sw_bw6761

package
v0.11.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 6, 2024 License: Apache-2.0 Imports: 9 Imported by: 18

Documentation

Overview

Package sw_bw6761 implements G1 and G2 arithmetics and pairing computation over BW6-761 curve.

The implementation follows Housni22: "Pairings in Rank-1 Constraint Systems" and BW6-761-hackmd.

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type BaseField

type BaseField = emulated.BW6761Fp

BaseField is the emulated.FieldParams implementation of the curve base field.

type G1

type G1 struct {
	// contains filtered or unexported fields
}

func NewG1

func NewG1(api frontend.API) (*G1, error)

type G1Affine

type G1Affine = sw_emulated.AffinePoint[BaseField]

G1Affine is the point in G1. It is an alias to the generic emulated affine point.

func NewG1Affine

func NewG1Affine(v bw6761.G1Affine) G1Affine

NewG1Affine allocates a witness from the native G1 element and returns it.

type G2

type G2 struct {
	// contains filtered or unexported fields
}

func NewG2

func NewG2(api frontend.API) (*G2, error)

func (*G2) AssertIsEqual

func (g2 *G2) AssertIsEqual(p, q *G2Affine)

AssertIsEqual asserts that p and q are the same point.

type G2Affine

type G2Affine struct {
	P     g2AffP
	Lines *lineEvaluations
}

G2Affine represents G2 element with optional embedded line precomputations.

func NewG2Affine

func NewG2Affine(v bw6761.G2Affine) G2Affine

NewG2Affine returns the witness of v without precomputations. In case of pairing the precomputation will be done in-circuit.

func NewG2AffineFixed

func NewG2AffineFixed(v bw6761.G2Affine) G2Affine

NewG2AffineFixed returns witness of v with precomputations for efficient pairing computation.

func NewG2AffineFixedPlaceholder

func NewG2AffineFixedPlaceholder() G2Affine

NewG2AffineFixedPlaceholder returns a placeholder for the circuit compilation when witness will be given with line precomputations using NewG2AffineFixed.

type GTEl

type GTEl = fields_bw6761.E6

func NewGTEl

func NewGTEl(v bw6761.GT) GTEl

type Pairing

type Pairing struct {
	*fields_bw6761.Ext6
	// contains filtered or unexported fields
}
Example
package main

import (
	"crypto/rand"
	"fmt"

	"github.com/consensys/gnark-crypto/ecc"
	bw6761 "github.com/consensys/gnark-crypto/ecc/bw6-761"
	"github.com/consensys/gnark/backend/groth16"
	"github.com/consensys/gnark/frontend"
	"github.com/consensys/gnark/frontend/cs/r1cs"
	"github.com/consensys/gnark/std/algebra/emulated/sw_bw6761"
)

type PairCircuit struct {
	InG1 sw_bw6761.G1Affine
	InG2 sw_bw6761.G2Affine
	Res  sw_bw6761.GTEl
}

func (c *PairCircuit) Define(api frontend.API) error {
	pairing, err := sw_bw6761.NewPairing(api)
	if err != nil {
		return fmt.Errorf("new pairing: %w", err)
	}
	// Check if the points are in the proper groups (up to the user choice)
	pairing.AssertIsOnG1(&c.InG1)
	pairing.AssertIsOnG2(&c.InG2)
	// Pair method does not check that the points are in the proper groups.
	// Compute the pairing
	res, err := pairing.Pair([]*sw_bw6761.G1Affine{&c.InG1}, []*sw_bw6761.G2Affine{&c.InG2})
	if err != nil {
		return fmt.Errorf("pair: %w", err)
	}
	pairing.AssertIsEqual(res, &c.Res)
	return nil
}

func main() {
	p, q, err := randomG1G2Affines()
	if err != nil {
		panic(err)
	}
	res, err := bw6761.Pair([]bw6761.G1Affine{p}, []bw6761.G2Affine{q})
	if err != nil {
		panic(err)
	}
	circuit := PairCircuit{}
	witness := PairCircuit{
		InG1: sw_bw6761.NewG1Affine(p),
		InG2: sw_bw6761.NewG2Affine(q),
		Res:  sw_bw6761.NewGTEl(res),
	}
	ccs, err := frontend.Compile(ecc.BN254.ScalarField(), r1cs.NewBuilder, &circuit)
	if err != nil {
		panic(err)
	}
	pk, vk, err := groth16.Setup(ccs)
	if err != nil {
		panic(err)
	}
	secretWitness, err := frontend.NewWitness(&witness, ecc.BN254.ScalarField())
	if err != nil {
		panic(err)
	}
	publicWitness, err := secretWitness.Public()
	if err != nil {
		panic(err)
	}
	proof, err := groth16.Prove(ccs, pk, secretWitness)
	if err != nil {
		panic(err)
	}
	err = groth16.Verify(proof, vk, publicWitness)
	if err != nil {
		panic(err)
	}
}

func randomG1G2Affines() (p bw6761.G1Affine, q bw6761.G2Affine, err error) {
	_, _, G1AffGen, G2AffGen := bw6761.Generators()
	mod := bw6761.ID.ScalarField()
	s1, err := rand.Int(rand.Reader, mod)
	if err != nil {
		return p, q, err
	}
	s2, err := rand.Int(rand.Reader, mod)
	if err != nil {
		return p, q, err
	}
	p.ScalarMultiplication(&G1AffGen, s1)
	q.ScalarMultiplication(&G2AffGen, s2)
	return
}
Output:

func NewPairing

func NewPairing(api frontend.API) (*Pairing, error)

func (Pairing) AssertIsEqual

func (pr Pairing) AssertIsEqual(x, y *GTEl)

func (Pairing) AssertIsOnCurve

func (pr Pairing) AssertIsOnCurve(P *G1Affine)

func (Pairing) AssertIsOnG1

func (pr Pairing) AssertIsOnG1(P *G1Affine)

func (Pairing) AssertIsOnG2

func (pr Pairing) AssertIsOnG2(Q *G2Affine)

func (Pairing) AssertIsOnTwist

func (pr Pairing) AssertIsOnTwist(Q *G2Affine)

func (Pairing) FinalExponentiation

func (pr Pairing) FinalExponentiation(z *GTEl) *GTEl

FinalExponentiation computes the exponentiation zᵈ where

d = (p⁶-1)/r = (p⁶-1)/Φ₆(p) ⋅ Φ₆(p)/r = (p³-1)(p+1)(p²-p+1)/r

we use instead d = s⋅(p³-1)(p+1)(p²-p+1)/r where s is the cofactor (x₀+1)

func (Pairing) MillerLoop

func (pr Pairing) MillerLoop(P []*G1Affine, Q []*G2Affine) (*GTEl, error)

MillerLoop computes the optimal Tate multi-Miller loop (or twisted ate or Eta revisited)

∏ᵢ { fᵢ_{x₀+1+λ(x₀³-x₀²-x₀),Qᵢ}(Pᵢ) }

Alg.2 in https://eprint.iacr.org/2021/1359.pdf Eq. (6') in https://hackmd.io/@gnark/BW6-761-changes

func (Pairing) Pair

func (pr Pairing) Pair(P []*G1Affine, Q []*G2Affine) (*GTEl, error)

Pair calculates the reduced pairing for a set of points ∏ᵢ e(Pᵢ, Qᵢ).

This function doesn't check that the inputs are in the correct subgroup. See IsInSubGroup.

func (Pairing) PairingCheck

func (pr Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error

PairingCheck calculates the reduced pairing for a set of points and asserts if the result is One ∏ᵢ e(Pᵢ, Qᵢ) =? 1

This function doesn't check that the inputs are in the correct subgroups.

type Scalar

type Scalar = emulated.Element[ScalarField]

Scalar is the scalar in the groups. It is an alias to the emulated element defined over the scalar field of the groups.

func NewScalar

func NewScalar(v fr_bw6761.Element) Scalar

NewScalar allocates a witness from the native scalar and returns it.

type ScalarField

type ScalarField = emulated.BW6761Fr

ScalarField is the emulated.FieldParams implementation of the curve scalar field.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL