Documentation ¶
Overview ¶
Package websocket implements the WebSocket protocol defined in RFC 6455.
Overview ¶
The Conn type represents a WebSocket connection. A server application uses the Upgrade function from an Upgrader object with a HTTP request handler to get a pointer to a Conn:
var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, } func handler(w http.ResponseWriter, r *http.Request) { conn, err := upgrader.Upgrade(w, r, nil) if err != nil { log.Println(err) return } ... Use conn to send and receive messages. }
Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods:
for { messageType, p, err := conn.ReadMessage() if err != nil { return } if err = conn.WriteMessage(messageType, p); err != nil { return err } }
In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage.
An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods:
for { messageType, r, err := conn.NextReader() if err != nil { return } w, err := conn.NextWriter(messageType) if err != nil { return err } if _, err := io.Copy(w, r); err != nil { return err } if err := w.Close(); err != nil { return err } }
Data Messages ¶
The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application.
This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message.
It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text.
Control Messages ¶
The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer.
Connections handle received close messages by sending a close message to the peer and returning a *CloseError from the the NextReader, ReadMessage or the message Read method.
Connections handle received ping and pong messages by invoking callback functions set with SetPingHandler and SetPongHandler methods. The callback functions are called from the NextReader, ReadMessage and the message Read methods.
The default ping handler sends a pong to the peer. The application's reading goroutine can block for a short time while the handler writes the pong data to the connection.
The application must read the connection to process ping, pong and close messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is:
func readLoop(c *websocket.Conn) { for { if _, _, err := c.NextReader(); err != nil { c.Close() break } } }
Concurrency ¶
Connections support one concurrent reader and one concurrent writer.
Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently.
The Close and WriteControl methods can be called concurrently with all other methods.
Origin Considerations ¶
Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser.
The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403.
If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and not equal to the Host request header.
An application can allow connections from any origin by specifying a function that always returns true:
var upgrader = websocket.Upgrader{ CheckOrigin: func(r *http.Request) bool { return true }, }
The deprecated Upgrade function does not enforce an origin policy. It's the application's responsibility to check the Origin header before calling Upgrade.
Compression [Experimental]
Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes.
Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method:
conn.EnableWriteCompression(true)
Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692.
Use of compression is experimental and may result in decreased performance.
Index ¶
- Constants
- Variables
- func FormatCloseMessage(closeCode int, text string) []byte
- func IsCloseError(err error, codes ...int) bool
- func IsUnexpectedCloseError(err error, expectedCodes ...int) bool
- func IsWebSocketUpgrade(r *http.Request) bool
- func ReadJSON(c *Conn, v interface{}) error
- func Subprotocols(r *http.Request) []string
- func WriteJSON(c *Conn, v interface{}) error
- type CloseError
- type Conn
- func (c *Conn) Close() error
- func (c *Conn) CloseHandler() func(code int, text string) error
- func (c *Conn) EnableWriteCompression(enable bool)
- func (c *Conn) LocalAddr() net.Addr
- func (c *Conn) NextReader() (messageType int, r io.Reader, err error)
- func (c *Conn) NextWriter(messageType int) (io.WriteCloser, error)
- func (c *Conn) PingHandler() func(appData string) error
- func (c *Conn) PongHandler() func(appData string) error
- func (c *Conn) ReadJSON(v interface{}) error
- func (c *Conn) ReadMessage() (messageType int, p []byte, err error)
- func (c *Conn) RemoteAddr() net.Addr
- func (c *Conn) SetCloseHandler(h func(code int, text string) error)
- func (c *Conn) SetPingHandler(h func(appData string) error)
- func (c *Conn) SetPongHandler(h func(appData string) error)
- func (c *Conn) SetReadDeadline(t time.Time) error
- func (c *Conn) SetReadLimit(limit int64)
- func (c *Conn) SetWriteDeadline(t time.Time) error
- func (c *Conn) Subprotocol() string
- func (c *Conn) UnderlyingConn() net.Conn
- func (c *Conn) WriteControl(messageType int, data []byte, deadline time.Time) error
- func (c *Conn) WriteJSON(v interface{}) error
- func (c *Conn) WriteMessage(messageType int, data []byte) error
- type Dialer
- type HandshakeError
- type Upgrader
Examples ¶
Constants ¶
const ( CloseNormalClosure = 1000 CloseGoingAway = 1001 CloseProtocolError = 1002 CloseUnsupportedData = 1003 CloseNoStatusReceived = 1005 CloseAbnormalClosure = 1006 CloseInvalidFramePayloadData = 1007 ClosePolicyViolation = 1008 CloseMessageTooBig = 1009 CloseMandatoryExtension = 1010 CloseInternalServerErr = 1011 CloseServiceRestart = 1012 CloseTryAgainLater = 1013 CloseTLSHandshake = 1015 )
Close codes defined in RFC 6455, section 11.7.
const ( // TextMessage denotes a text data message. The text message payload is // interpreted as UTF-8 encoded text data. TextMessage = 1 // BinaryMessage denotes a binary data message. BinaryMessage = 2 // CloseMessage denotes a close control message. The optional message // payload contains a numeric code and text. Use the FormatCloseMessage // function to format a close message payload. CloseMessage = 8 // PingMessage denotes a ping control message. The optional message payload // is UTF-8 encoded text. PingMessage = 9 // PongMessage denotes a ping control message. The optional message payload // is UTF-8 encoded text. PongMessage = 10 )
The message types are defined in RFC 6455, section 11.8.
Variables ¶
var DefaultDialer = &Dialer{ Proxy: http.ProxyFromEnvironment, }
DefaultDialer is a dialer with all fields set to the default zero values.
var ErrBadHandshake = errors.New("websocket: bad handshake")
ErrBadHandshake is returned when the server response to opening handshake is invalid.
var ErrCloseSent = errors.New("websocket: close sent")
ErrCloseSent is returned when the application writes a message to the connection after sending a close message.
var ErrReadLimit = errors.New("websocket: read limit exceeded")
ErrReadLimit is returned when reading a message that is larger than the read limit set for the connection.
Functions ¶
func FormatCloseMessage ¶
FormatCloseMessage formats closeCode and text as a WebSocket close message.
func IsCloseError ¶
IsCloseError returns boolean indicating whether the error is a *CloseError with one of the specified codes.
func IsUnexpectedCloseError ¶
IsUnexpectedCloseError returns boolean indicating whether the error is a *CloseError with a code not in the list of expected codes.
Example ¶
The websocket.IsUnexpectedCloseError function is useful for identifying application and protocol errors.
This server application works with a client application running in the browser. The client application does not explicitly close the websocket. The only expected close message from the client has the code websocket.CloseGoingAway. All other other close messages are likely the result of an application or protocol error and are logged to aid debugging.
package main import ( "log" "net/http" "github.com/gorilla/websocket" ) var ( c *websocket.Conn req *http.Request ) func main() { for { messageType, p, err := c.ReadMessage() if err != nil { if websocket.IsUnexpectedCloseError(err, websocket.CloseGoingAway) { log.Printf("error: %v, user-agent: %v", err, req.Header.Get("User-Agent")) } return } processMesage(messageType, p) } } func processMesage(mt int, p []byte) {}
Output:
func IsWebSocketUpgrade ¶
IsWebSocketUpgrade returns true if the client requested upgrade to the WebSocket protocol.
func Subprotocols ¶
Subprotocols returns the subprotocols requested by the client in the Sec-Websocket-Protocol header.
Types ¶
type CloseError ¶
type CloseError struct { // Code is defined in RFC 6455, section 11.7. Code int // Text is the optional text payload. Text string }
CloseError represents close frame.
func (*CloseError) Error ¶
func (e *CloseError) Error() string
type Conn ¶
type Conn struct {
// contains filtered or unexported fields
}
func NewClient
deprecated
func NewClient(netConn net.Conn, u *url.URL, requestHeader http.Header, readBufSize, writeBufSize int) (c *Conn, response *http.Response, err error)
NewClient creates a new client connection using the given net connection. The URL u specifies the host and request URI. Use requestHeader to specify the origin (Origin), subprotocols (Sec-WebSocket-Protocol) and cookies (Cookie). Use the response.Header to get the selected subprotocol (Sec-WebSocket-Protocol) and cookies (Set-Cookie).
If the WebSocket handshake fails, ErrBadHandshake is returned along with a non-nil *http.Response so that callers can handle redirects, authentication, etc.
Deprecated: Use Dialer instead.
func Upgrade ¶
func Upgrade(w http.ResponseWriter, r *http.Request, responseHeader http.Header, readBufSize, writeBufSize int) (*Conn, error)
Upgrade upgrades the HTTP server connection to the WebSocket protocol.
This function is deprecated, use websocket.Upgrader instead.
The application is responsible for checking the request origin before calling Upgrade. An example implementation of the same origin policy is:
if req.Header.Get("Origin") != "http://"+req.Host { http.Error(w, "Origin not allowed", 403) return }
If the endpoint supports subprotocols, then the application is responsible for negotiating the protocol used on the connection. Use the Subprotocols() function to get the subprotocols requested by the client. Use the Sec-Websocket-Protocol response header to specify the subprotocol selected by the application.
The responseHeader is included in the response to the client's upgrade request. Use the responseHeader to specify cookies (Set-Cookie) and the negotiated subprotocol (Sec-Websocket-Protocol).
The connection buffers IO to the underlying network connection. The readBufSize and writeBufSize parameters specify the size of the buffers to use. Messages can be larger than the buffers.
If the request is not a valid WebSocket handshake, then Upgrade returns an error of type HandshakeError. Applications should handle this error by replying to the client with an HTTP error response.
func (*Conn) Close ¶
Close closes the underlying network connection without sending or waiting for a close frame.
func (*Conn) CloseHandler ¶
CloseHandler returns the current close handler
func (*Conn) EnableWriteCompression ¶
EnableWriteCompression enables and disables write compression of subsequent text and binary messages. This function is a noop if compression was not negotiated with the peer.
func (*Conn) NextReader ¶
NextReader returns the next data message received from the peer. The returned messageType is either TextMessage or BinaryMessage.
There can be at most one open reader on a connection. NextReader discards the previous message if the application has not already consumed it.
Applications must break out of the application's read loop when this method returns a non-nil error value. Errors returned from this method are permanent. Once this method returns a non-nil error, all subsequent calls to this method return the same error.
func (*Conn) NextWriter ¶
func (c *Conn) NextWriter(messageType int) (io.WriteCloser, error)
NextWriter returns a writer for the next message to send. The writer's Close method flushes the complete message to the network.
There can be at most one open writer on a connection. NextWriter closes the previous writer if the application has not already done so.
func (*Conn) PingHandler ¶
PingHandler returns the current ping handler
func (*Conn) PongHandler ¶
PongHandler returns the current pong handler
func (*Conn) ReadJSON ¶
ReadJSON reads the next JSON-encoded message from the connection and stores it in the value pointed to by v.
See the documentation for the encoding/json Unmarshal function for details about the conversion of JSON to a Go value.
func (*Conn) ReadMessage ¶
ReadMessage is a helper method for getting a reader using NextReader and reading from that reader to a buffer.
func (*Conn) RemoteAddr ¶
RemoteAddr returns the remote network address.
func (*Conn) SetCloseHandler ¶
SetCloseHandler sets the handler for close messages received from the peer. The code argument to h is the received close code or CloseNoStatusReceived if the close message is empty. The default close handler sends a close frame back to the peer.
func (*Conn) SetPingHandler ¶
SetPingHandler sets the handler for ping messages received from the peer. The appData argument to h is the PING frame application data. The default ping handler sends a pong to the peer.
func (*Conn) SetPongHandler ¶
SetPongHandler sets the handler for pong messages received from the peer. The appData argument to h is the PONG frame application data. The default pong handler does nothing.
func (*Conn) SetReadDeadline ¶
SetReadDeadline sets the read deadline on the underlying network connection. After a read has timed out, the websocket connection state is corrupt and all future reads will return an error. A zero value for t means reads will not time out.
func (*Conn) SetReadLimit ¶
SetReadLimit sets the maximum size for a message read from the peer. If a message exceeds the limit, the connection sends a close frame to the peer and returns ErrReadLimit to the application.
func (*Conn) SetWriteDeadline ¶
SetWriteDeadline sets the write deadline on the underlying network connection. After a write has timed out, the websocket state is corrupt and all future writes will return an error. A zero value for t means writes will not time out.
func (*Conn) Subprotocol ¶
Subprotocol returns the negotiated protocol for the connection.
func (*Conn) UnderlyingConn ¶
UnderlyingConn returns the internal net.Conn. This can be used to further modifications to connection specific flags.
func (*Conn) WriteControl ¶
WriteControl writes a control message with the given deadline. The allowed message types are CloseMessage, PingMessage and PongMessage.
type Dialer ¶
type Dialer struct { // NetDial specifies the dial function for creating TCP connections. If // NetDial is nil, net.Dial is used. NetDial func(network, addr string) (net.Conn, error) // Proxy specifies a function to return a proxy for a given // Request. If the function returns a non-nil error, the // request is aborted with the provided error. // If Proxy is nil or returns a nil *URL, no proxy is used. Proxy func(*http.Request) (*url.URL, error) // TLSClientConfig specifies the TLS configuration to use with tls.Client. // If nil, the default configuration is used. TLSClientConfig *tls.Config // HandshakeTimeout specifies the duration for the handshake to complete. HandshakeTimeout time.Duration // Input and output buffer sizes. If the buffer size is zero, then a // default value of 4096 is used. ReadBufferSize, WriteBufferSize int // Subprotocols specifies the client's requested subprotocols. Subprotocols []string // EnableCompression specifies if the client should attempt to negotiate // per message compression (RFC 7692). Setting this value to true does not // guarantee that compression will be supported. Currently only "no context // takeover" modes are supported. EnableCompression bool // Jar specifies the cookie jar. // If Jar is nil, cookies are not sent in requests and ignored // in responses. Jar http.CookieJar }
A Dialer contains options for connecting to WebSocket server.
func (*Dialer) Dial ¶
Dial creates a new client connection. Use requestHeader to specify the origin (Origin), subprotocols (Sec-WebSocket-Protocol) and cookies (Cookie). Use the response.Header to get the selected subprotocol (Sec-WebSocket-Protocol) and cookies (Set-Cookie).
If the WebSocket handshake fails, ErrBadHandshake is returned along with a non-nil *http.Response so that callers can handle redirects, authentication, etcetera. The response body may not contain the entire response and does not need to be closed by the application.
type HandshakeError ¶
type HandshakeError struct {
// contains filtered or unexported fields
}
HandshakeError describes an error with the handshake from the peer.
func (HandshakeError) Error ¶
func (e HandshakeError) Error() string
type Upgrader ¶
type Upgrader struct { // HandshakeTimeout specifies the duration for the handshake to complete. HandshakeTimeout time.Duration // ReadBufferSize and WriteBufferSize specify I/O buffer sizes. If a buffer // size is zero, then a default value of 4096 is used. The I/O buffer sizes // do not limit the size of the messages that can be sent or received. ReadBufferSize, WriteBufferSize int // Subprotocols specifies the server's supported protocols in order of // preference. If this field is set, then the Upgrade method negotiates a // subprotocol by selecting the first match in this list with a protocol // requested by the client. Subprotocols []string // Error specifies the function for generating HTTP error responses. If Error // is nil, then http.Error is used to generate the HTTP response. Error func(w http.ResponseWriter, r *http.Request, status int, reason error) // CheckOrigin returns true if the request Origin header is acceptable. If // CheckOrigin is nil, the host in the Origin header must not be set or // must match the host of the request. CheckOrigin func(r *http.Request) bool // EnableCompression specify if the server should attempt to negotiate per // message compression (RFC 7692). Setting this value to true does not // guarantee that compression will be supported. Currently only "no context // takeover" modes are supported. EnableCompression bool }
Upgrader specifies parameters for upgrading an HTTP connection to a WebSocket connection.
func (*Upgrader) FayUpgrade ¶
FayUpgrade upgrades the faygo server connection to the WebSocket protocol.
The responseHeader is included in the response to the client's upgrade request. Use the responseHeader to specify cookies (Set-Cookie) and the application negotiated subprotocol (Sec-Websocket-Protocol).
If the upgrade fails, then FayUpgrade replies to the client with an HTTP error response.
func (*Upgrader) Upgrade ¶
func (u *Upgrader) Upgrade(w http.ResponseWriter, r *http.Request, responseHeader http.Header) (*Conn, error)
Upgrade upgrades the HTTP server connection to the WebSocket protocol.
The responseHeader is included in the response to the client's upgrade request. Use the responseHeader to specify cookies (Set-Cookie) and the application negotiated subprotocol (Sec-Websocket-Protocol).
If the upgrade fails, then Upgrade replies to the client with an HTTP error response.