Documentation ¶
Overview ¶
Package s3crypto provides encryption to S3 using KMS and AES GCM.
Keyproviders are interfaces that handle masterkeys. Masterkeys are used to encrypt and decrypt the randomly generated cipher keys. The SDK currently uses KMS to do this. A user does not need to provide a master key since all that information is hidden in KMS.
Modes are interfaces that handle content encryption and decryption. It is an abstraction layer that instantiates the ciphers. If content is being encrypted we generate the key and iv of the cipher. For decryption, we use the metadata stored either on the object or an instruction file object to decrypt the contents.
Ciphers are interfaces that handle encryption and decryption of data. This may be key wrap ciphers or content ciphers.
Creating an S3 cryptography client
cmkID := "<some key ID>" sess := session.New() // Create the KeyProvider handler := s3crypto.NewKMSKeyGenerator(kms.New(sess), cmkID) // Create an encryption and decryption client // We need to pass the session here so S3 can use it. In addition, any decryption that // occurs will use the KMS client. svc := s3crypto.NewEncryptionClient(sess, s3crypto.AESGCMContentCipherBuilder(handler)) svc := s3crypto.NewDecryptionClient(sess)
Configuration of the S3 cryptography client
cfg := s3crypto.EncryptionConfig{ // Save instruction files to separate objects SaveStrategy: NewS3SaveStrategy(session.New(), ""), // Change instruction file suffix to .example InstructionFileSuffix: ".example", // Set temp folder path TempFolderPath: "/path/to/tmp/folder/", // Any content less than the minimum file size will use memory // instead of writing the contents to a temp file. MinFileSize: int64(1024 * 1024 * 1024), }
The default SaveStrategy is to the object's header.
The InstructionFileSuffix defaults to .instruction. Careful here though, if you do this, be sure you know what that suffix is in grabbing data. All requests will look for fooKey.example instead of fooKey.instruction. This suffix only affects gets and not puts. Put uses the keyprovider's suffix.
Registration of new wrap or cek algorithms are also supported by the SDK. Let's say we want to support `AES Wrap` and `AES CTR`. Let's assume we have already defined the functionality.
svc := s3crypto.NewDecryptionClient(sess) svc.WrapRegistry["AESWrap"] = NewAESWrap svc.CEKRegistry["AES/CTR/NoPadding"] = NewAESCTR
We have now registered these new algorithms to the decryption client. When the client calls `GetObject` and sees the wrap as `AESWrap` then it'll use that wrap algorithm. This is also true for `AES/CTR/NoPadding`.
For encryption adding a custom content cipher builder and key handler will allow for encryption of custom defined ciphers.
// Our wrap algorithm, AESWrap handler := NewAESWrap(key, iv) // Our content cipher builder, AESCTRContentCipherBuilder svc := s3crypto.NewEncryptionClient(sess, NewAESCTRContentCipherBuilder(handler))
Index ¶
- Constants
- Variables
- type CEKEntry
- type Cipher
- type CipherData
- type CipherDataDecrypter
- type CipherDataGenerator
- type ContentCipher
- type ContentCipherBuilder
- type CryptoReadCloser
- type Decrypter
- type DecryptionClient
- func (c *DecryptionClient) GetObject(input *s3.GetObjectInput) (*s3.GetObjectOutput, error)
- func (c *DecryptionClient) GetObjectRequest(input *s3.GetObjectInput) (*request.Request, *s3.GetObjectOutput)
- func (c *DecryptionClient) GetObjectWithContext(ctx aws.Context, input *s3.GetObjectInput, opts ...request.Option) (*s3.GetObjectOutput, error)
- type Encrypter
- type EncryptionClient
- func (c *EncryptionClient) PutObject(input *s3.PutObjectInput) (*s3.PutObjectOutput, error)
- func (c *EncryptionClient) PutObjectRequest(input *s3.PutObjectInput) (*request.Request, *s3.PutObjectOutput)
- func (c *EncryptionClient) PutObjectWithContext(ctx aws.Context, input *s3.PutObjectInput, opts ...request.Option) (*s3.PutObjectOutput, error)
- type Envelope
- type HeaderV2LoadStrategy
- type HeaderV2SaveStrategy
- type LoadStrategy
- type MaterialDescription
- type Padder
- type S3LoadStrategy
- type S3SaveStrategy
- type SaveStrategy
- type WrapEntry
Constants ¶
const AESCBC = "AES/CBC"
AESCBC is the string constant that signifies the AES CBC algorithm cipher.
const AESGCMNoPadding = "AES/GCM/NoPadding"
AESGCMNoPadding is the constant value that is used to specify the CEK algorithm consiting of AES GCM with no padding.
const DefaultInstructionKeySuffix = ".instruction"
DefaultInstructionKeySuffix is appended to the end of the instruction file key when grabbing or saving to S3
const DefaultMinFileSize = 1024 * 512 * 5
DefaultMinFileSize is used to check whether we want to write to a temp file or store the data in memory.
const (
// KMSWrap is a constant used during decryption to build a KMS key handler.
KMSWrap = "kms"
)
Variables ¶
var AESCBCPadder = Padder(aescbcPadding)
AESCBCPadder is used to pad AES encrypted and decrypted data. Altough it uses the pkcs5Padder, it isn't following the RFC for PKCS5. The only reason why it is called pkcs5Padder is due to the Name returning PKCS5Padding.
var NoPadder = Padder(noPadder{})
NoPadder does not pad anything
Functions ¶
This section is empty.
Types ¶
type CEKEntry ¶
type CEKEntry func(CipherData) (ContentCipher, error)
CEKEntry is a builder thatn returns a proper content decrypter and error
type CipherData ¶
type CipherData struct { Key []byte IV []byte WrapAlgorithm string CEKAlgorithm string TagLength string MaterialDescription MaterialDescription // EncryptedKey should be populated when calling GenerateCipherData EncryptedKey []byte Padder Padder }
CipherData is used for content encryption. It is used for storing the metadata of the encrypted content.
type CipherDataDecrypter ¶
CipherDataDecrypter is a handler to decrypt keys from the envelope.
type CipherDataGenerator ¶
type CipherDataGenerator interface {
GenerateCipherData(int, int) (CipherData, error)
}
CipherDataGenerator handles generating proper key and IVs of proper size for the content cipher. CipherDataGenerator will also encrypt the key and store it in the CipherData.
func NewKMSKeyGenerator ¶
func NewKMSKeyGenerator(kmsClient kmsiface.KMSAPI, cmkID string) CipherDataGenerator
NewKMSKeyGenerator builds a new KMS key provider using the customer key ID and material description.
Example:
sess := session.New(&aws.Config{}) cmkID := "arn to key" matdesc := s3crypto.MaterialDescription{} handler := s3crypto.NewKMSKeyGenerator(kms.New(sess), cmkID)
func NewKMSKeyGeneratorWithMatDesc ¶
func NewKMSKeyGeneratorWithMatDesc(kmsClient kmsiface.KMSAPI, cmkID string, matdesc MaterialDescription) CipherDataGenerator
NewKMSKeyGeneratorWithMatDesc builds a new KMS key provider using the customer key ID and material description.
Example:
sess := session.New(&aws.Config{}) cmkID := "arn to key" matdesc := s3crypto.MaterialDescription{} handler, err := s3crypto.NewKMSKeyGeneratorWithMatDesc(kms.New(sess), cmkID, matdesc)
type ContentCipher ¶
type ContentCipher interface { EncryptContents(io.Reader) (io.Reader, error) DecryptContents(io.ReadCloser) (io.ReadCloser, error) GetCipherData() CipherData }
ContentCipher deals with encrypting and decrypting content
type ContentCipherBuilder ¶
type ContentCipherBuilder interface {
ContentCipher() (ContentCipher, error)
}
ContentCipherBuilder is a builder interface that builds ciphers for each request.
func AESCBCContentCipherBuilder ¶ added in v1.9.0
func AESCBCContentCipherBuilder(generator CipherDataGenerator, padder Padder) ContentCipherBuilder
AESCBCContentCipherBuilder returns a new encryption only mode structure with a specific cipher for the master key
func AESGCMContentCipherBuilder ¶
func AESGCMContentCipherBuilder(generator CipherDataGenerator) ContentCipherBuilder
AESGCMContentCipherBuilder returns a new encryption only mode structure with a specific cipher for the master key
type CryptoReadCloser ¶
type CryptoReadCloser struct { Body io.ReadCloser Decrypter io.Reader // contains filtered or unexported fields }
CryptoReadCloser handles closing of the body and allowing reads from the decrypted content.
func (*CryptoReadCloser) Close ¶
func (rc *CryptoReadCloser) Close() error
Close lets the CryptoReadCloser satisfy io.ReadCloser interface
type DecryptionClient ¶
type DecryptionClient struct { S3Client s3iface.S3API // LoadStrategy is used to load the metadata either from the metadata of the object // or from a separate file in s3. // // Defaults to our default load strategy. LoadStrategy LoadStrategy WrapRegistry map[string]WrapEntry CEKRegistry map[string]CEKEntry PadderRegistry map[string]Padder }
DecryptionClient is an S3 crypto client. The decryption client will handle all get object requests from Amazon S3. Supported key wrapping algorithms:
*AWS KMS
Supported content ciphers:
- AES/GCM
- AES/CBC
func NewDecryptionClient ¶
func NewDecryptionClient(prov client.ConfigProvider, options ...func(*DecryptionClient)) *DecryptionClient
NewDecryptionClient instantiates a new S3 crypto client
Example:
sess := session.New() svc := s3crypto.NewDecryptionClient(sess, func(svc *s3crypto.DecryptionClient{ // Custom client options here }))
func (*DecryptionClient) GetObject ¶
func (c *DecryptionClient) GetObject(input *s3.GetObjectInput) (*s3.GetObjectOutput, error)
GetObject is a wrapper for GetObjectRequest
func (*DecryptionClient) GetObjectRequest ¶
func (c *DecryptionClient) GetObjectRequest(input *s3.GetObjectInput) (*request.Request, *s3.GetObjectOutput)
GetObjectRequest will make a request to s3 and retrieve the object. In this process decryption will be done. The SDK only supports V2 reads of KMS and GCM.
Example:
sess := session.New() svc := s3crypto.NewDecryptionClient(sess) req, out := svc.GetObjectRequest(&s3.GetObjectInput { Key: aws.String("testKey"), Bucket: aws.String("testBucket"), }) err := req.Send()
func (*DecryptionClient) GetObjectWithContext ¶ added in v1.9.0
func (c *DecryptionClient) GetObjectWithContext(ctx aws.Context, input *s3.GetObjectInput, opts ...request.Option) (*s3.GetObjectOutput, error)
GetObjectWithContext is a wrapper for GetObjectRequest with the additional context, and request options support.
GetObjectWithContext is the same as GetObject with the additional support for Context input parameters. The Context must not be nil. A nil Context will cause a panic. Use the Context to add deadlining, timeouts, ect. In the future this may create sub-contexts for individual underlying requests.
type EncryptionClient ¶
type EncryptionClient struct { S3Client s3iface.S3API ContentCipherBuilder ContentCipherBuilder // SaveStrategy will dictate where the envelope is saved. // // Defaults to the object's metadata SaveStrategy SaveStrategy // TempFolderPath is used to store temp files when calling PutObject. // Temporary files are needed to compute the X-Amz-Content-Sha256 header. TempFolderPath string // MinFileSize is the minimum size for the content to write to a // temporary file instead of using memory. MinFileSize int64 }
EncryptionClient is an S3 crypto client. By default the SDK will use Authentication mode which will use KMS for key wrapping and AES GCM for content encryption. AES GCM will load all data into memory. However, the rest of the content algorithms do not load the entire contents into memory.
func NewEncryptionClient ¶
func NewEncryptionClient(prov client.ConfigProvider, builder ContentCipherBuilder, options ...func(*EncryptionClient)) *EncryptionClient
NewEncryptionClient instantiates a new S3 crypto client
Example:
cmkID := "arn:aws:kms:region:000000000000:key/00000000-0000-0000-0000-000000000000" sess := session.New() handler := s3crypto.NewKMSKeyGenerator(kms.New(sess), cmkID) svc := s3crypto.New(sess, s3crypto.AESGCMContentCipherBuilder(handler))
func (*EncryptionClient) PutObject ¶
func (c *EncryptionClient) PutObject(input *s3.PutObjectInput) (*s3.PutObjectOutput, error)
PutObject is a wrapper for PutObjectRequest
func (*EncryptionClient) PutObjectRequest ¶
func (c *EncryptionClient) PutObjectRequest(input *s3.PutObjectInput) (*request.Request, *s3.PutObjectOutput)
PutObjectRequest creates a temp file to encrypt the contents into. It then streams that data to S3.
Example:
svc := s3crypto.New(session.New(), s3crypto.AESGCMContentCipherBuilder(handler)) req, out := svc.PutObjectRequest(&s3.PutObjectInput { Key: aws.String("testKey"), Bucket: aws.String("testBucket"), Body: strings.NewReader("test data"), }) err := req.Send()
func (*EncryptionClient) PutObjectWithContext ¶ added in v1.9.0
func (c *EncryptionClient) PutObjectWithContext(ctx aws.Context, input *s3.PutObjectInput, opts ...request.Option) (*s3.PutObjectOutput, error)
PutObjectWithContext is a wrapper for PutObjectRequest with the additional context, and request options support.
PutObjectWithContext is the same as PutObject with the additional support for Context input parameters. The Context must not be nil. A nil Context will cause a panic. Use the Context to add deadlining, timeouts, ect. In the future this may create sub-contexts for individual underlying requests.
type Envelope ¶
type Envelope struct { // IV is the randomly generated IV base64 encoded. IV string `json:"x-amz-iv"` // CipherKey is the randomly generated cipher key. CipherKey string `json:"x-amz-key-v2"` // MaterialDesc is a description to distinguish from other envelopes. MatDesc string `json:"x-amz-matdesc"` WrapAlg string `json:"x-amz-wrap-alg"` CEKAlg string `json:"x-amz-cek-alg"` TagLen string `json:"x-amz-tag-len"` UnencryptedMD5 string `json:"x-amz-unencrypted-content-md5"` UnencryptedContentLen string `json:"x-amz-unencrypted-content-length"` }
Envelope encryption starts off by generating a random symmetric key using AES GCM. The SDK generates a random IV based off the encryption cipher chosen. The master key that was provided, whether by the user or KMS, will be used to encrypt the randomly generated symmetric key and base64 encode the iv. This will allow for decryption of that same data later.
type HeaderV2LoadStrategy ¶
type HeaderV2LoadStrategy struct{}
HeaderV2LoadStrategy will load the envelope from the metadata
type HeaderV2SaveStrategy ¶
type HeaderV2SaveStrategy struct{}
HeaderV2SaveStrategy will save the metadata of the crypto contents to the header of the object.
type LoadStrategy ¶
LoadStrategy ...
type MaterialDescription ¶
MaterialDescription is used to identify how and what master key has been used.
type Padder ¶ added in v1.9.0
type Padder interface { // Pad will pad the byte array. // The second parameter is NOT how many // bytes to pad by, but how many bytes // have been read prior to the padding. // This allows for streamable padding. Pad([]byte, int) ([]byte, error) // Unpad will unpad the byte bytes. Unpad // methods must be constant time. Unpad([]byte) ([]byte, error) // Name returns the name of the padder. // This is used when decrypting on // instantiating new padders. Name() string }
Padder handles padding of crypto data
func NewPKCS7Padder ¶ added in v1.9.0
NewPKCS7Padder follows the RFC 2315: https://www.ietf.org/rfc/rfc2315.txt PKCS7 padding is subject to side-channel attacks and timing attacks. For the most secure data, use an authenticated crypto algorithm.
type S3LoadStrategy ¶
S3LoadStrategy will load the instruction file from s3
type S3SaveStrategy ¶
S3SaveStrategy will save the metadata to a separate instruction file in S3
type SaveStrategy ¶
SaveStrategy is how the data's metadata wants to be saved
type WrapEntry ¶
type WrapEntry func(Envelope) (CipherDataDecrypter, error)
WrapEntry is builder that return a proper key decrypter and error
Source Files ¶
- aes_cbc.go
- aes_cbc_content_cipher.go
- aes_cbc_padder.go
- aes_gcm.go
- aes_gcm_content_cipher.go
- cipher.go
- cipher_builder.go
- cipher_util.go
- decryption_client.go
- doc.go
- encryption_client.go
- envelope.go
- hash_io.go
- helper.go
- key_handler.go
- kms_key_handler.go
- mat_desc.go
- padder.go
- pkcs7_padder.go
- strategy.go