fr

package
v0.6.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jan 3, 2022 License: Apache-2.0 Imports: 11 Imported by: 124

Documentation

Overview

Package fr contains field arithmetic operations for modulus = 0x4c23a0...300001.

The API is similar to math/big (big.Int), but the operations are significantly faster (up to 20x for the modular multiplication on amd64, see also https://hackmd.io/@gnark/modular_multiplication)

The modulus is hardcoded in all the operations.

Field elements are represented as an array, and assumed to be in Montgomery form in all methods:

type Element [5]uint64

Example API signature

// Mul z = x * y mod q
func (z *Element) Mul(x, y *Element) *Element

and can be used like so:

var a, b Element
a.SetUint64(2)
b.SetString("984896738")
a.Mul(a, b)
a.Sub(a, a)
 .Add(a, b)
 .Inv(a)
b.Exp(b, new(big.Int).SetUint64(42))

Modulus

0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802ff40300001 // base 16
39705142709513438335025689890408969744933502416914749335064285505637884093126342347073617133569 // base 10

Index

Constants

View Source
const Bits = 315

Bits number bits needed to represent Element

View Source
const Bytes = Limbs * 8

Bytes number bytes needed to represent Element

View Source
const Limbs = 5

Limbs number of 64 bits words needed to represent Element

Variables

This section is empty.

Functions

func Butterfly

func Butterfly(a, b *Element)

func Modulus

func Modulus() *big.Int

Modulus returns q as a big.Int q =

39705142709513438335025689890408969744933502416914749335064285505637884093126342347073617133569

func MulBy13

func MulBy13(x *Element)

func MulBy3

func MulBy3(x *Element)

func MulBy5

func MulBy5(x *Element)

Types

type Element

type Element [5]uint64

Element represents a field element stored on 5 words (uint64) Element are assumed to be in Montgomery form in all methods field modulus q =

39705142709513438335025689890408969744933502416914749335064285505637884093126342347073617133569

func BatchInvert

func BatchInvert(a []Element) []Element

BatchInvert returns a new slice with every element inverted. Uses Montgomery batch inversion trick

func NewElement added in v0.5.3

func NewElement(v uint64) Element

NewElement returns a new Element from a uint64 value

it is equivalent to

var v NewElement
v.SetUint64(...)

func One

func One() Element

One returns 1 (in montgommery form)

func (*Element) Add

func (z *Element) Add(x, y *Element) *Element

Add z = x + y mod q

func (*Element) Bit added in v0.5.1

func (z *Element) Bit(i uint64) uint64

Bit returns the i'th bit, with lsb == bit 0. It is the responsability of the caller to convert from Montgomery to Regular form if needed

func (*Element) BitLen added in v0.5.1

func (z *Element) BitLen() int

BitLen returns the minimum number of bits needed to represent z returns 0 if z == 0

func (*Element) Bytes

func (z *Element) Bytes() (res [Limbs * 8]byte)

Bytes returns the regular (non montgomery) value of z as a big-endian byte array.

func (*Element) Cmp

func (z *Element) Cmp(x *Element) int

Cmp compares (lexicographic order) z and x and returns:

-1 if z <  x
 0 if z == x
+1 if z >  x

func (*Element) Div

func (z *Element) Div(x, y *Element) *Element

Div z = x*y^-1 mod q

func (*Element) Double

func (z *Element) Double(x *Element) *Element

Double z = x + x mod q, aka Lsh 1

func (*Element) Equal

func (z *Element) Equal(x *Element) bool

Equal returns z == x

func (*Element) Exp

func (z *Element) Exp(x Element, exponent *big.Int) *Element

Exp z = x^exponent mod q

func (*Element) FromMont

func (z *Element) FromMont() *Element

FromMont converts z in place (i.e. mutates) from Montgomery to regular representation sets and returns z = z * 1

func (*Element) Halve added in v0.5.2

func (z *Element) Halve()

Halve sets z to z / 2 (mod p)

func (*Element) Inverse

func (z *Element) Inverse(x *Element) *Element

Inverse z = x⁻¹ mod q Implements "Optimized Binary GCD for Modular Inversion" https://github.com/pornin/bingcd/blob/main/doc/bingcd.pdf

func (*Element) IsUint64 added in v0.5.1

func (z *Element) IsUint64() bool

IsUint64 reports whether z can be represented as an uint64.

func (*Element) IsZero

func (z *Element) IsZero() bool

IsZero returns z == 0

func (*Element) Legendre

func (z *Element) Legendre() int

Legendre returns the Legendre symbol of z (either +1, -1, or 0.)

func (*Element) LexicographicallyLargest

func (z *Element) LexicographicallyLargest() bool

LexicographicallyLargest returns true if this element is strictly lexicographically larger than its negation, false otherwise

func (*Element) Marshal

func (z *Element) Marshal() []byte

Marshal returns the regular (non montgomery) value of z as a big-endian byte slice.

func (*Element) MarshalJSON added in v0.6.0

func (z *Element) MarshalJSON() ([]byte, error)

MarshalJSON returns json encoding of z (z.Text(10)) If z == nil, returns null

func (*Element) Mul

func (z *Element) Mul(x, y *Element) *Element

Mul z = x * y mod q see https://hackmd.io/@gnark/modular_multiplication

func (*Element) Neg

func (z *Element) Neg(x *Element) *Element

Neg z = q - x

func (*Element) Set

func (z *Element) Set(x *Element) *Element

Set z = x

func (*Element) SetBigInt

func (z *Element) SetBigInt(v *big.Int) *Element

SetBigInt sets z to v (regular form) and returns z in Montgomery form

func (*Element) SetBytes

func (z *Element) SetBytes(e []byte) *Element

SetBytes interprets e as the bytes of a big-endian unsigned integer, sets z to that value (in Montgomery form), and returns z.

func (*Element) SetInt64 added in v0.6.0

func (z *Element) SetInt64(v int64) *Element

SetInt64 sets z to v and returns z

func (*Element) SetInterface

func (z *Element) SetInterface(i1 interface{}) (*Element, error)

SetInterface converts provided interface into Element returns an error if provided type is not supported supported types: Element, *Element, uint64, int, string (interpreted as base10 integer), *big.Int, big.Int, []byte

func (*Element) SetOne

func (z *Element) SetOne() *Element

SetOne z = 1 (in Montgomery form)

func (*Element) SetRandom

func (z *Element) SetRandom() (*Element, error)

SetRandom sets z to a random element < q

func (*Element) SetString

func (z *Element) SetString(number string) *Element

SetString creates a big.Int with number and calls SetBigInt on z

The number prefix determines the actual base: A prefix of ”0b” or ”0B” selects base 2, ”0”, ”0o” or ”0O” selects base 8, and ”0x” or ”0X” selects base 16. Otherwise, the selected base is 10 and no prefix is accepted.

For base 16, lower and upper case letters are considered the same: The letters 'a' to 'f' and 'A' to 'F' represent digit values 10 to 15.

An underscore character ”_” may appear between a base prefix and an adjacent digit, and between successive digits; such underscores do not change the value of the number. Incorrect placement of underscores is reported as a panic if there are no other errors.

func (*Element) SetUint64

func (z *Element) SetUint64(v uint64) *Element

SetUint64 sets z to v and returns z

func (*Element) SetZero

func (z *Element) SetZero() *Element

SetZero z = 0

func (*Element) Sqrt

func (z *Element) Sqrt(x *Element) *Element

Sqrt z = √x mod q if the square root doesn't exist (x is not a square mod q) Sqrt leaves z unchanged and returns nil

func (*Element) Square

func (z *Element) Square(x *Element) *Element

Square z = x * x mod q see https://hackmd.io/@gnark/modular_multiplication

func (*Element) String

func (z *Element) String() string

String returns the decimal representation of z as generated by z.Text(10).

func (*Element) Sub

func (z *Element) Sub(x, y *Element) *Element

Sub z = x - y mod q

func (*Element) Text added in v0.6.0

func (z *Element) Text(base int) string

Text returns the string representation of z in the given base. Base must be between 2 and 36, inclusive. The result uses the lower-case letters 'a' to 'z' for digit values 10 to 35. No prefix (such as "0x") is added to the string. If z is a nil pointer it returns "<nil>". If base == 10 and -z fits in a uint64 prefix "-" is added to the string.

func (*Element) ToBigInt

func (z *Element) ToBigInt(res *big.Int) *big.Int

ToBigInt returns z as a big.Int in Montgomery form

func (Element) ToBigIntRegular

func (z Element) ToBigIntRegular(res *big.Int) *big.Int

ToBigIntRegular returns z as a big.Int in regular form

func (*Element) ToMont

func (z *Element) ToMont() *Element

ToMont converts z to Montgomery form sets and returns z = z * r²

func (Element) ToRegular

func (z Element) ToRegular() Element

ToRegular returns z in regular form (doesn't mutate z)

func (*Element) UnmarshalJSON added in v0.6.0

func (z *Element) UnmarshalJSON(data []byte) error

UnmarshalJSON accepts numbers and strings as input See Element.SetString for valid prefixes (0x, 0b, ...)

Directories

Path Synopsis
Package fft provides in-place discrete Fourier transform.
Package fft provides in-place discrete Fourier transform.
Package kzg provides a KZG commitment scheme.
Package kzg provides a KZG commitment scheme.
Package mimc provides MiMC hash function using Miyaguchi–Preneel construction.
Package mimc provides MiMC hash function using Miyaguchi–Preneel construction.
Package permutation provides an API to build permutation proofs.
Package permutation provides an API to build permutation proofs.
Package plookup provides an API to build plookup proofs.
Package plookup provides an API to build plookup proofs.
Package polynomial provides polynomial methods and commitment schemes.
Package polynomial provides polynomial methods and commitment schemes.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL