Problem0396

package
v0.0.0-...-4e682c9 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jan 8, 2018 License: MIT Imports: 0 Imported by: 0

README

396. Rotate Function

题目

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:

F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), ..., F(n-1).

Note: n is guaranteed to be less than 105.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

解题思路

见程序注释

F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
       = 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]

Then,

F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
              = (Bk[0] + ... + Bk[n-1]) - nBk[0]
              = sum - nBk[0]
Thus,

F(k) = F(k-1) + sum - nBk[0]

What is Bk[0]?

k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];
...

Documentation

The Go Gopher

There is no documentation for this package.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL