fp

package
v0.5.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 21, 2021 License: Apache-2.0 Imports: 10 Imported by: 7

Documentation

Overview

Package fp contains field arithmetic operations for modulus = 0x1ae3a4...000001.

The API is similar to math/big (big.Int), but the operations are significantly faster (up to 20x for the modular multiplication on amd64, see also https://hackmd.io/@zkteam/modular_multiplication)

The modulus is hardcoded in all the operations.

Field elements are represented as an array, and assumed to be in Montgomery form in all methods:

type Element [6]uint64

Example API signature

// Mul z = x * y mod q
func (z *Element) Mul(x, y *Element) *Element

and can be used like so:

var a, b Element
a.SetUint64(2)
b.SetString("984896738")
a.Mul(a, b)
a.Sub(a, a)
 .Add(a, b)
 .Inv(a)
b.Exp(b, new(big.Int).SetUint64(42))

Modulus

0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001 // base 16
258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177 // base 10

Index

Constants

View Source
const Bits = 377

Bits number bits needed to represent Element

View Source
const Bytes = Limbs * 8

Bytes number bytes needed to represent Element

View Source
const Limbs = 6

Limbs number of 64 bits words needed to represent Element

Variables

This section is empty.

Functions

func Butterfly added in v0.5.0

func Butterfly(a, b *Element)

func Modulus

func Modulus() *big.Int

Modulus returns q as a big.Int q =

258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177

func MulBy13 added in v0.5.0

func MulBy13(x *Element)

func MulBy3

func MulBy3(x *Element)

func MulBy5

func MulBy5(x *Element)

Types

type Element

type Element [6]uint64

Element represents a field element stored on 6 words (uint64) Element are assumed to be in Montgomery form in all methods field modulus q =

258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177

func BatchInvert added in v0.5.0

func BatchInvert(a []Element) []Element

BatchInvert returns a new slice with every element inverted. Uses Montgomery batch inversion trick

func One

func One() Element

One returns 1 (in montgommery form)

func (*Element) Add

func (z *Element) Add(x, y *Element) *Element

Add z = x + y mod q

func (*Element) Bit added in v0.5.1

func (z *Element) Bit(i uint64) uint64

Bit returns the i'th bit, with lsb == bit 0. It is the responsability of the caller to convert from Montgomery to Regular form if needed

func (*Element) BitLen added in v0.5.1

func (z *Element) BitLen() int

BitLen returns the minimum number of bits needed to represent z returns 0 if z == 0

func (*Element) Bytes

func (z *Element) Bytes() (res [Limbs * 8]byte)

Bytes returns the regular (non montgomery) value of z as a big-endian byte array.

func (*Element) Cmp

func (z *Element) Cmp(x *Element) int

Cmp compares (lexicographic order) z and x and returns:

-1 if z <  x
 0 if z == x
+1 if z >  x

func (*Element) Div

func (z *Element) Div(x, y *Element) *Element

Div z = x*y^-1 mod q

func (*Element) Double

func (z *Element) Double(x *Element) *Element

Double z = x + x mod q, aka Lsh 1

func (*Element) Equal

func (z *Element) Equal(x *Element) bool

Equal returns z == x

func (*Element) Exp

func (z *Element) Exp(x Element, exponent *big.Int) *Element

Exp z = x^exponent mod q

func (*Element) FromMont

func (z *Element) FromMont() *Element

FromMont converts z in place (i.e. mutates) from Montgomery to regular representation sets and returns z = z * 1

func (*Element) Inverse

func (z *Element) Inverse(x *Element) *Element

Inverse z = x^-1 mod q Algorithm 16 in "Efficient Software-Implementation of Finite Fields with Applications to Cryptography" if x == 0, sets and returns z = x

func (*Element) IsUint64 added in v0.5.1

func (z *Element) IsUint64() bool

IsUint64 returns true if z[0] >= 0 and all other words are 0

func (*Element) IsZero

func (z *Element) IsZero() bool

IsZero returns z == 0

func (*Element) Legendre

func (z *Element) Legendre() int

Legendre returns the Legendre symbol of z (either +1, -1, or 0.)

func (*Element) LexicographicallyLargest

func (z *Element) LexicographicallyLargest() bool

LexicographicallyLargest returns true if this element is strictly lexicographically larger than its negation, false otherwise

func (*Element) Marshal added in v0.5.0

func (z *Element) Marshal() []byte

Marshal returns the regular (non montgomery) value of z as a big-endian byte slice.

func (*Element) Mul

func (z *Element) Mul(x, y *Element) *Element

Mul z = x * y mod q see https://hackmd.io/@zkteam/modular_multiplication

func (*Element) Neg

func (z *Element) Neg(x *Element) *Element

Neg z = q - x

func (*Element) Set

func (z *Element) Set(x *Element) *Element

Set z = x

func (*Element) SetBigInt

func (z *Element) SetBigInt(v *big.Int) *Element

SetBigInt sets z to v (regular form) and returns z in Montgomery form

func (*Element) SetBytes

func (z *Element) SetBytes(e []byte) *Element

SetBytes interprets e as the bytes of a big-endian unsigned integer, sets z to that value (in Montgomery form), and returns z.

func (*Element) SetInterface

func (z *Element) SetInterface(i1 interface{}) (*Element, error)

SetInterface converts provided interface into Element returns an error if provided type is not supported supported types: Element, *Element, uint64, int, string (interpreted as base10 integer), *big.Int, big.Int, []byte

func (*Element) SetOne

func (z *Element) SetOne() *Element

SetOne z = 1 (in Montgomery form)

func (*Element) SetRandom

func (z *Element) SetRandom() (*Element, error)

SetRandom sets z to a random element < q

func (*Element) SetString

func (z *Element) SetString(s string) *Element

SetString creates a big.Int with s (in base 10) and calls SetBigInt on z

func (*Element) SetUint64

func (z *Element) SetUint64(v uint64) *Element

SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form

func (*Element) SetZero

func (z *Element) SetZero() *Element

SetZero z = 0

func (*Element) Sqrt

func (z *Element) Sqrt(x *Element) *Element

Sqrt z = √x mod q if the square root doesn't exist (x is not a square mod q) Sqrt leaves z unchanged and returns nil

func (*Element) Square

func (z *Element) Square(x *Element) *Element

Square z = x * x mod q see https://hackmd.io/@zkteam/modular_multiplication

func (*Element) String

func (z *Element) String() string

String returns the string form of an Element in Montgomery form

func (*Element) Sub

func (z *Element) Sub(x, y *Element) *Element

Sub z = x - y mod q

func (*Element) ToBigInt

func (z *Element) ToBigInt(res *big.Int) *big.Int

ToBigInt returns z as a big.Int in Montgomery form

func (Element) ToBigIntRegular

func (z Element) ToBigIntRegular(res *big.Int) *big.Int

ToBigIntRegular returns z as a big.Int in regular form

func (*Element) ToMont

func (z *Element) ToMont() *Element

ToMont converts z to Montgomery form sets and returns z = z * r^2

func (Element) ToRegular

func (z Element) ToRegular() Element

ToRegular returns z in regular form (doesn't mutate z)

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL