Documentation ¶
Overview ¶
Compile, typically invoked as “go tool compile,” compiles a single Go package comprising the files named on the command line. It then writes a single object file named for the basename of the first source file with a .o suffix. The object file can then be combined with other objects into a package archive or passed directly to the linker (“go tool link”). If invoked with -pack, the compiler writes an archive directly, bypassing the intermediate object file.
The generated files contain type information about the symbols exported by the package and about types used by symbols imported by the package from other packages. It is therefore not necessary when compiling client C of package P to read the files of P's dependencies, only the compiled output of P.
Command Line ¶
Usage:
go tool compile [flags] file...
The specified files must be Go source files and all part of the same package. The same compiler is used for all target operating systems and architectures. The GOOS and GOARCH environment variables set the desired target.
Flags:
-D path Set relative path for local imports. -I dir1 -I dir2 Search for imported packages in dir1, dir2, etc, after consulting $GOROOT/pkg/$GOOS_$GOARCH. -L Show complete file path in error messages. -N Disable optimizations. -S Print assembly listing to standard output (code only). -S -S Print assembly listing to standard output (code and data). -V Print compiler version and exit. -asmhdr file Write assembly header to file. -buildid id Record id as the build id in the export metadata. -blockprofile file Write block profile for the compilation to file. -c int Concurrency during compilation. Set 1 for no concurrency (default is 1). -complete Assume package has no non-Go components. -cpuprofile file Write a CPU profile for the compilation to file. -dynlink Allow references to Go symbols in shared libraries (experimental). -e Remove the limit on the number of errors reported (default limit is 10). -goversion string Specify required go tool version of the runtime. Exits when the runtime go version does not match goversion. -h Halt with a stack trace at the first error detected. -importcfg file Read import configuration from file. In the file, set importmap, packagefile to specify import resolution. -importmap old=new Interpret import "old" as import "new" during compilation. The option may be repeated to add multiple mappings. -installsuffix suffix Look for packages in $GOROOT/pkg/$GOOS_$GOARCH_suffix instead of $GOROOT/pkg/$GOOS_$GOARCH. -l Disable inlining. -lang version Set language version to compile, as in -lang=go1.12. Default is current version. -largemodel Generate code that assumes a large memory model. -linkobj file Write linker-specific object to file and compiler-specific object to usual output file (as specified by -o). Without this flag, the -o output is a combination of both linker and compiler input. -m Print optimization decisions. -memprofile file Write memory profile for the compilation to file. -memprofilerate rate Set runtime.MemProfileRate for the compilation to rate. -msan Insert calls to C/C++ memory sanitizer. -mutexprofile file Write mutex profile for the compilation to file. -nolocalimports Disallow local (relative) imports. -o file Write object to file (default file.o or, with -pack, file.a). -p path Set expected package import path for the code being compiled, and diagnose imports that would cause a circular dependency. -pack Write a package (archive) file rather than an object file -race Compile with race detector enabled. -s Warn about composite literals that can be simplified. -shared Generate code that can be linked into a shared library. -traceprofile file Write an execution trace to file. -trimpath prefix Remove prefix from recorded source file paths.
Flags related to debugging information:
-dwarf Generate DWARF symbols. -dwarflocationlists Add location lists to DWARF in optimized mode. -gendwarfinl int Generate DWARF inline info records (default 2).
Flags to debug the compiler itself:
-E Debug symbol export. -K Debug missing line numbers. -d list Print debug information about items in list. Try -d help for further information. -live Debug liveness analysis. -v Increase debug verbosity. -% Debug non-static initializers. -W Debug parse tree after type checking. -f Debug stack frames. -i Debug line number stack. -j Debug runtime-initialized variables. -r Debug generated wrappers. -w Debug type checking.
Compiler Directives ¶
The compiler accepts directives in the form of comments. To distinguish them from non-directive comments, directives require no space between the comment opening and the name of the directive. However, since they are comments, tools unaware of the directive convention or of a particular directive can skip over a directive like any other comment.
Line directives come in several forms:
//line :line //line :line:col //line filename:line //line filename:line:col /*line :line*/ /*line :line:col*/ /*line filename:line*/ /*line filename:line:col*/
In order to be recognized as a line directive, the comment must start with //line or /*line followed by a space, and must contain at least one colon. The //line form must start at the beginning of a line. A line directive specifies the source position for the character immediately following the comment as having come from the specified file, line and column: For a //line comment, this is the first character of the next line, and for a /*line comment this is the character position immediately following the closing */. If no filename is given, the recorded filename is empty if there is also no column number; otherwise it is the most recently recorded filename (actual filename or filename specified by previous line directive). If a line directive doesn't specify a column number, the column is "unknown" until the next directive and the compiler does not report column numbers for that range. The line directive text is interpreted from the back: First the trailing :ddd is peeled off from the directive text if ddd is a valid number > 0. Then the second :ddd is peeled off the same way if it is valid. Anything before that is considered the filename (possibly including blanks and colons). Invalid line or column values are reported as errors.
Examples:
//line foo.go:10 the filename is foo.go, and the line number is 10 for the next line //line C:foo.go:10 colons are permitted in filenames, here the filename is C:foo.go, and the line is 10 //line a:100 :10 blanks are permitted in filenames, here the filename is " a:100 " (excluding quotes) /*line :10:20*/x the position of x is in the current file with line number 10 and column number 20 /*line foo: 10 */ this comment is recognized as invalid line directive (extra blanks around line number)
Line directives typically appear in machine-generated code, so that compilers and debuggers will report positions in the original input to the generator.
The line directive is an historical special case; all other directives are of the form //go:name and must start at the beginning of a line, indicating that the directive is defined by the Go toolchain.
//go:noescape
The //go:noescape directive specifies that the next declaration in the file, which must be a func without a body (meaning that it has an implementation not written in Go) does not allow any of the pointers passed as arguments to escape into the heap or into the values returned from the function. This information can be used during the compiler's escape analysis of Go code calling the function.
//go:nosplit
The //go:nosplit directive specifies that the next function declared in the file must not include a stack overflow check. This is most commonly used by low-level runtime sources invoked at times when it is unsafe for the calling goroutine to be preempted.
//go:linkname localname [importpath.name]
The //go:linkname directive instructs the compiler to use “importpath.name” as the object file symbol name for the variable or function declared as “localname” in the source code. If the “importpath.name” argument is omitted, the directive uses the symbol's default object file symbol name and only has the effect of making the symbol accessible to other packages. Because this directive can subvert the type system and package modularity, it is only enabled in files that have imported "unsafe".