame

Generates a new filtered DataFrame. New DataFrame will be kept in same order as original.

func (DataFrame) FilteredAfter

func (frame DataFrame) FilteredAfter(fieldName, desiredDate string) DataFrame

Generates a new filtered DataFrame with all records occuring after a specified date provided by the user. User must provide the date field as well as the desired date. Instances where record dates occur on the same date provided by the user will not be included. Records must occur after the specified date.

func (DataFrame) FilteredBefore

func (frame DataFrame) FilteredBefore(fieldName, desiredDate string) DataFrame

Generates a new filtered DataFrame with all records occuring before a specified date provided by the user. User must provide the date field as well as the desired date. Instances where record dates occur on the same date provided by the user will not be included. Records must occur before the specified date.

func (DataFrame) FilteredBetween

func (frame DataFrame) FilteredBetween(fieldName, startDate, endDate string) DataFrame

Generates a new filtered DataFrame with all records occuring between a specified date range provided by the user. User must provide the date field as well as the desired date. Instances where record dates occur on the same date provided by the user will not be included. Records must occur between the specified start and end dates.

func (DataFrame) GreaterThanOrEqualTo

func (frame DataFrame) GreaterThanOrEqualTo(fieldName string, value float64) (DataFrame, error)

Generated a new filtered DataFrame that in which a numerical column is either greater than or equal to a provided numerical value.

func (DataFrame) InnerMerge

func (frame DataFrame) InnerMerge(dfRight *DataFrame, primaryKey string) DataFrame

Performs an inner merge where all columns are consolidated between the two frames but only for records where the specified primary key is found in both frames.

func (DataFrame) KeepColumns

func (frame DataFrame) KeepColumns(columns []string) DataFrame

User specifies columns they want to keep from a preexisting DataFrame

func (DataFrame) LessThanOrEqualTo

func (frame DataFrame) LessThanOrEqualTo(fieldName string, value float64) (DataFrame, error)

Generated a new filtered DataFrame that in which a numerical column is either less than or equal to a provided numerical value.

func (*DataFrame) Max

func (frame *DataFrame) Max(fieldName string) float64

Return the maximum value in a numerical field.

func (DataFrame) Merge

func (frame DataFrame) Merge(dfRight *DataFrame, primaryKey string, columns ...string)

Import all columns from right frame into left frame if no columns are provided by the user. Process must be done so in order.

func (*DataFrame) Min

func (frame *DataFrame) Min(fieldName string) float64

Return the minimum value in a numerical field.

func (*DataFrame) NewField

func (frame *DataFrame) NewField(fieldName string)

Creates a new field and assigns and empty string.

func (DataFrame) RemoveColumns

func (frame DataFrame) RemoveColumns(columns ...string) DataFrame

User specifies columns they want to remove from a preexisting DataFrame

func (*DataFrame) Rename

func (frame *DataFrame) Rename(originalColumnName, newColumnName string) error

Rename a specified column in the DataFrame

func (*DataFrame) SaveDataFrame

func (frame *DataFrame) SaveDataFrame(path, fileName string) bool

func (*DataFrame) Sort added in v1.0.2

func (frame *DataFrame) Sort(columnName string)

Sort the dataframe by column name

func (*DataFrame) SortByColumns added in v1.0.5

func (frame *DataFrame) SortByColumns(columns []string, sortOrders []bool, dataTypes []interface{})

Sort the dataframe by columns

func (*DataFrame) StandardDeviation

func (frame *DataFrame) StandardDeviation(fieldName string) (float64, error)

Return the standard deviation of a numerical field.

func (*DataFrame) Sum

func (frame *DataFrame) Sum(fieldName string) float64

Return a sum of float64 type of a numerical field.

func (*DataFrame) Unique

func (frame *DataFrame) Unique(fieldName string) []string

Return a slice of all unique values found in a specified field.

func (DataFrame) ViewColumns

func (frame DataFrame) ViewColumns()

Method to print all columns in a viewable table within the terminal.

func (DataFrame) Where added in v1.0.8

func (frame DataFrame) Where(fieldName, operator, value string) DataFrame

type Record

type Record struct {
	Data []string
}

func (Record) ConvertToDate

func (x Record) ConvertToDate(fieldName string, headers map[string]int) time.Time

Converts date from specified field to time.Time

func (Record) ConvertToFloat

func (x Record) ConvertToFloat(fieldName string, headers map[string]int) float64

Converts the value from a string to float64.

func (Record) ConvertToInt

func (x Record) ConvertToInt(fieldName string, headers map[string]int) int64

Converts the value from string to int64.

func (Record) SafeConvertToFloat added in v1.0.5

func (x Record) SafeConvertToFloat(fieldName string, headers map[string]int) (float64, error)

Converts the value from a string to float64.

func (Record) SafeConvertToInt added in v1.0.5

func (x Record) SafeConvertToInt(fieldName string, headers map[string]int) (int64, error)

Converts the value from a string to int64.

func (Record) SafeUpdate added in v1.0.5

func (x Record) SafeUpdate(fieldName, value string, headers map[string]int) error

Update the value in a specified field. If the provided field name is not in the headers map, error is returned.

func (Record) SafeVal added in v1.0.5

func (x Record) SafeVal(fieldName string, headers map[string]int) (string, error)

Return the value of the specified field. If the provided field name is not in the headers map, error is returned.

func (Record) Update

func (x Record) Update(fieldName, value string, headers map[string]int)

Update the value in a specified field.

func (Record) Val

func (x Record) Val(fieldName string, headers map[string]int) string

Return the value of the specified field.

type StreamingRecord

type StreamingRecord struct {
	Data    []string
	Headers map[string]int
}

func (StreamingRecord) ConvertToFloat

func (x StreamingRecord) ConvertToFloat(fieldName string) float64

Converts the value from a string to float64

func (StreamingRecord) ConvertToInt

func (x StreamingRecord) ConvertToInt(fieldName string) int64

Converts the value from a string to int64

func (StreamingRecord) Val

func (x StreamingRecord) Val(fieldName string) string

Return the value of the specified field.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL