Documentation ¶
Index ¶
- type Ai21LabsConfig
- type AiGatewayConfig
- type AiGatewayGuardrailParameters
- type AiGatewayGuardrailPiiBehavior
- type AiGatewayGuardrails
- type AiGatewayInferenceTableConfig
- type AiGatewayRateLimit
- type AiGatewayUsageTrackingConfig
- type AmazonBedrockConfig
- type AnthropicConfig
- type AutoCaptureConfigInput
- type AutoCaptureConfigOutput
- type AutoCaptureState
- type BuildLogsRequest
- type BuildLogsResponse
- type ChatMessage
- type CohereConfig
- type CreateServingEndpoint
- type DatabricksModelServingConfig
- type DataframeSplitInput
- type DeleteResponse
- type DeleteServingEndpointRequest
- type EmbeddingsV1ResponseEmbeddingElement
- type EndpointCoreConfigInput
- type EndpointCoreConfigOutput
- type EndpointCoreConfigSummary
- type EndpointPendingConfig
- type EndpointState
- type EndpointTag
- type ExportMetricsRequest
- type ExportMetricsResponse
- type ExternalModel
- type ExternalModelUsageElement
- type FoundationModel
- type GetOpenApiRequest
- type GetOpenApiResponse
- type GetServingEndpointPermissionLevelsRequest
- type GetServingEndpointPermissionLevelsResponse
- type GetServingEndpointPermissionsRequest
- type GetServingEndpointRequest
- type GoogleCloudVertexAiConfig
- type ListEndpointsResponse
- type LogsRequest
- type ModelDataPlaneInfo
- type OpenAiConfig
- type PaLmConfig
- type PatchServingEndpointTags
- type PayloadTable
- type PutAiGatewayRequest
- type PutAiGatewayResponse
- type PutRequest
- type PutResponse
- type QueryEndpointInput
- type QueryEndpointResponse
- type RateLimit
- type Route
- type ServedEntityInput
- type ServedEntityOutput
- type ServedEntitySpec
- type ServedModelInput
- type ServedModelOutput
- type ServedModelSpec
- type ServedModelState
- type ServerLogsResponse
- type ServingEndpoint
- type ServingEndpointAccessControlRequest
- type ServingEndpointAccessControlResponse
- type ServingEndpointDetailed
- type ServingEndpointPermission
- type ServingEndpointPermissions
- type ServingEndpointPermissionsDescription
- type ServingEndpointPermissionsRequest
- type TrafficConfig
- type V1ResponseChoiceElement
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Ai21LabsConfig ¶
type Ai21LabsConfig struct { // The Databricks secret key reference for an AI21 Labs API key. If you // prefer to paste your API key directly, see `ai21labs_api_key_plaintext`. // You must provide an API key using one of the following fields: // `ai21labs_api_key` or `ai21labs_api_key_plaintext`. Ai21labsApiKey types.String `tfsdk:"ai21labs_api_key" tf:"optional"` // An AI21 Labs API key provided as a plaintext string. If you prefer to // reference your key using Databricks Secrets, see `ai21labs_api_key`. You // must provide an API key using one of the following fields: // `ai21labs_api_key` or `ai21labs_api_key_plaintext`. Ai21labsApiKeyPlaintext types.String `tfsdk:"ai21labs_api_key_plaintext" tf:"optional"` }
func (*Ai21LabsConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *Ai21LabsConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan Ai21LabsConfig)
func (*Ai21LabsConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *Ai21LabsConfig) SyncEffectiveFieldsDuringRead(existingState Ai21LabsConfig)
type AiGatewayConfig ¶ added in v1.53.0
type AiGatewayConfig struct { // Configuration for AI Guardrails to prevent unwanted data and unsafe data // in requests and responses. Guardrails []AiGatewayGuardrails `tfsdk:"guardrails" tf:"optional,object"` // Configuration for payload logging using inference tables. Use these // tables to monitor and audit data being sent to and received from model // APIs and to improve model quality. InferenceTableConfig []AiGatewayInferenceTableConfig `tfsdk:"inference_table_config" tf:"optional,object"` // Configuration for rate limits which can be set to limit endpoint traffic. RateLimits []AiGatewayRateLimit `tfsdk:"rate_limits" tf:"optional"` // Configuration to enable usage tracking using system tables. These tables // allow you to monitor operational usage on endpoints and their associated // costs. UsageTrackingConfig []AiGatewayUsageTrackingConfig `tfsdk:"usage_tracking_config" tf:"optional,object"` }
func (*AiGatewayConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayConfig)
func (*AiGatewayConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayConfig) SyncEffectiveFieldsDuringRead(existingState AiGatewayConfig)
type AiGatewayGuardrailParameters ¶ added in v1.53.0
type AiGatewayGuardrailParameters struct { // List of invalid keywords. AI guardrail uses keyword or string matching to // decide if the keyword exists in the request or response content. InvalidKeywords []types.String `tfsdk:"invalid_keywords" tf:"optional"` // Configuration for guardrail PII filter. Pii []AiGatewayGuardrailPiiBehavior `tfsdk:"pii" tf:"optional,object"` // Indicates whether the safety filter is enabled. Safety types.Bool `tfsdk:"safety" tf:"optional"` // The list of allowed topics. Given a chat request, this guardrail flags // the request if its topic is not in the allowed topics. ValidTopics []types.String `tfsdk:"valid_topics" tf:"optional"` }
func (*AiGatewayGuardrailParameters) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayGuardrailParameters) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayGuardrailParameters)
func (*AiGatewayGuardrailParameters) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayGuardrailParameters) SyncEffectiveFieldsDuringRead(existingState AiGatewayGuardrailParameters)
type AiGatewayGuardrailPiiBehavior ¶ added in v1.53.0
type AiGatewayGuardrailPiiBehavior struct { // Behavior for PII filter. Currently only 'BLOCK' is supported. If 'BLOCK' // is set for the input guardrail and the request contains PII, the request // is not sent to the model server and 400 status code is returned; if // 'BLOCK' is set for the output guardrail and the model response contains // PII, the PII info in the response is redacted and 400 status code is // returned. Behavior types.String `tfsdk:"behavior" tf:""` }
func (*AiGatewayGuardrailPiiBehavior) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayGuardrailPiiBehavior) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayGuardrailPiiBehavior)
func (*AiGatewayGuardrailPiiBehavior) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayGuardrailPiiBehavior) SyncEffectiveFieldsDuringRead(existingState AiGatewayGuardrailPiiBehavior)
type AiGatewayGuardrails ¶ added in v1.53.0
type AiGatewayGuardrails struct { // Configuration for input guardrail filters. Input []AiGatewayGuardrailParameters `tfsdk:"input" tf:"optional,object"` // Configuration for output guardrail filters. Output []AiGatewayGuardrailParameters `tfsdk:"output" tf:"optional,object"` }
func (*AiGatewayGuardrails) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayGuardrails) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayGuardrails)
func (*AiGatewayGuardrails) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayGuardrails) SyncEffectiveFieldsDuringRead(existingState AiGatewayGuardrails)
type AiGatewayInferenceTableConfig ¶ added in v1.53.0
type AiGatewayInferenceTableConfig struct { // The name of the catalog in Unity Catalog. Required when enabling // inference tables. NOTE: On update, you have to disable inference table // first in order to change the catalog name. CatalogName types.String `tfsdk:"catalog_name" tf:"optional"` // Indicates whether the inference table is enabled. Enabled types.Bool `tfsdk:"enabled" tf:"optional"` // The name of the schema in Unity Catalog. Required when enabling inference // tables. NOTE: On update, you have to disable inference table first in // order to change the schema name. SchemaName types.String `tfsdk:"schema_name" tf:"optional"` // The prefix of the table in Unity Catalog. NOTE: On update, you have to // disable inference table first in order to change the prefix name. TableNamePrefix types.String `tfsdk:"table_name_prefix" tf:"optional"` }
func (*AiGatewayInferenceTableConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayInferenceTableConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayInferenceTableConfig)
func (*AiGatewayInferenceTableConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayInferenceTableConfig) SyncEffectiveFieldsDuringRead(existingState AiGatewayInferenceTableConfig)
type AiGatewayRateLimit ¶ added in v1.53.0
type AiGatewayRateLimit struct { // Used to specify how many calls are allowed for a key within the // renewal_period. Calls types.Int64 `tfsdk:"calls" tf:""` // Key field for a rate limit. Currently, only 'user' and 'endpoint' are // supported, with 'endpoint' being the default if not specified. Key types.String `tfsdk:"key" tf:"optional"` // Renewal period field for a rate limit. Currently, only 'minute' is // supported. RenewalPeriod types.String `tfsdk:"renewal_period" tf:""` }
func (*AiGatewayRateLimit) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayRateLimit) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayRateLimit)
func (*AiGatewayRateLimit) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayRateLimit) SyncEffectiveFieldsDuringRead(existingState AiGatewayRateLimit)
type AiGatewayUsageTrackingConfig ¶ added in v1.53.0
type AiGatewayUsageTrackingConfig struct { // Whether to enable usage tracking. Enabled types.Bool `tfsdk:"enabled" tf:"optional"` }
func (*AiGatewayUsageTrackingConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AiGatewayUsageTrackingConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan AiGatewayUsageTrackingConfig)
func (*AiGatewayUsageTrackingConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AiGatewayUsageTrackingConfig) SyncEffectiveFieldsDuringRead(existingState AiGatewayUsageTrackingConfig)
type AmazonBedrockConfig ¶
type AmazonBedrockConfig struct { // The Databricks secret key reference for an AWS access key ID with // permissions to interact with Bedrock services. If you prefer to paste // your API key directly, see `aws_access_key_id`. You must provide an API // key using one of the following fields: `aws_access_key_id` or // `aws_access_key_id_plaintext`. AwsAccessKeyId types.String `tfsdk:"aws_access_key_id" tf:"optional"` // An AWS access key ID with permissions to interact with Bedrock services // provided as a plaintext string. If you prefer to reference your key using // Databricks Secrets, see `aws_access_key_id`. You must provide an API key // using one of the following fields: `aws_access_key_id` or // `aws_access_key_id_plaintext`. AwsAccessKeyIdPlaintext types.String `tfsdk:"aws_access_key_id_plaintext" tf:"optional"` // The AWS region to use. Bedrock has to be enabled there. AwsRegion types.String `tfsdk:"aws_region" tf:""` // The Databricks secret key reference for an AWS secret access key paired // with the access key ID, with permissions to interact with Bedrock // services. If you prefer to paste your API key directly, see // `aws_secret_access_key_plaintext`. You must provide an API key using one // of the following fields: `aws_secret_access_key` or // `aws_secret_access_key_plaintext`. AwsSecretAccessKey types.String `tfsdk:"aws_secret_access_key" tf:"optional"` // An AWS secret access key paired with the access key ID, with permissions // to interact with Bedrock services provided as a plaintext string. If you // prefer to reference your key using Databricks Secrets, see // `aws_secret_access_key`. You must provide an API key using one of the // following fields: `aws_secret_access_key` or // `aws_secret_access_key_plaintext`. AwsSecretAccessKeyPlaintext types.String `tfsdk:"aws_secret_access_key_plaintext" tf:"optional"` // The underlying provider in Amazon Bedrock. Supported values (case // insensitive) include: Anthropic, Cohere, AI21Labs, Amazon. BedrockProvider types.String `tfsdk:"bedrock_provider" tf:""` }
func (*AmazonBedrockConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AmazonBedrockConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan AmazonBedrockConfig)
func (*AmazonBedrockConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AmazonBedrockConfig) SyncEffectiveFieldsDuringRead(existingState AmazonBedrockConfig)
type AnthropicConfig ¶
type AnthropicConfig struct { // The Databricks secret key reference for an Anthropic API key. If you // prefer to paste your API key directly, see `anthropic_api_key_plaintext`. // You must provide an API key using one of the following fields: // `anthropic_api_key` or `anthropic_api_key_plaintext`. AnthropicApiKey types.String `tfsdk:"anthropic_api_key" tf:"optional"` // The Anthropic API key provided as a plaintext string. If you prefer to // reference your key using Databricks Secrets, see `anthropic_api_key`. You // must provide an API key using one of the following fields: // `anthropic_api_key` or `anthropic_api_key_plaintext`. AnthropicApiKeyPlaintext types.String `tfsdk:"anthropic_api_key_plaintext" tf:"optional"` }
func (*AnthropicConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AnthropicConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan AnthropicConfig)
func (*AnthropicConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AnthropicConfig) SyncEffectiveFieldsDuringRead(existingState AnthropicConfig)
type AutoCaptureConfigInput ¶
type AutoCaptureConfigInput struct { // The name of the catalog in Unity Catalog. NOTE: On update, you cannot // change the catalog name if the inference table is already enabled. CatalogName types.String `tfsdk:"catalog_name" tf:"optional"` // Indicates whether the inference table is enabled. Enabled types.Bool `tfsdk:"enabled" tf:"optional"` // The name of the schema in Unity Catalog. NOTE: On update, you cannot // change the schema name if the inference table is already enabled. SchemaName types.String `tfsdk:"schema_name" tf:"optional"` // The prefix of the table in Unity Catalog. NOTE: On update, you cannot // change the prefix name if the inference table is already enabled. TableNamePrefix types.String `tfsdk:"table_name_prefix" tf:"optional"` }
func (*AutoCaptureConfigInput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AutoCaptureConfigInput) SyncEffectiveFieldsDuringCreateOrUpdate(plan AutoCaptureConfigInput)
func (*AutoCaptureConfigInput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AutoCaptureConfigInput) SyncEffectiveFieldsDuringRead(existingState AutoCaptureConfigInput)
type AutoCaptureConfigOutput ¶
type AutoCaptureConfigOutput struct { // The name of the catalog in Unity Catalog. CatalogName types.String `tfsdk:"catalog_name" tf:"optional"` // Indicates whether the inference table is enabled. Enabled types.Bool `tfsdk:"enabled" tf:"optional"` // The name of the schema in Unity Catalog. SchemaName types.String `tfsdk:"schema_name" tf:"optional"` State []AutoCaptureState `tfsdk:"state" tf:"optional,object"` // The prefix of the table in Unity Catalog. TableNamePrefix types.String `tfsdk:"table_name_prefix" tf:"optional"` }
func (*AutoCaptureConfigOutput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AutoCaptureConfigOutput) SyncEffectiveFieldsDuringCreateOrUpdate(plan AutoCaptureConfigOutput)
func (*AutoCaptureConfigOutput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AutoCaptureConfigOutput) SyncEffectiveFieldsDuringRead(existingState AutoCaptureConfigOutput)
type AutoCaptureState ¶
type AutoCaptureState struct {
PayloadTable []PayloadTable `tfsdk:"payload_table" tf:"optional,object"`
}
func (*AutoCaptureState) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *AutoCaptureState) SyncEffectiveFieldsDuringCreateOrUpdate(plan AutoCaptureState)
func (*AutoCaptureState) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *AutoCaptureState) SyncEffectiveFieldsDuringRead(existingState AutoCaptureState)
type BuildLogsRequest ¶
type BuildLogsRequest struct { // The name of the serving endpoint that the served model belongs to. This // field is required. Name types.String `tfsdk:"-"` // The name of the served model that build logs will be retrieved for. This // field is required. ServedModelName types.String `tfsdk:"-"` }
Get build logs for a served model
func (*BuildLogsRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *BuildLogsRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan BuildLogsRequest)
func (*BuildLogsRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *BuildLogsRequest) SyncEffectiveFieldsDuringRead(existingState BuildLogsRequest)
type BuildLogsResponse ¶
type BuildLogsResponse struct { // The logs associated with building the served entity's environment. Logs types.String `tfsdk:"logs" tf:""` }
func (*BuildLogsResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *BuildLogsResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan BuildLogsResponse)
func (*BuildLogsResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *BuildLogsResponse) SyncEffectiveFieldsDuringRead(existingState BuildLogsResponse)
type ChatMessage ¶
type ChatMessage struct { // The content of the message. Content types.String `tfsdk:"content" tf:"optional"` // The role of the message. One of [system, user, assistant]. Role types.String `tfsdk:"role" tf:"optional"` }
func (*ChatMessage) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ChatMessage) SyncEffectiveFieldsDuringCreateOrUpdate(plan ChatMessage)
func (*ChatMessage) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ChatMessage) SyncEffectiveFieldsDuringRead(existingState ChatMessage)
type CohereConfig ¶
type CohereConfig struct { // This is an optional field to provide a customized base URL for the Cohere // API. If left unspecified, the standard Cohere base URL is used. CohereApiBase types.String `tfsdk:"cohere_api_base" tf:"optional"` // The Databricks secret key reference for a Cohere API key. If you prefer // to paste your API key directly, see `cohere_api_key_plaintext`. You must // provide an API key using one of the following fields: `cohere_api_key` or // `cohere_api_key_plaintext`. CohereApiKey types.String `tfsdk:"cohere_api_key" tf:"optional"` // The Cohere API key provided as a plaintext string. If you prefer to // reference your key using Databricks Secrets, see `cohere_api_key`. You // must provide an API key using one of the following fields: // `cohere_api_key` or `cohere_api_key_plaintext`. CohereApiKeyPlaintext types.String `tfsdk:"cohere_api_key_plaintext" tf:"optional"` }
func (*CohereConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *CohereConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan CohereConfig)
func (*CohereConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *CohereConfig) SyncEffectiveFieldsDuringRead(existingState CohereConfig)
type CreateServingEndpoint ¶
type CreateServingEndpoint struct { // The AI Gateway configuration for the serving endpoint. NOTE: only // external model endpoints are supported as of now. AiGateway []AiGatewayConfig `tfsdk:"ai_gateway" tf:"optional,object"` // The core config of the serving endpoint. Config []EndpointCoreConfigInput `tfsdk:"config" tf:"object"` // The name of the serving endpoint. This field is required and must be // unique across a Databricks workspace. An endpoint name can consist of // alphanumeric characters, dashes, and underscores. Name types.String `tfsdk:"name" tf:""` // Rate limits to be applied to the serving endpoint. NOTE: this field is // deprecated, please use AI Gateway to manage rate limits. RateLimits []RateLimit `tfsdk:"rate_limits" tf:"optional"` // Enable route optimization for the serving endpoint. RouteOptimized types.Bool `tfsdk:"route_optimized" tf:"optional"` // Tags to be attached to the serving endpoint and automatically propagated // to billing logs. Tags []EndpointTag `tfsdk:"tags" tf:"optional"` }
func (*CreateServingEndpoint) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *CreateServingEndpoint) SyncEffectiveFieldsDuringCreateOrUpdate(plan CreateServingEndpoint)
func (*CreateServingEndpoint) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *CreateServingEndpoint) SyncEffectiveFieldsDuringRead(existingState CreateServingEndpoint)
type DatabricksModelServingConfig ¶
type DatabricksModelServingConfig struct { // The Databricks secret key reference for a Databricks API token that // corresponds to a user or service principal with Can Query access to the // model serving endpoint pointed to by this external model. If you prefer // to paste your API key directly, see `databricks_api_token_plaintext`. You // must provide an API key using one of the following fields: // `databricks_api_token` or `databricks_api_token_plaintext`. DatabricksApiToken types.String `tfsdk:"databricks_api_token" tf:"optional"` // The Databricks API token that corresponds to a user or service principal // with Can Query access to the model serving endpoint pointed to by this // external model provided as a plaintext string. If you prefer to reference // your key using Databricks Secrets, see `databricks_api_token`. You must // provide an API key using one of the following fields: // `databricks_api_token` or `databricks_api_token_plaintext`. DatabricksApiTokenPlaintext types.String `tfsdk:"databricks_api_token_plaintext" tf:"optional"` // The URL of the Databricks workspace containing the model serving endpoint // pointed to by this external model. DatabricksWorkspaceUrl types.String `tfsdk:"databricks_workspace_url" tf:""` }
func (*DatabricksModelServingConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *DatabricksModelServingConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan DatabricksModelServingConfig)
func (*DatabricksModelServingConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *DatabricksModelServingConfig) SyncEffectiveFieldsDuringRead(existingState DatabricksModelServingConfig)
type DataframeSplitInput ¶
type DataframeSplitInput struct { Columns []any `tfsdk:"columns" tf:"optional"` Data []any `tfsdk:"data" tf:"optional"` Index []types.Int64 `tfsdk:"index" tf:"optional"` }
func (*DataframeSplitInput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *DataframeSplitInput) SyncEffectiveFieldsDuringCreateOrUpdate(plan DataframeSplitInput)
func (*DataframeSplitInput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *DataframeSplitInput) SyncEffectiveFieldsDuringRead(existingState DataframeSplitInput)
type DeleteResponse ¶
type DeleteResponse struct { }
func (*DeleteResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *DeleteResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan DeleteResponse)
func (*DeleteResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *DeleteResponse) SyncEffectiveFieldsDuringRead(existingState DeleteResponse)
type DeleteServingEndpointRequest ¶
type DeleteServingEndpointRequest struct { // The name of the serving endpoint. This field is required. Name types.String `tfsdk:"-"` }
Delete a serving endpoint
func (*DeleteServingEndpointRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *DeleteServingEndpointRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan DeleteServingEndpointRequest)
func (*DeleteServingEndpointRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *DeleteServingEndpointRequest) SyncEffectiveFieldsDuringRead(existingState DeleteServingEndpointRequest)
type EmbeddingsV1ResponseEmbeddingElement ¶
type EmbeddingsV1ResponseEmbeddingElement struct { Embedding []types.Float64 `tfsdk:"embedding" tf:"optional"` // The index of the embedding in the response. Index types.Int64 `tfsdk:"index" tf:"optional"` // This will always be 'embedding'. Object types.String `tfsdk:"object" tf:"optional"` }
func (*EmbeddingsV1ResponseEmbeddingElement) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EmbeddingsV1ResponseEmbeddingElement) SyncEffectiveFieldsDuringCreateOrUpdate(plan EmbeddingsV1ResponseEmbeddingElement)
func (*EmbeddingsV1ResponseEmbeddingElement) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EmbeddingsV1ResponseEmbeddingElement) SyncEffectiveFieldsDuringRead(existingState EmbeddingsV1ResponseEmbeddingElement)
type EndpointCoreConfigInput ¶
type EndpointCoreConfigInput struct { // Configuration for Inference Tables which automatically logs requests and // responses to Unity Catalog. AutoCaptureConfig []AutoCaptureConfigInput `tfsdk:"auto_capture_config" tf:"optional,object"` // The name of the serving endpoint to update. This field is required. Name types.String `tfsdk:"-"` // A list of served entities for the endpoint to serve. A serving endpoint // can have up to 15 served entities. ServedEntities []ServedEntityInput `tfsdk:"served_entities" tf:"optional"` // (Deprecated, use served_entities instead) A list of served models for the // endpoint to serve. A serving endpoint can have up to 15 served models. ServedModels []ServedModelInput `tfsdk:"served_models" tf:"optional"` // The traffic config defining how invocations to the serving endpoint // should be routed. TrafficConfig []TrafficConfig `tfsdk:"traffic_config" tf:"optional,object"` }
func (*EndpointCoreConfigInput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EndpointCoreConfigInput) SyncEffectiveFieldsDuringCreateOrUpdate(plan EndpointCoreConfigInput)
func (*EndpointCoreConfigInput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EndpointCoreConfigInput) SyncEffectiveFieldsDuringRead(existingState EndpointCoreConfigInput)
type EndpointCoreConfigOutput ¶
type EndpointCoreConfigOutput struct { // Configuration for Inference Tables which automatically logs requests and // responses to Unity Catalog. AutoCaptureConfig []AutoCaptureConfigOutput `tfsdk:"auto_capture_config" tf:"optional,object"` // The config version that the serving endpoint is currently serving. ConfigVersion types.Int64 `tfsdk:"config_version" tf:"optional"` // The list of served entities under the serving endpoint config. ServedEntities []ServedEntityOutput `tfsdk:"served_entities" tf:"optional"` // (Deprecated, use served_entities instead) The list of served models under // the serving endpoint config. ServedModels []ServedModelOutput `tfsdk:"served_models" tf:"optional"` // The traffic configuration associated with the serving endpoint config. TrafficConfig []TrafficConfig `tfsdk:"traffic_config" tf:"optional,object"` }
func (*EndpointCoreConfigOutput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EndpointCoreConfigOutput) SyncEffectiveFieldsDuringCreateOrUpdate(plan EndpointCoreConfigOutput)
func (*EndpointCoreConfigOutput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EndpointCoreConfigOutput) SyncEffectiveFieldsDuringRead(existingState EndpointCoreConfigOutput)
type EndpointCoreConfigSummary ¶
type EndpointCoreConfigSummary struct { // The list of served entities under the serving endpoint config. ServedEntities []ServedEntitySpec `tfsdk:"served_entities" tf:"optional"` // (Deprecated, use served_entities instead) The list of served models under // the serving endpoint config. ServedModels []ServedModelSpec `tfsdk:"served_models" tf:"optional"` }
func (*EndpointCoreConfigSummary) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EndpointCoreConfigSummary) SyncEffectiveFieldsDuringCreateOrUpdate(plan EndpointCoreConfigSummary)
func (*EndpointCoreConfigSummary) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EndpointCoreConfigSummary) SyncEffectiveFieldsDuringRead(existingState EndpointCoreConfigSummary)
type EndpointPendingConfig ¶
type EndpointPendingConfig struct { // Configuration for Inference Tables which automatically logs requests and // responses to Unity Catalog. AutoCaptureConfig []AutoCaptureConfigOutput `tfsdk:"auto_capture_config" tf:"optional,object"` // The config version that the serving endpoint is currently serving. ConfigVersion types.Int64 `tfsdk:"config_version" tf:"optional"` // The list of served entities belonging to the last issued update to the // serving endpoint. ServedEntities []ServedEntityOutput `tfsdk:"served_entities" tf:"optional"` // (Deprecated, use served_entities instead) The list of served models // belonging to the last issued update to the serving endpoint. ServedModels []ServedModelOutput `tfsdk:"served_models" tf:"optional"` // The timestamp when the update to the pending config started. StartTime types.Int64 `tfsdk:"start_time" tf:"optional"` // The traffic config defining how invocations to the serving endpoint // should be routed. TrafficConfig []TrafficConfig `tfsdk:"traffic_config" tf:"optional,object"` }
func (*EndpointPendingConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EndpointPendingConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan EndpointPendingConfig)
func (*EndpointPendingConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EndpointPendingConfig) SyncEffectiveFieldsDuringRead(existingState EndpointPendingConfig)
type EndpointState ¶
type EndpointState struct { // The state of an endpoint's config update. This informs the user if the // pending_config is in progress, if the update failed, or if there is no // update in progress. Note that if the endpoint's config_update state value // is IN_PROGRESS, another update can not be made until the update completes // or fails." ConfigUpdate types.String `tfsdk:"config_update" tf:"optional"` // The state of an endpoint, indicating whether or not the endpoint is // queryable. An endpoint is READY if all of the served entities in its // active configuration are ready. If any of the actively served entities // are in a non-ready state, the endpoint state will be NOT_READY. Ready types.String `tfsdk:"ready" tf:"optional"` }
func (*EndpointState) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EndpointState) SyncEffectiveFieldsDuringCreateOrUpdate(plan EndpointState)
func (*EndpointState) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EndpointState) SyncEffectiveFieldsDuringRead(existingState EndpointState)
type EndpointTag ¶
type EndpointTag struct { // Key field for a serving endpoint tag. Key types.String `tfsdk:"key" tf:""` // Optional value field for a serving endpoint tag. Value types.String `tfsdk:"value" tf:"optional"` }
func (*EndpointTag) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *EndpointTag) SyncEffectiveFieldsDuringCreateOrUpdate(plan EndpointTag)
func (*EndpointTag) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *EndpointTag) SyncEffectiveFieldsDuringRead(existingState EndpointTag)
type ExportMetricsRequest ¶
type ExportMetricsRequest struct { // The name of the serving endpoint to retrieve metrics for. This field is // required. Name types.String `tfsdk:"-"` }
Get metrics of a serving endpoint
func (*ExportMetricsRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ExportMetricsRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan ExportMetricsRequest)
func (*ExportMetricsRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ExportMetricsRequest) SyncEffectiveFieldsDuringRead(existingState ExportMetricsRequest)
type ExportMetricsResponse ¶
type ExportMetricsResponse struct {
Contents io.ReadCloser `tfsdk:"-"`
}
func (*ExportMetricsResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ExportMetricsResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan ExportMetricsResponse)
func (*ExportMetricsResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ExportMetricsResponse) SyncEffectiveFieldsDuringRead(existingState ExportMetricsResponse)
type ExternalModel ¶
type ExternalModel struct { // AI21Labs Config. Only required if the provider is 'ai21labs'. Ai21labsConfig []Ai21LabsConfig `tfsdk:"ai21labs_config" tf:"optional,object"` // Amazon Bedrock Config. Only required if the provider is 'amazon-bedrock'. AmazonBedrockConfig []AmazonBedrockConfig `tfsdk:"amazon_bedrock_config" tf:"optional,object"` // Anthropic Config. Only required if the provider is 'anthropic'. AnthropicConfig []AnthropicConfig `tfsdk:"anthropic_config" tf:"optional,object"` // Cohere Config. Only required if the provider is 'cohere'. CohereConfig []CohereConfig `tfsdk:"cohere_config" tf:"optional,object"` // Databricks Model Serving Config. Only required if the provider is // 'databricks-model-serving'. DatabricksModelServingConfig []DatabricksModelServingConfig `tfsdk:"databricks_model_serving_config" tf:"optional,object"` // Google Cloud Vertex AI Config. Only required if the provider is // 'google-cloud-vertex-ai'. GoogleCloudVertexAiConfig []GoogleCloudVertexAiConfig `tfsdk:"google_cloud_vertex_ai_config" tf:"optional,object"` // The name of the external model. Name types.String `tfsdk:"name" tf:""` // OpenAI Config. Only required if the provider is 'openai'. OpenaiConfig []OpenAiConfig `tfsdk:"openai_config" tf:"optional,object"` // PaLM Config. Only required if the provider is 'palm'. PalmConfig []PaLmConfig `tfsdk:"palm_config" tf:"optional,object"` // The name of the provider for the external model. Currently, the supported // providers are 'ai21labs', 'anthropic', 'amazon-bedrock', 'cohere', // 'databricks-model-serving', 'google-cloud-vertex-ai', 'openai', and // 'palm'.", Provider types.String `tfsdk:"provider" tf:""` // The task type of the external model. Task types.String `tfsdk:"task" tf:""` }
func (*ExternalModel) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ExternalModel) SyncEffectiveFieldsDuringCreateOrUpdate(plan ExternalModel)
func (*ExternalModel) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ExternalModel) SyncEffectiveFieldsDuringRead(existingState ExternalModel)
type ExternalModelUsageElement ¶
type ExternalModelUsageElement struct { // The number of tokens in the chat/completions response. CompletionTokens types.Int64 `tfsdk:"completion_tokens" tf:"optional"` // The number of tokens in the prompt. PromptTokens types.Int64 `tfsdk:"prompt_tokens" tf:"optional"` // The total number of tokens in the prompt and response. TotalTokens types.Int64 `tfsdk:"total_tokens" tf:"optional"` }
func (*ExternalModelUsageElement) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ExternalModelUsageElement) SyncEffectiveFieldsDuringCreateOrUpdate(plan ExternalModelUsageElement)
func (*ExternalModelUsageElement) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ExternalModelUsageElement) SyncEffectiveFieldsDuringRead(existingState ExternalModelUsageElement)
type FoundationModel ¶
type FoundationModel struct { // The description of the foundation model. Description types.String `tfsdk:"description" tf:"optional"` // The display name of the foundation model. DisplayName types.String `tfsdk:"display_name" tf:"optional"` // The URL to the documentation of the foundation model. Docs types.String `tfsdk:"docs" tf:"optional"` // The name of the foundation model. Name types.String `tfsdk:"name" tf:"optional"` }
func (*FoundationModel) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *FoundationModel) SyncEffectiveFieldsDuringCreateOrUpdate(plan FoundationModel)
func (*FoundationModel) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *FoundationModel) SyncEffectiveFieldsDuringRead(existingState FoundationModel)
type GetOpenApiRequest ¶
type GetOpenApiRequest struct { // The name of the serving endpoint that the served model belongs to. This // field is required. Name types.String `tfsdk:"-"` }
Get the schema for a serving endpoint
func (*GetOpenApiRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GetOpenApiRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan GetOpenApiRequest)
func (*GetOpenApiRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GetOpenApiRequest) SyncEffectiveFieldsDuringRead(existingState GetOpenApiRequest)
type GetOpenApiResponse ¶
type GetOpenApiResponse struct { }
The response is an OpenAPI spec in JSON format that typically includes fields like openapi, info, servers and paths, etc.
func (*GetOpenApiResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GetOpenApiResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan GetOpenApiResponse)
func (*GetOpenApiResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GetOpenApiResponse) SyncEffectiveFieldsDuringRead(existingState GetOpenApiResponse)
type GetServingEndpointPermissionLevelsRequest ¶
type GetServingEndpointPermissionLevelsRequest struct { // The serving endpoint for which to get or manage permissions. ServingEndpointId types.String `tfsdk:"-"` }
Get serving endpoint permission levels
func (*GetServingEndpointPermissionLevelsRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GetServingEndpointPermissionLevelsRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan GetServingEndpointPermissionLevelsRequest)
func (*GetServingEndpointPermissionLevelsRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GetServingEndpointPermissionLevelsRequest) SyncEffectiveFieldsDuringRead(existingState GetServingEndpointPermissionLevelsRequest)
type GetServingEndpointPermissionLevelsResponse ¶
type GetServingEndpointPermissionLevelsResponse struct { // Specific permission levels PermissionLevels []ServingEndpointPermissionsDescription `tfsdk:"permission_levels" tf:"optional"` }
func (*GetServingEndpointPermissionLevelsResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GetServingEndpointPermissionLevelsResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan GetServingEndpointPermissionLevelsResponse)
func (*GetServingEndpointPermissionLevelsResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GetServingEndpointPermissionLevelsResponse) SyncEffectiveFieldsDuringRead(existingState GetServingEndpointPermissionLevelsResponse)
type GetServingEndpointPermissionsRequest ¶
type GetServingEndpointPermissionsRequest struct { // The serving endpoint for which to get or manage permissions. ServingEndpointId types.String `tfsdk:"-"` }
Get serving endpoint permissions
func (*GetServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GetServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan GetServingEndpointPermissionsRequest)
func (*GetServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GetServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringRead(existingState GetServingEndpointPermissionsRequest)
type GetServingEndpointRequest ¶
type GetServingEndpointRequest struct { // The name of the serving endpoint. This field is required. Name types.String `tfsdk:"-"` }
Get a single serving endpoint
func (*GetServingEndpointRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GetServingEndpointRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan GetServingEndpointRequest)
func (*GetServingEndpointRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GetServingEndpointRequest) SyncEffectiveFieldsDuringRead(existingState GetServingEndpointRequest)
type GoogleCloudVertexAiConfig ¶
type GoogleCloudVertexAiConfig struct { // The Databricks secret key reference for a private key for the service // account which has access to the Google Cloud Vertex AI Service. See [Best // practices for managing service account keys]. If you prefer to paste your // API key directly, see `private_key_plaintext`. You must provide an API // key using one of the following fields: `private_key` or // `private_key_plaintext` // // [Best practices for managing service account keys]: https://cloud.google.com/iam/docs/best-practices-for-managing-service-account-keys PrivateKey types.String `tfsdk:"private_key" tf:"optional"` // The private key for the service account which has access to the Google // Cloud Vertex AI Service provided as a plaintext secret. See [Best // practices for managing service account keys]. If you prefer to reference // your key using Databricks Secrets, see `private_key`. You must provide an // API key using one of the following fields: `private_key` or // `private_key_plaintext`. // // [Best practices for managing service account keys]: https://cloud.google.com/iam/docs/best-practices-for-managing-service-account-keys PrivateKeyPlaintext types.String `tfsdk:"private_key_plaintext" tf:"optional"` // This is the Google Cloud project id that the service account is // associated with. ProjectId types.String `tfsdk:"project_id" tf:"optional"` // This is the region for the Google Cloud Vertex AI Service. See [supported // regions] for more details. Some models are only available in specific // regions. // // [supported regions]: https://cloud.google.com/vertex-ai/docs/general/locations Region types.String `tfsdk:"region" tf:"optional"` }
func (*GoogleCloudVertexAiConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *GoogleCloudVertexAiConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan GoogleCloudVertexAiConfig)
func (*GoogleCloudVertexAiConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *GoogleCloudVertexAiConfig) SyncEffectiveFieldsDuringRead(existingState GoogleCloudVertexAiConfig)
type ListEndpointsResponse ¶
type ListEndpointsResponse struct { // The list of endpoints. Endpoints []ServingEndpoint `tfsdk:"endpoints" tf:"optional"` }
func (*ListEndpointsResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ListEndpointsResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan ListEndpointsResponse)
func (*ListEndpointsResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ListEndpointsResponse) SyncEffectiveFieldsDuringRead(existingState ListEndpointsResponse)
type LogsRequest ¶
type LogsRequest struct { // The name of the serving endpoint that the served model belongs to. This // field is required. Name types.String `tfsdk:"-"` // The name of the served model that logs will be retrieved for. This field // is required. ServedModelName types.String `tfsdk:"-"` }
Get the latest logs for a served model
func (*LogsRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *LogsRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan LogsRequest)
func (*LogsRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *LogsRequest) SyncEffectiveFieldsDuringRead(existingState LogsRequest)
type ModelDataPlaneInfo ¶
type ModelDataPlaneInfo struct { // Information required to query DataPlane API 'query' endpoint. QueryInfo oauth2.DataPlaneInfo `tfsdk:"query_info" tf:"optional,object"` }
func (*ModelDataPlaneInfo) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ModelDataPlaneInfo) SyncEffectiveFieldsDuringCreateOrUpdate(plan ModelDataPlaneInfo)
func (*ModelDataPlaneInfo) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ModelDataPlaneInfo) SyncEffectiveFieldsDuringRead(existingState ModelDataPlaneInfo)
type OpenAiConfig ¶
type OpenAiConfig struct { // This field is only required for Azure AD OpenAI and is the Microsoft // Entra Client ID. MicrosoftEntraClientId types.String `tfsdk:"microsoft_entra_client_id" tf:"optional"` // The Databricks secret key reference for a client secret used for // Microsoft Entra ID authentication. If you prefer to paste your client // secret directly, see `microsoft_entra_client_secret_plaintext`. You must // provide an API key using one of the following fields: // `microsoft_entra_client_secret` or // `microsoft_entra_client_secret_plaintext`. MicrosoftEntraClientSecret types.String `tfsdk:"microsoft_entra_client_secret" tf:"optional"` // The client secret used for Microsoft Entra ID authentication provided as // a plaintext string. If you prefer to reference your key using Databricks // Secrets, see `microsoft_entra_client_secret`. You must provide an API key // using one of the following fields: `microsoft_entra_client_secret` or // `microsoft_entra_client_secret_plaintext`. MicrosoftEntraClientSecretPlaintext types.String `tfsdk:"microsoft_entra_client_secret_plaintext" tf:"optional"` // This field is only required for Azure AD OpenAI and is the Microsoft // Entra Tenant ID. MicrosoftEntraTenantId types.String `tfsdk:"microsoft_entra_tenant_id" tf:"optional"` // This is a field to provide a customized base URl for the OpenAI API. For // Azure OpenAI, this field is required, and is the base URL for the Azure // OpenAI API service provided by Azure. For other OpenAI API types, this // field is optional, and if left unspecified, the standard OpenAI base URL // is used. OpenaiApiBase types.String `tfsdk:"openai_api_base" tf:"optional"` // The Databricks secret key reference for an OpenAI API key using the // OpenAI or Azure service. If you prefer to paste your API key directly, // see `openai_api_key_plaintext`. You must provide an API key using one of // the following fields: `openai_api_key` or `openai_api_key_plaintext`. OpenaiApiKey types.String `tfsdk:"openai_api_key" tf:"optional"` // The OpenAI API key using the OpenAI or Azure service provided as a // plaintext string. If you prefer to reference your key using Databricks // Secrets, see `openai_api_key`. You must provide an API key using one of // the following fields: `openai_api_key` or `openai_api_key_plaintext`. OpenaiApiKeyPlaintext types.String `tfsdk:"openai_api_key_plaintext" tf:"optional"` // This is an optional field to specify the type of OpenAI API to use. For // Azure OpenAI, this field is required, and adjust this parameter to // represent the preferred security access validation protocol. For access // token validation, use azure. For authentication using Azure Active // Directory (Azure AD) use, azuread. OpenaiApiType types.String `tfsdk:"openai_api_type" tf:"optional"` // This is an optional field to specify the OpenAI API version. For Azure // OpenAI, this field is required, and is the version of the Azure OpenAI // service to utilize, specified by a date. OpenaiApiVersion types.String `tfsdk:"openai_api_version" tf:"optional"` // This field is only required for Azure OpenAI and is the name of the // deployment resource for the Azure OpenAI service. OpenaiDeploymentName types.String `tfsdk:"openai_deployment_name" tf:"optional"` // This is an optional field to specify the organization in OpenAI or Azure // OpenAI. OpenaiOrganization types.String `tfsdk:"openai_organization" tf:"optional"` }
func (*OpenAiConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *OpenAiConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan OpenAiConfig)
func (*OpenAiConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *OpenAiConfig) SyncEffectiveFieldsDuringRead(existingState OpenAiConfig)
type PaLmConfig ¶
type PaLmConfig struct { // The Databricks secret key reference for a PaLM API key. If you prefer to // paste your API key directly, see `palm_api_key_plaintext`. You must // provide an API key using one of the following fields: `palm_api_key` or // `palm_api_key_plaintext`. PalmApiKey types.String `tfsdk:"palm_api_key" tf:"optional"` // The PaLM API key provided as a plaintext string. If you prefer to // reference your key using Databricks Secrets, see `palm_api_key`. You must // provide an API key using one of the following fields: `palm_api_key` or // `palm_api_key_plaintext`. PalmApiKeyPlaintext types.String `tfsdk:"palm_api_key_plaintext" tf:"optional"` }
func (*PaLmConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PaLmConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan PaLmConfig)
func (*PaLmConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PaLmConfig) SyncEffectiveFieldsDuringRead(existingState PaLmConfig)
type PatchServingEndpointTags ¶
type PatchServingEndpointTags struct { // List of endpoint tags to add AddTags []EndpointTag `tfsdk:"add_tags" tf:"optional"` // List of tag keys to delete DeleteTags []types.String `tfsdk:"delete_tags" tf:"optional"` // The name of the serving endpoint who's tags to patch. This field is // required. Name types.String `tfsdk:"-"` }
func (*PatchServingEndpointTags) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PatchServingEndpointTags) SyncEffectiveFieldsDuringCreateOrUpdate(plan PatchServingEndpointTags)
func (*PatchServingEndpointTags) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PatchServingEndpointTags) SyncEffectiveFieldsDuringRead(existingState PatchServingEndpointTags)
type PayloadTable ¶
type PayloadTable struct { // The name of the payload table. Name types.String `tfsdk:"name" tf:"optional"` // The status of the payload table. Status types.String `tfsdk:"status" tf:"optional"` // The status message of the payload table. StatusMessage types.String `tfsdk:"status_message" tf:"optional"` }
func (*PayloadTable) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PayloadTable) SyncEffectiveFieldsDuringCreateOrUpdate(plan PayloadTable)
func (*PayloadTable) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PayloadTable) SyncEffectiveFieldsDuringRead(existingState PayloadTable)
type PutAiGatewayRequest ¶ added in v1.53.0
type PutAiGatewayRequest struct { // Configuration for AI Guardrails to prevent unwanted data and unsafe data // in requests and responses. Guardrails []AiGatewayGuardrails `tfsdk:"guardrails" tf:"optional,object"` // Configuration for payload logging using inference tables. Use these // tables to monitor and audit data being sent to and received from model // APIs and to improve model quality. InferenceTableConfig []AiGatewayInferenceTableConfig `tfsdk:"inference_table_config" tf:"optional,object"` // The name of the serving endpoint whose AI Gateway is being updated. This // field is required. Name types.String `tfsdk:"-"` // Configuration for rate limits which can be set to limit endpoint traffic. RateLimits []AiGatewayRateLimit `tfsdk:"rate_limits" tf:"optional"` // Configuration to enable usage tracking using system tables. These tables // allow you to monitor operational usage on endpoints and their associated // costs. UsageTrackingConfig []AiGatewayUsageTrackingConfig `tfsdk:"usage_tracking_config" tf:"optional,object"` }
Update AI Gateway of a serving endpoint
func (*PutAiGatewayRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PutAiGatewayRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan PutAiGatewayRequest)
func (*PutAiGatewayRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PutAiGatewayRequest) SyncEffectiveFieldsDuringRead(existingState PutAiGatewayRequest)
type PutAiGatewayResponse ¶ added in v1.53.0
type PutAiGatewayResponse struct { // Configuration for AI Guardrails to prevent unwanted data and unsafe data // in requests and responses. Guardrails []AiGatewayGuardrails `tfsdk:"guardrails" tf:"optional,object"` // Configuration for payload logging using inference tables. Use these // tables to monitor and audit data being sent to and received from model // APIs and to improve model quality . InferenceTableConfig []AiGatewayInferenceTableConfig `tfsdk:"inference_table_config" tf:"optional,object"` // Configuration for rate limits which can be set to limit endpoint traffic. RateLimits []AiGatewayRateLimit `tfsdk:"rate_limits" tf:"optional"` // Configuration to enable usage tracking using system tables. These tables // allow you to monitor operational usage on endpoints and their associated // costs. UsageTrackingConfig []AiGatewayUsageTrackingConfig `tfsdk:"usage_tracking_config" tf:"optional,object"` }
func (*PutAiGatewayResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PutAiGatewayResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan PutAiGatewayResponse)
func (*PutAiGatewayResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PutAiGatewayResponse) SyncEffectiveFieldsDuringRead(existingState PutAiGatewayResponse)
type PutRequest ¶
type PutRequest struct { // The name of the serving endpoint whose rate limits are being updated. // This field is required. Name types.String `tfsdk:"-"` // The list of endpoint rate limits. RateLimits []RateLimit `tfsdk:"rate_limits" tf:"optional"` }
Update rate limits of a serving endpoint
func (*PutRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PutRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan PutRequest)
func (*PutRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PutRequest) SyncEffectiveFieldsDuringRead(existingState PutRequest)
type PutResponse ¶
type PutResponse struct { // The list of endpoint rate limits. RateLimits []RateLimit `tfsdk:"rate_limits" tf:"optional"` }
func (*PutResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *PutResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan PutResponse)
func (*PutResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *PutResponse) SyncEffectiveFieldsDuringRead(existingState PutResponse)
type QueryEndpointInput ¶
type QueryEndpointInput struct { // Pandas Dataframe input in the records orientation. DataframeRecords []any `tfsdk:"dataframe_records" tf:"optional"` // Pandas Dataframe input in the split orientation. DataframeSplit []DataframeSplitInput `tfsdk:"dataframe_split" tf:"optional,object"` // The extra parameters field used ONLY for __completions, chat,__ and // __embeddings external & foundation model__ serving endpoints. This is a // map of strings and should only be used with other external/foundation // model query fields. ExtraParams map[string]types.String `tfsdk:"extra_params" tf:"optional"` // The input string (or array of strings) field used ONLY for __embeddings // external & foundation model__ serving endpoints and is the only field // (along with extra_params if needed) used by embeddings queries. Input any `tfsdk:"input" tf:"optional"` // Tensor-based input in columnar format. Inputs any `tfsdk:"inputs" tf:"optional"` // Tensor-based input in row format. Instances []any `tfsdk:"instances" tf:"optional"` // The max tokens field used ONLY for __completions__ and __chat external & // foundation model__ serving endpoints. This is an integer and should only // be used with other chat/completions query fields. MaxTokens types.Int64 `tfsdk:"max_tokens" tf:"optional"` // The messages field used ONLY for __chat external & foundation model__ // serving endpoints. This is a map of strings and should only be used with // other chat query fields. Messages []ChatMessage `tfsdk:"messages" tf:"optional"` // The n (number of candidates) field used ONLY for __completions__ and // __chat external & foundation model__ serving endpoints. This is an // integer between 1 and 5 with a default of 1 and should only be used with // other chat/completions query fields. N types.Int64 `tfsdk:"n" tf:"optional"` // The name of the serving endpoint. This field is required. Name types.String `tfsdk:"-"` // The prompt string (or array of strings) field used ONLY for __completions // external & foundation model__ serving endpoints and should only be used // with other completions query fields. Prompt any `tfsdk:"prompt" tf:"optional"` // The stop sequences field used ONLY for __completions__ and __chat // external & foundation model__ serving endpoints. This is a list of // strings and should only be used with other chat/completions query fields. Stop []types.String `tfsdk:"stop" tf:"optional"` // The stream field used ONLY for __completions__ and __chat external & // foundation model__ serving endpoints. This is a boolean defaulting to // false and should only be used with other chat/completions query fields. Stream types.Bool `tfsdk:"stream" tf:"optional"` // The temperature field used ONLY for __completions__ and __chat external & // foundation model__ serving endpoints. This is a float between 0.0 and 2.0 // with a default of 1.0 and should only be used with other chat/completions // query fields. Temperature types.Float64 `tfsdk:"temperature" tf:"optional"` }
func (*QueryEndpointInput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *QueryEndpointInput) SyncEffectiveFieldsDuringCreateOrUpdate(plan QueryEndpointInput)
func (*QueryEndpointInput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *QueryEndpointInput) SyncEffectiveFieldsDuringRead(existingState QueryEndpointInput)
type QueryEndpointResponse ¶
type QueryEndpointResponse struct { // The list of choices returned by the __chat or completions // external/foundation model__ serving endpoint. Choices []V1ResponseChoiceElement `tfsdk:"choices" tf:"optional"` // The timestamp in seconds when the query was created in Unix time returned // by a __completions or chat external/foundation model__ serving endpoint. Created types.Int64 `tfsdk:"created" tf:"optional"` // The list of the embeddings returned by the __embeddings // external/foundation model__ serving endpoint. Data []EmbeddingsV1ResponseEmbeddingElement `tfsdk:"data" tf:"optional"` // The ID of the query that may be returned by a __completions or chat // external/foundation model__ serving endpoint. Id types.String `tfsdk:"id" tf:"optional"` // The name of the __external/foundation model__ used for querying. This is // the name of the model that was specified in the endpoint config. Model types.String `tfsdk:"model" tf:"optional"` // The type of object returned by the __external/foundation model__ serving // endpoint, one of [text_completion, chat.completion, list (of // embeddings)]. Object types.String `tfsdk:"object" tf:"optional"` // The predictions returned by the serving endpoint. Predictions []any `tfsdk:"predictions" tf:"optional"` // The name of the served model that served the request. This is useful when // there are multiple models behind the same endpoint with traffic split. ServedModelName types.String `tfsdk:"-"` // The usage object that may be returned by the __external/foundation // model__ serving endpoint. This contains information about the number of // tokens used in the prompt and response. Usage []ExternalModelUsageElement `tfsdk:"usage" tf:"optional,object"` }
func (*QueryEndpointResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *QueryEndpointResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan QueryEndpointResponse)
func (*QueryEndpointResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *QueryEndpointResponse) SyncEffectiveFieldsDuringRead(existingState QueryEndpointResponse)
type RateLimit ¶
type RateLimit struct { // Used to specify how many calls are allowed for a key within the // renewal_period. Calls types.Int64 `tfsdk:"calls" tf:""` // Key field for a serving endpoint rate limit. Currently, only 'user' and // 'endpoint' are supported, with 'endpoint' being the default if not // specified. Key types.String `tfsdk:"key" tf:"optional"` // Renewal period field for a serving endpoint rate limit. Currently, only // 'minute' is supported. RenewalPeriod types.String `tfsdk:"renewal_period" tf:""` }
func (*RateLimit) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (*RateLimit) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
type Route ¶
type Route struct { // The name of the served model this route configures traffic for. ServedModelName types.String `tfsdk:"served_model_name" tf:""` // The percentage of endpoint traffic to send to this route. It must be an // integer between 0 and 100 inclusive. TrafficPercentage types.Int64 `tfsdk:"traffic_percentage" tf:""` }
func (*Route) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (*Route) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
type ServedEntityInput ¶
type ServedEntityInput struct { // The name of the entity to be served. The entity may be a model in the // Databricks Model Registry, a model in the Unity Catalog (UC), or a // function of type FEATURE_SPEC in the UC. If it is a UC object, the full // name of the object should be given in the form of // __catalog_name__.__schema_name__.__model_name__. EntityName types.String `tfsdk:"entity_name" tf:"optional"` // The version of the model in Databricks Model Registry to be served or // empty if the entity is a FEATURE_SPEC. EntityVersion types.String `tfsdk:"entity_version" tf:"optional"` // An object containing a set of optional, user-specified environment // variable key-value pairs used for serving this entity. Note: this is an // experimental feature and subject to change. Example entity environment // variables that refer to Databricks secrets: `{"OPENAI_API_KEY": // "{{secrets/my_scope/my_key}}", "DATABRICKS_TOKEN": // "{{secrets/my_scope2/my_key2}}"}` EnvironmentVars map[string]types.String `tfsdk:"environment_vars" tf:"optional"` // The external model to be served. NOTE: Only one of external_model and // (entity_name, entity_version, workload_size, workload_type, and // scale_to_zero_enabled) can be specified with the latter set being used // for custom model serving for a Databricks registered model. For an // existing endpoint with external_model, it cannot be updated to an // endpoint without external_model. If the endpoint is created without // external_model, users cannot update it to add external_model later. The // task type of all external models within an endpoint must be the same. ExternalModel []ExternalModel `tfsdk:"external_model" tf:"optional,object"` // ARN of the instance profile that the served entity uses to access AWS // resources. InstanceProfileArn types.String `tfsdk:"instance_profile_arn" tf:"optional"` // The maximum tokens per second that the endpoint can scale up to. MaxProvisionedThroughput types.Int64 `tfsdk:"max_provisioned_throughput" tf:"optional"` // The minimum tokens per second that the endpoint can scale down to. MinProvisionedThroughput types.Int64 `tfsdk:"min_provisioned_throughput" tf:"optional"` // The name of a served entity. It must be unique across an endpoint. A // served entity name can consist of alphanumeric characters, dashes, and // underscores. If not specified for an external model, this field defaults // to external_model.name, with '.' and ':' replaced with '-', and if not // specified for other entities, it defaults to // <entity-name>-<entity-version>. Name types.String `tfsdk:"name" tf:"optional"` // Whether the compute resources for the served entity should scale down to // zero. ScaleToZeroEnabled types.Bool `tfsdk:"scale_to_zero_enabled" tf:"optional"` // The workload size of the served entity. The workload size corresponds to // a range of provisioned concurrency that the compute autoscales between. A // single unit of provisioned concurrency can process one request at a time. // Valid workload sizes are "Small" (4 - 4 provisioned concurrency), // "Medium" (8 - 16 provisioned concurrency), and "Large" (16 - 64 // provisioned concurrency). If scale-to-zero is enabled, the lower bound of // the provisioned concurrency for each workload size is 0. WorkloadSize types.String `tfsdk:"workload_size" tf:"optional"` // The workload type of the served entity. The workload type selects which // type of compute to use in the endpoint. The default value for this // parameter is "CPU". For deep learning workloads, GPU acceleration is // available by selecting workload types like GPU_SMALL and others. See the // available [GPU types]. // // [GPU types]: https://docs.databricks.com/machine-learning/model-serving/create-manage-serving-endpoints.html#gpu-workload-types WorkloadType types.String `tfsdk:"workload_type" tf:"optional"` }
func (*ServedEntityInput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedEntityInput) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedEntityInput)
func (*ServedEntityInput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedEntityInput) SyncEffectiveFieldsDuringRead(existingState ServedEntityInput)
type ServedEntityOutput ¶
type ServedEntityOutput struct { // The creation timestamp of the served entity in Unix time. CreationTimestamp types.Int64 `tfsdk:"creation_timestamp" tf:"optional"` // The email of the user who created the served entity. Creator types.String `tfsdk:"creator" tf:"optional"` // The name of the entity served. The entity may be a model in the // Databricks Model Registry, a model in the Unity Catalog (UC), or a // function of type FEATURE_SPEC in the UC. If it is a UC object, the full // name of the object is given in the form of // __catalog_name__.__schema_name__.__model_name__. EntityName types.String `tfsdk:"entity_name" tf:"optional"` // The version of the served entity in Databricks Model Registry or empty if // the entity is a FEATURE_SPEC. EntityVersion types.String `tfsdk:"entity_version" tf:"optional"` // An object containing a set of optional, user-specified environment // variable key-value pairs used for serving this entity. Note: this is an // experimental feature and subject to change. Example entity environment // variables that refer to Databricks secrets: `{"OPENAI_API_KEY": // "{{secrets/my_scope/my_key}}", "DATABRICKS_TOKEN": // "{{secrets/my_scope2/my_key2}}"}` EnvironmentVars map[string]types.String `tfsdk:"environment_vars" tf:"optional"` // The external model that is served. NOTE: Only one of external_model, // foundation_model, and (entity_name, entity_version, workload_size, // workload_type, and scale_to_zero_enabled) is returned based on the // endpoint type. ExternalModel []ExternalModel `tfsdk:"external_model" tf:"optional,object"` // The foundation model that is served. NOTE: Only one of foundation_model, // external_model, and (entity_name, entity_version, workload_size, // workload_type, and scale_to_zero_enabled) is returned based on the // endpoint type. FoundationModel []FoundationModel `tfsdk:"foundation_model" tf:"optional,object"` // ARN of the instance profile that the served entity uses to access AWS // resources. InstanceProfileArn types.String `tfsdk:"instance_profile_arn" tf:"optional"` // The maximum tokens per second that the endpoint can scale up to. MaxProvisionedThroughput types.Int64 `tfsdk:"max_provisioned_throughput" tf:"optional"` // The minimum tokens per second that the endpoint can scale down to. MinProvisionedThroughput types.Int64 `tfsdk:"min_provisioned_throughput" tf:"optional"` // The name of the served entity. Name types.String `tfsdk:"name" tf:"optional"` // Whether the compute resources for the served entity should scale down to // zero. ScaleToZeroEnabled types.Bool `tfsdk:"scale_to_zero_enabled" tf:"optional"` // Information corresponding to the state of the served entity. State []ServedModelState `tfsdk:"state" tf:"optional,object"` // The workload size of the served entity. The workload size corresponds to // a range of provisioned concurrency that the compute autoscales between. A // single unit of provisioned concurrency can process one request at a time. // Valid workload sizes are "Small" (4 - 4 provisioned concurrency), // "Medium" (8 - 16 provisioned concurrency), and "Large" (16 - 64 // provisioned concurrency). If scale-to-zero is enabled, the lower bound of // the provisioned concurrency for each workload size will be 0. WorkloadSize types.String `tfsdk:"workload_size" tf:"optional"` // The workload type of the served entity. The workload type selects which // type of compute to use in the endpoint. The default value for this // parameter is "CPU". For deep learning workloads, GPU acceleration is // available by selecting workload types like GPU_SMALL and others. See the // available [GPU types]. // // [GPU types]: https://docs.databricks.com/machine-learning/model-serving/create-manage-serving-endpoints.html#gpu-workload-types WorkloadType types.String `tfsdk:"workload_type" tf:"optional"` }
func (*ServedEntityOutput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedEntityOutput) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedEntityOutput)
func (*ServedEntityOutput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedEntityOutput) SyncEffectiveFieldsDuringRead(existingState ServedEntityOutput)
type ServedEntitySpec ¶
type ServedEntitySpec struct { // The name of the entity served. The entity may be a model in the // Databricks Model Registry, a model in the Unity Catalog (UC), or a // function of type FEATURE_SPEC in the UC. If it is a UC object, the full // name of the object is given in the form of // __catalog_name__.__schema_name__.__model_name__. EntityName types.String `tfsdk:"entity_name" tf:"optional"` // The version of the served entity in Databricks Model Registry or empty if // the entity is a FEATURE_SPEC. EntityVersion types.String `tfsdk:"entity_version" tf:"optional"` // The external model that is served. NOTE: Only one of external_model, // foundation_model, and (entity_name, entity_version) is returned based on // the endpoint type. ExternalModel []ExternalModel `tfsdk:"external_model" tf:"optional,object"` // The foundation model that is served. NOTE: Only one of foundation_model, // external_model, and (entity_name, entity_version) is returned based on // the endpoint type. FoundationModel []FoundationModel `tfsdk:"foundation_model" tf:"optional,object"` // The name of the served entity. Name types.String `tfsdk:"name" tf:"optional"` }
func (*ServedEntitySpec) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedEntitySpec) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedEntitySpec)
func (*ServedEntitySpec) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedEntitySpec) SyncEffectiveFieldsDuringRead(existingState ServedEntitySpec)
type ServedModelInput ¶
type ServedModelInput struct { // An object containing a set of optional, user-specified environment // variable key-value pairs used for serving this model. Note: this is an // experimental feature and subject to change. Example model environment // variables that refer to Databricks secrets: `{"OPENAI_API_KEY": // "{{secrets/my_scope/my_key}}", "DATABRICKS_TOKEN": // "{{secrets/my_scope2/my_key2}}"}` EnvironmentVars map[string]types.String `tfsdk:"environment_vars" tf:"optional"` // ARN of the instance profile that the served model will use to access AWS // resources. InstanceProfileArn types.String `tfsdk:"instance_profile_arn" tf:"optional"` // The maximum tokens per second that the endpoint can scale up to. MaxProvisionedThroughput types.Int64 `tfsdk:"max_provisioned_throughput" tf:"optional"` // The minimum tokens per second that the endpoint can scale down to. MinProvisionedThroughput types.Int64 `tfsdk:"min_provisioned_throughput" tf:"optional"` // The name of the model in Databricks Model Registry to be served or if the // model resides in Unity Catalog, the full name of model, in the form of // __catalog_name__.__schema_name__.__model_name__. ModelName types.String `tfsdk:"model_name" tf:""` // The version of the model in Databricks Model Registry or Unity Catalog to // be served. ModelVersion types.String `tfsdk:"model_version" tf:""` // The name of a served model. It must be unique across an endpoint. If not // specified, this field will default to <model-name>-<model-version>. A // served model name can consist of alphanumeric characters, dashes, and // underscores. Name types.String `tfsdk:"name" tf:"optional"` // Whether the compute resources for the served model should scale down to // zero. ScaleToZeroEnabled types.Bool `tfsdk:"scale_to_zero_enabled" tf:""` // The workload size of the served model. The workload size corresponds to a // range of provisioned concurrency that the compute will autoscale between. // A single unit of provisioned concurrency can process one request at a // time. Valid workload sizes are "Small" (4 - 4 provisioned concurrency), // "Medium" (8 - 16 provisioned concurrency), and "Large" (16 - 64 // provisioned concurrency). If scale-to-zero is enabled, the lower bound of // the provisioned concurrency for each workload size will be 0. WorkloadSize types.String `tfsdk:"workload_size" tf:"optional"` // The workload type of the served model. The workload type selects which // type of compute to use in the endpoint. The default value for this // parameter is "CPU". For deep learning workloads, GPU acceleration is // available by selecting workload types like GPU_SMALL and others. See the // available [GPU types]. // // [GPU types]: https://docs.databricks.com/machine-learning/model-serving/create-manage-serving-endpoints.html#gpu-workload-types WorkloadType types.String `tfsdk:"workload_type" tf:"optional"` }
func (*ServedModelInput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedModelInput) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedModelInput)
func (*ServedModelInput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedModelInput) SyncEffectiveFieldsDuringRead(existingState ServedModelInput)
type ServedModelOutput ¶
type ServedModelOutput struct { // The creation timestamp of the served model in Unix time. CreationTimestamp types.Int64 `tfsdk:"creation_timestamp" tf:"optional"` // The email of the user who created the served model. Creator types.String `tfsdk:"creator" tf:"optional"` // An object containing a set of optional, user-specified environment // variable key-value pairs used for serving this model. Note: this is an // experimental feature and subject to change. Example model environment // variables that refer to Databricks secrets: `{"OPENAI_API_KEY": // "{{secrets/my_scope/my_key}}", "DATABRICKS_TOKEN": // "{{secrets/my_scope2/my_key2}}"}` EnvironmentVars map[string]types.String `tfsdk:"environment_vars" tf:"optional"` // ARN of the instance profile that the served model will use to access AWS // resources. InstanceProfileArn types.String `tfsdk:"instance_profile_arn" tf:"optional"` // The name of the model in Databricks Model Registry or the full name of // the model in Unity Catalog. ModelName types.String `tfsdk:"model_name" tf:"optional"` // The version of the model in Databricks Model Registry or Unity Catalog to // be served. ModelVersion types.String `tfsdk:"model_version" tf:"optional"` // The name of the served model. Name types.String `tfsdk:"name" tf:"optional"` // Whether the compute resources for the Served Model should scale down to // zero. ScaleToZeroEnabled types.Bool `tfsdk:"scale_to_zero_enabled" tf:"optional"` // Information corresponding to the state of the Served Model. State []ServedModelState `tfsdk:"state" tf:"optional,object"` // The workload size of the served model. The workload size corresponds to a // range of provisioned concurrency that the compute will autoscale between. // A single unit of provisioned concurrency can process one request at a // time. Valid workload sizes are "Small" (4 - 4 provisioned concurrency), // "Medium" (8 - 16 provisioned concurrency), and "Large" (16 - 64 // provisioned concurrency). If scale-to-zero is enabled, the lower bound of // the provisioned concurrency for each workload size will be 0. WorkloadSize types.String `tfsdk:"workload_size" tf:"optional"` // The workload type of the served model. The workload type selects which // type of compute to use in the endpoint. The default value for this // parameter is "CPU". For deep learning workloads, GPU acceleration is // available by selecting workload types like GPU_SMALL and others. See the // available [GPU types]. // // [GPU types]: https://docs.databricks.com/machine-learning/model-serving/create-manage-serving-endpoints.html#gpu-workload-types WorkloadType types.String `tfsdk:"workload_type" tf:"optional"` }
func (*ServedModelOutput) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedModelOutput) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedModelOutput)
func (*ServedModelOutput) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedModelOutput) SyncEffectiveFieldsDuringRead(existingState ServedModelOutput)
type ServedModelSpec ¶
type ServedModelSpec struct { // The name of the model in Databricks Model Registry or the full name of // the model in Unity Catalog. ModelName types.String `tfsdk:"model_name" tf:"optional"` // The version of the model in Databricks Model Registry or Unity Catalog to // be served. ModelVersion types.String `tfsdk:"model_version" tf:"optional"` // The name of the served model. Name types.String `tfsdk:"name" tf:"optional"` }
func (*ServedModelSpec) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedModelSpec) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedModelSpec)
func (*ServedModelSpec) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedModelSpec) SyncEffectiveFieldsDuringRead(existingState ServedModelSpec)
type ServedModelState ¶
type ServedModelState struct { // The state of the served entity deployment. DEPLOYMENT_CREATING indicates // that the served entity is not ready yet because the deployment is still // being created (i.e container image is building, model server is deploying // for the first time, etc.). DEPLOYMENT_RECOVERING indicates that the // served entity was previously in a ready state but no longer is and is // attempting to recover. DEPLOYMENT_READY indicates that the served entity // is ready to receive traffic. DEPLOYMENT_FAILED indicates that there was // an error trying to bring up the served entity (e.g container image build // failed, the model server failed to start due to a model loading error, // etc.) DEPLOYMENT_ABORTED indicates that the deployment was terminated // likely due to a failure in bringing up another served entity under the // same endpoint and config version. Deployment types.String `tfsdk:"deployment" tf:"optional"` // More information about the state of the served entity, if available. DeploymentStateMessage types.String `tfsdk:"deployment_state_message" tf:"optional"` }
func (*ServedModelState) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServedModelState) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServedModelState)
func (*ServedModelState) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServedModelState) SyncEffectiveFieldsDuringRead(existingState ServedModelState)
type ServerLogsResponse ¶
type ServerLogsResponse struct { // The most recent log lines of the model server processing invocation // requests. Logs types.String `tfsdk:"logs" tf:""` }
func (*ServerLogsResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServerLogsResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServerLogsResponse)
func (*ServerLogsResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServerLogsResponse) SyncEffectiveFieldsDuringRead(existingState ServerLogsResponse)
type ServingEndpoint ¶
type ServingEndpoint struct { // The AI Gateway configuration for the serving endpoint. NOTE: Only // external model endpoints are currently supported. AiGateway []AiGatewayConfig `tfsdk:"ai_gateway" tf:"optional,object"` // The config that is currently being served by the endpoint. Config []EndpointCoreConfigSummary `tfsdk:"config" tf:"optional,object"` // The timestamp when the endpoint was created in Unix time. CreationTimestamp types.Int64 `tfsdk:"creation_timestamp" tf:"optional"` // The email of the user who created the serving endpoint. Creator types.String `tfsdk:"creator" tf:"optional"` // System-generated ID of the endpoint. This is used to refer to the // endpoint in the Permissions API Id types.String `tfsdk:"id" tf:"optional"` // The timestamp when the endpoint was last updated by a user in Unix time. LastUpdatedTimestamp types.Int64 `tfsdk:"last_updated_timestamp" tf:"optional"` // The name of the serving endpoint. Name types.String `tfsdk:"name" tf:"optional"` // Information corresponding to the state of the serving endpoint. State []EndpointState `tfsdk:"state" tf:"optional,object"` // Tags attached to the serving endpoint. Tags []EndpointTag `tfsdk:"tags" tf:"optional"` // The task type of the serving endpoint. Task types.String `tfsdk:"task" tf:"optional"` }
func (*ServingEndpoint) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpoint) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpoint)
func (*ServingEndpoint) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpoint) SyncEffectiveFieldsDuringRead(existingState ServingEndpoint)
type ServingEndpointAccessControlRequest ¶
type ServingEndpointAccessControlRequest struct { // name of the group GroupName types.String `tfsdk:"group_name" tf:"optional"` // Permission level PermissionLevel types.String `tfsdk:"permission_level" tf:"optional"` // application ID of a service principal ServicePrincipalName types.String `tfsdk:"service_principal_name" tf:"optional"` // name of the user UserName types.String `tfsdk:"user_name" tf:"optional"` }
func (*ServingEndpointAccessControlRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointAccessControlRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointAccessControlRequest)
func (*ServingEndpointAccessControlRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointAccessControlRequest) SyncEffectiveFieldsDuringRead(existingState ServingEndpointAccessControlRequest)
type ServingEndpointAccessControlResponse ¶
type ServingEndpointAccessControlResponse struct { // All permissions. AllPermissions []ServingEndpointPermission `tfsdk:"all_permissions" tf:"optional"` // Display name of the user or service principal. DisplayName types.String `tfsdk:"display_name" tf:"optional"` // name of the group GroupName types.String `tfsdk:"group_name" tf:"optional"` // Name of the service principal. ServicePrincipalName types.String `tfsdk:"service_principal_name" tf:"optional"` // name of the user UserName types.String `tfsdk:"user_name" tf:"optional"` }
func (*ServingEndpointAccessControlResponse) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointAccessControlResponse) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointAccessControlResponse)
func (*ServingEndpointAccessControlResponse) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointAccessControlResponse) SyncEffectiveFieldsDuringRead(existingState ServingEndpointAccessControlResponse)
type ServingEndpointDetailed ¶
type ServingEndpointDetailed struct { // The AI Gateway configuration for the serving endpoint. NOTE: Only // external model endpoints are currently supported. AiGateway []AiGatewayConfig `tfsdk:"ai_gateway" tf:"optional,object"` // The config that is currently being served by the endpoint. Config []EndpointCoreConfigOutput `tfsdk:"config" tf:"optional,object"` // The timestamp when the endpoint was created in Unix time. CreationTimestamp types.Int64 `tfsdk:"creation_timestamp" tf:"optional"` // The email of the user who created the serving endpoint. Creator types.String `tfsdk:"creator" tf:"optional"` // Information required to query DataPlane APIs. DataPlaneInfo []ModelDataPlaneInfo `tfsdk:"data_plane_info" tf:"optional,object"` // Endpoint invocation url if route optimization is enabled for endpoint EndpointUrl types.String `tfsdk:"endpoint_url" tf:"optional"` // System-generated ID of the endpoint. This is used to refer to the // endpoint in the Permissions API Id types.String `tfsdk:"id" tf:"optional"` // The timestamp when the endpoint was last updated by a user in Unix time. LastUpdatedTimestamp types.Int64 `tfsdk:"last_updated_timestamp" tf:"optional"` // The name of the serving endpoint. Name types.String `tfsdk:"name" tf:"optional"` // The config that the endpoint is attempting to update to. PendingConfig []EndpointPendingConfig `tfsdk:"pending_config" tf:"optional,object"` // The permission level of the principal making the request. PermissionLevel types.String `tfsdk:"permission_level" tf:"optional"` // Boolean representing if route optimization has been enabled for the // endpoint RouteOptimized types.Bool `tfsdk:"route_optimized" tf:"optional"` // Information corresponding to the state of the serving endpoint. State []EndpointState `tfsdk:"state" tf:"optional,object"` // Tags attached to the serving endpoint. Tags []EndpointTag `tfsdk:"tags" tf:"optional"` // The task type of the serving endpoint. Task types.String `tfsdk:"task" tf:"optional"` }
func (*ServingEndpointDetailed) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointDetailed) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointDetailed)
func (*ServingEndpointDetailed) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointDetailed) SyncEffectiveFieldsDuringRead(existingState ServingEndpointDetailed)
type ServingEndpointPermission ¶
type ServingEndpointPermission struct { Inherited types.Bool `tfsdk:"inherited" tf:"optional"` InheritedFromObject []types.String `tfsdk:"inherited_from_object" tf:"optional"` // Permission level PermissionLevel types.String `tfsdk:"permission_level" tf:"optional"` }
func (*ServingEndpointPermission) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointPermission) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointPermission)
func (*ServingEndpointPermission) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointPermission) SyncEffectiveFieldsDuringRead(existingState ServingEndpointPermission)
type ServingEndpointPermissions ¶
type ServingEndpointPermissions struct { AccessControlList []ServingEndpointAccessControlResponse `tfsdk:"access_control_list" tf:"optional"` ObjectId types.String `tfsdk:"object_id" tf:"optional"` ObjectType types.String `tfsdk:"object_type" tf:"optional"` }
func (*ServingEndpointPermissions) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointPermissions) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointPermissions)
func (*ServingEndpointPermissions) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointPermissions) SyncEffectiveFieldsDuringRead(existingState ServingEndpointPermissions)
type ServingEndpointPermissionsDescription ¶
type ServingEndpointPermissionsDescription struct { Description types.String `tfsdk:"description" tf:"optional"` // Permission level PermissionLevel types.String `tfsdk:"permission_level" tf:"optional"` }
func (*ServingEndpointPermissionsDescription) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointPermissionsDescription) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointPermissionsDescription)
func (*ServingEndpointPermissionsDescription) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointPermissionsDescription) SyncEffectiveFieldsDuringRead(existingState ServingEndpointPermissionsDescription)
type ServingEndpointPermissionsRequest ¶
type ServingEndpointPermissionsRequest struct { AccessControlList []ServingEndpointAccessControlRequest `tfsdk:"access_control_list" tf:"optional"` // The serving endpoint for which to get or manage permissions. ServingEndpointId types.String `tfsdk:"-"` }
func (*ServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *ServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringCreateOrUpdate(plan ServingEndpointPermissionsRequest)
func (*ServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *ServingEndpointPermissionsRequest) SyncEffectiveFieldsDuringRead(existingState ServingEndpointPermissionsRequest)
type TrafficConfig ¶
type TrafficConfig struct { // The list of routes that define traffic to each served entity. Routes []Route `tfsdk:"routes" tf:"optional"` }
func (*TrafficConfig) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *TrafficConfig) SyncEffectiveFieldsDuringCreateOrUpdate(plan TrafficConfig)
func (*TrafficConfig) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *TrafficConfig) SyncEffectiveFieldsDuringRead(existingState TrafficConfig)
type V1ResponseChoiceElement ¶
type V1ResponseChoiceElement struct { // The finish reason returned by the endpoint. FinishReason types.String `tfsdk:"finishReason" tf:"optional"` // The index of the choice in the __chat or completions__ response. Index types.Int64 `tfsdk:"index" tf:"optional"` // The logprobs returned only by the __completions__ endpoint. Logprobs types.Int64 `tfsdk:"logprobs" tf:"optional"` // The message response from the __chat__ endpoint. Message []ChatMessage `tfsdk:"message" tf:"optional,object"` // The text response from the __completions__ endpoint. Text types.String `tfsdk:"text" tf:"optional"` }
func (*V1ResponseChoiceElement) SyncEffectiveFieldsDuringCreateOrUpdate ¶ added in v1.54.0
func (newState *V1ResponseChoiceElement) SyncEffectiveFieldsDuringCreateOrUpdate(plan V1ResponseChoiceElement)
func (*V1ResponseChoiceElement) SyncEffectiveFieldsDuringRead ¶ added in v1.54.0
func (newState *V1ResponseChoiceElement) SyncEffectiveFieldsDuringRead(existingState V1ResponseChoiceElement)
Click to show internal directories.
Click to hide internal directories.