sw_bls12377

package
v0.2.14 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Feb 6, 2024 License: Apache-2.0 Imports: 16 Imported by: 0

Documentation

Overview

Package sw_bls12377 implements the arithmetics of G1, G2 and the pairing computation on BLS12-377 as a SNARK circuit over BW6-761. These two curves form a 2-chain so the operations use native field arithmetic.

References: BW6-761: https://eprint.iacr.org/2020/351 Pairings in R1CS: https://eprint.iacr.org/2022/1162

Index

Constants

This section is empty.

Variables

View Source
var DecomposeScalarG1 = func(scalarField *big.Int, inputs []*big.Int, res []*big.Int) error {
	cc := getInnerCurveConfig(scalarField)
	sp := ecc.SplitScalar(inputs[0], cc.glvBasis)
	res[0].Set(&(sp[0]))
	res[1].Set(&(sp[1]))
	one := big.NewInt(1)

	for res[0].Cmp(cc.lambda) < 1 && res[1].Cmp(cc.lambda) < 1 {
		res[0].Add(res[0], cc.lambda)
		res[0].Add(res[0], one)
		res[1].Add(res[1], cc.lambda)
	}

	res[2].Mul(res[1], cc.lambda).Add(res[2], res[0])
	res[2].Sub(res[2], inputs[0])
	res[2].Div(res[2], cc.fr)

	return nil
}
View Source
var DecomposeScalarG2 = func(scalarField *big.Int, inputs []*big.Int, res []*big.Int) error {
	cc := getInnerCurveConfig(scalarField)
	sp := ecc.SplitScalar(inputs[0], cc.glvBasis)
	res[0].Set(&(sp[0]))
	res[1].Set(&(sp[1]))
	one := big.NewInt(1)

	for res[0].Cmp(cc.lambda) < 1 && res[1].Cmp(cc.lambda) < 1 {
		res[0].Add(res[0], cc.lambda)
		res[0].Add(res[0], one)
		res[1].Add(res[1], cc.lambda)
	}

	res[2].Mul(res[1], cc.lambda).Add(res[2], res[0])
	res[2].Sub(res[2], inputs[0])
	res[2].Div(res[2], cc.fr)

	return nil
}

Functions

func PairingCheck

func PairingCheck(api frontend.API, P []G1Affine, Q []G2Affine) error

PairingCheck calculates the reduced pairing for a set of points and asserts if the result is One ∏ᵢ e(Pᵢ, Qᵢ) =? 1

This function doesn't check that the inputs are in the correct subgroups

Types

type Curve

type Curve struct {
	// contains filtered or unexported fields
}

Curve allows G1 operations in BLS12-377.

func NewCurve

func NewCurve(api frontend.API) (*Curve, error)

NewCurve initializes a new Curve instance.

func (*Curve) Add

func (c *Curve) Add(P, Q *G1Affine) *G1Affine

Add points P and Q and return the result. Does not modify the inputs.

func (*Curve) AddUnified

func (c *Curve) AddUnified(P, Q *G1Affine) *G1Affine

AddUnified adds any two points and returns the sum. It does not modify the input points.

func (*Curve) AssertIsEqual

func (c *Curve) AssertIsEqual(P, Q *G1Affine)

AssertIsEqual asserts the equality of P and Q.

func (*Curve) Lookup2

func (c *Curve) Lookup2(b1, b2 frontend.Variable, p1, p2, p3, p4 *G1Affine) *G1Affine

Lookup2 performs a 2-bit lookup between p1, p2, p3, p4 based on bits b0 and b1. Returns:

  • p1 if b0=0 and b1=0,
  • p2 if b0=1 and b1=0,
  • p3 if b0=0 and b1=1,
  • p4 if b0=1 and b1=1.

func (*Curve) MarshalG1

func (c *Curve) MarshalG1(P G1Affine) []frontend.Variable

MarshalG1 returns [P.X || P.Y] in binary. Both P.X and P.Y are in little endian.

func (*Curve) MarshalScalar

func (c *Curve) MarshalScalar(s Scalar) []frontend.Variable

MarshalScalar returns

func (*Curve) MultiScalarMul

func (c *Curve) MultiScalarMul(P []*G1Affine, scalars []*Scalar, opts ...algopts.AlgebraOption) (*G1Affine, error)

MultiScalarMul computes ∑scalars_i * P_i and returns it. It doesn't modify the inputs. It returns an error if there is a mismatch in the lengths of the inputs.

func (*Curve) Mux

func (c *Curve) Mux(sel frontend.Variable, inputs ...*G1Affine) *G1Affine

Mux performs a lookup from the inputs and returns inputs[sel]. It is most efficient for power of two lengths of the inputs, but works for any number of inputs.

func (*Curve) Neg

func (c *Curve) Neg(P *G1Affine) *G1Affine

Neg negates P and returns the result. Does not modify P.

func (*Curve) ScalarMul

func (c *Curve) ScalarMul(P *G1Affine, s *Scalar, opts ...algopts.AlgebraOption) *G1Affine

ScalarMul computes scalar*P and returns the result. It doesn't modify the inputs.

func (*Curve) ScalarMulBase

func (c *Curve) ScalarMulBase(s *Scalar, opts ...algopts.AlgebraOption) *G1Affine

ScalarMulBase computes scalar*G where G is the standard base point of the curve. It doesn't modify the scalar.

func (*Curve) Select

func (c *Curve) Select(b frontend.Variable, p1, p2 *G1Affine) *G1Affine

Select sets p1 if b=1, p2 if b=0, and returns it. b must be boolean constrained

type G1Affine

type G1Affine struct {
	X, Y frontend.Variable
}

G1Affine point in affine coords

func NewG1Affine

func NewG1Affine(v bls12377.G1Affine) G1Affine

NewG1Affine allocates a witness from the native G1 element and returns it.

func (*G1Affine) AddAssign

func (p *G1Affine) AddAssign(api frontend.API, p1 G1Affine) *G1Affine

AddAssign adds p1 to p using the affine formulas with division, and return p

func (*G1Affine) AddUnified

func (p *G1Affine) AddUnified(api frontend.API, q G1Affine) *G1Affine

func (*G1Affine) AssertIsEqual

func (p *G1Affine) AssertIsEqual(api frontend.API, other G1Affine)

AssertIsEqual constraint self to be equal to other into the given constraint system

func (*G1Affine) Assign

func (p *G1Affine) Assign(p1 *bls12377.G1Affine)

Assign a value to self (witness assignment)

func (*G1Affine) Double

func (p *G1Affine) Double(api frontend.API, p1 G1Affine) *G1Affine

Double double a point in affine coords

func (*G1Affine) DoubleAndAdd

func (p *G1Affine) DoubleAndAdd(api frontend.API, p1, p2 *G1Affine) *G1Affine

DoubleAndAdd computes 2*p1+p in affine coords

func (*G1Affine) Lookup2

func (p *G1Affine) Lookup2(api frontend.API, b1, b2 frontend.Variable, p1, p2, p3, p4 G1Affine) *G1Affine

Lookup2 performs a 2-bit lookup between p1, p2, p3, p4 based on bits b0 and b1. Returns:

  • p1 if b0=0 and b1=0,
  • p2 if b0=1 and b1=0,
  • p3 if b0=0 and b1=1,
  • p4 if b0=1 and b1=1.

func (*G1Affine) Neg

func (p *G1Affine) Neg(api frontend.API, p1 G1Affine) *G1Affine

Neg outputs -p

func (*G1Affine) ScalarMul

func (P *G1Affine) ScalarMul(api frontend.API, Q G1Affine, s interface{}, opts ...algopts.AlgebraOption) *G1Affine

ScalarMul sets P = [s] Q and returns P.

The method chooses an implementation based on scalar s. If it is constant, then the compiled circuit depends on s. If it is variable type, then the circuit is independent of the inputs.

func (*G1Affine) ScalarMulBase

func (P *G1Affine) ScalarMulBase(api frontend.API, s frontend.Variable, opts ...algopts.AlgebraOption) *G1Affine

ScalarMulBase computes s * g1 and returns it, where g1 is the fixed generator. It doesn't modify s.

func (*G1Affine) Select

func (p *G1Affine) Select(api frontend.API, b frontend.Variable, p1, p2 G1Affine) *G1Affine

Select sets p1 if b=1, p2 if b=0, and returns it. b must be boolean constrained

type G2Affine

type G2Affine struct {
	P     g2AffP
	Lines *lineEvaluations
}

G2Affine point in affine coords

func NewG2Affine

func NewG2Affine(v bls12377.G2Affine) G2Affine

func NewG2AffineFixed

func NewG2AffineFixed(v bls12377.G2Affine) G2Affine

NewG2AffineFixed returns witness of v with precomputations for efficient pairing computation.

func NewG2AffineFixedPlaceholder

func NewG2AffineFixedPlaceholder() G2Affine

NewG2AffineFixedPlaceholder returns a placeholder for the circuit compilation when witness will be given with line precomputations using NewG2AffineFixed.

type GT

type GT = fields_bls12377.E12

GT target group of the pairing

func FinalExponentiation

func FinalExponentiation(api frontend.API, e1 GT) GT

FinalExponentiation computes the exponentiation e1ᵈ where d = (p¹²-1)/r = (p¹²-1)/Φ₁₂(p) ⋅ Φ₁₂(p)/r = (p⁶-1)(p²+1)(p⁴ - p² +1)/r we use instead d=s ⋅ (p⁶-1)(p²+1)(p⁴ - p² +1)/r where s is the cofactor 3 (Hayashida et al.)

func MillerLoop

func MillerLoop(api frontend.API, P []G1Affine, Q []G2Affine) (GT, error)

MillerLoop computes the product of n miller loops (n can be 1) ∏ᵢ { fᵢ_{x₀,Q}(P) }

func NewGTEl

func NewGTEl(v bls12377.GT) GT

NewGTEl allocates a witness from the native target group element and returns it.

func Pair

func Pair(api frontend.API, P []G1Affine, Q []G2Affine) (GT, error)

Pair calculates the reduced pairing for a set of points ∏ᵢ e(Pᵢ, Qᵢ).

This function doesn't check that the inputs are in the correct subgroup

type Pairing

type Pairing struct {
	// contains filtered or unexported fields
}

Pairing allows computing pairing-related operations in BLS12-377.

func NewPairing

func NewPairing(api frontend.API) *Pairing

NewPairing initializes a Pairing instance.

func (*Pairing) AssertIsEqual

func (p *Pairing) AssertIsEqual(e1, e2 *GT)

AssertIsEqual asserts the equality of the target group elements.

func (*Pairing) FinalExponentiation

func (p *Pairing) FinalExponentiation(e *GT) *GT

FinalExponentiation performs the final exponentiation on the target group element. It doesn't modify the input.

func (*Pairing) MillerLoop

func (p *Pairing) MillerLoop(P []*G1Affine, Q []*G2Affine) (*GT, error)

MillerLoop computes the Miller loop between the pairs of inputs. It doesn't modify the inputs. It returns an error if there is a mismatch betwen the lengths of the inputs.

func (*Pairing) Pair

func (p *Pairing) Pair(P []*G1Affine, Q []*G2Affine) (*GT, error)

Pair computes a full multi-pairing on the input pairs.

func (*Pairing) PairingCheck

func (p *Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error

PairingCheck computes the multi-pairing of the input pairs and asserts that the result is an identity element in the target group. It returns an error if there is a mismatch between the lengths of the inputs.

type Scalar

type Scalar = emulated.Element[ScalarField]

Scalar is a scalar in the groups. As the implementation is defined on a 2-chain, then this type is an alias to frontend.Variable.

func NewScalar

func NewScalar(v fr_bls12377.Element) Scalar

NewScalar allocates a witness from the native scalar and returns it.

type ScalarField

type ScalarField = emparams.BLS12377Fr

ScalarField defines the emulated.FieldParams implementation on a one limb of the scalar field.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL