Documentation
¶
Index ¶
- type State
- func NewState(loc, cov *mat.Dense) (s *State, err error)
- func Observe(s *State, m *System) (o *State, err error)
- func Predict(p *State, m *System) (n *State, err error)
- func StateObserve(s *State, m *System) (o *State, err error)
- func Update(p *State, m *System, v float64) (n *State, res float64, err error)
- type System
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type State ¶
State describes the distribution of the internal state of a Linear system which has multivariate normal distribution.
func NewState ¶
NewState returns a State if the provided matrices have compatible dimensions and otherwise returns an error.
func Observe ¶
Observe determines the observation distribution for the current time step using the linear measurement equation: `y_next = C * x_next + v_next`. It returns an error if the state and system process dims do not match.
func Predict ¶
Predict predicts the next state distribution given the previous state and linear system equation `x_next = A * x_prev + B * w_prev `.
func StateObserve ¶
StateObserve returns the observation distribution
type System ¶
type System struct { // Process matrix A *mat.Dense // Process noise transform matrix B *mat.Dense // Measurement matrix C *mat.Dense // Process Covariance matrix Q *mat.Dense // Measurement Covariance matrix R *mat.Dense }
System contains a set of transition and covariance matrices which fully describe a Linear Time Invariant (LTI) dynamical system.