Documentation ¶
Overview ¶
Package leabra provides the basic reference leabra implementation, for rate-coded activations and standard error-driven learning. Other packages provide spiking or deep leabra, PVLV, PBWM, etc.
The overall design seeks an "optimal" tradeoff between simplicity, transparency, ability to flexibly recombine and extend elements, and avoiding having to rewrite a bunch of stuff.
The *Stru elements handle the core structural components of the network, and hold emer.* interface pointers to elements such as emer.Layer, which provides a very minimal interface for these elements. Interfaces are automatically pointers, so think of these as generic pointers to your specific Layers etc.
This design means the same *Stru infrastructure can be re-used across different variants of the algorithm. Because we're keeping this infrastructure minimal and algorithm-free it should be much less confusing than dealing with the multiple levels of inheritance in C++ emergent. The actual algorithm-specific code is now fully self-contained, and largely orthogonalized from the infrastructure.
One specific cost of this is the need to cast the emer.* interface pointers into the specific types of interest, when accessing via the *Stru infrastructure.
The *Params elements contain all the (meta)parameters and associated methods for computing various functions. They are the equivalent of Specs from original emergent, but unlike specs they are local to each place they are used, and styling is used to apply common parameters across multiple layers etc. Params seems like a more explicit, recognizable name compared to specs, and this also helps avoid confusion about their different nature than old specs. Pars is shorter but confusable with "Parents" so "Params" is more unambiguous.
Params are organized into four major categories, which are more clearly functionally labeled as opposed to just structurally so, to keep things clearer and better organized overall: * ActParams -- activation params, at the Neuron level (in act.go) * InhibParams -- inhibition params, at the Layer / Pool level (in inhib.go) * LearnNeurParams -- learning parameters at the Neuron level (running-averages that drive learning) * LearnSynParams -- learning parameters at the Synapse level (both in learn.go)
The levels of structure and state are: * Network * .Layers * .Pools: pooled inhibition state -- 1 for layer plus 1 for each sub-pool (unit group) with inhibition * .RecvPrjns: receiving projections from other sending layers * .SendPrjns: sending projections from other receiving layers * .Neurons: neuron state variables
There are methods on the Network that perform initialization and overall computation, by iterating over layers and calling methods there. This is typically how most users will run their models.
Parallel computation across multiple CPU cores (threading) is achieved through persistent worker go routines that listen for functions to run on thread-specific channels. Each layer has a designated thread number, so you can experiment with different ways of dividing up the computation. Timing data is kept for per-thread time use -- see TimeReport() on the network.
The Layer methods directly iterate over Neurons, Pools, and Prjns, and there is no finer-grained level of computation (e.g., at the individual Neuron level), except for the *Params methods that directly compute relevant functions. Thus, looking directly at the layer.go code should provide a clear sense of exactly how everything is computed -- you may need to the refer to act.go, learn.go etc to see the relevant details but at least the overall organization should be clear in layer.go.
Computational methods are generally named: VarFmVar to specifically name what variable is being computed from what other input variables. e.g., ActFmG computes activation from conductances G.
The Pools (type Pool, in pool.go) hold state used for computing pooled inhibition, but also are used to hold overall aggregate pooled state variables -- the first element in Pools applies to the layer itself, and subsequent ones are for each sub-pool (4D layers). These pools play the same role as the LeabraUnGpState structures in C++ emergent.
Prjns directly support all synapse-level computation, and hold the LearnSynParams and iterate directly over all of their synapses. It is the exact same Prjn object that lives in the RecvPrjns of the receiver-side, and the SendPrjns of the sender-side, and it maintains and coordinates both sides of the state. This clarifies and simplifies a lot of code. There is no separate equivalent of LeabraConSpec / LeabraConState at the level of connection groups per unit per projection.
The pattern of connectivity between units is specified by the prjn.Pattern interface and all the different standard options are avail in that prjn package. The Pattern code generates a full tensor bitmap of binary 1's and 0's for connected (1's) and not (0's) units, and can use any method to do so. This full lookup-table approach is not the most memory-efficient, but it is fully general and shouldn't be too-bad memory-wise overall (fully bit-packed arrays are used, and these bitmaps don't need to be retained once connections have been established). This approach allows patterns to just focus on patterns, and they don't care at all how they are used to allocate actual connections.
Index ¶
- Constants
- Variables
- func JsonToParams(b []byte) string
- func NeuronVarIdxByName(varNm string) (int, error)
- func SigFun(w, gain, off float32) float32
- func SigFun61(w float32) float32
- func SigInvFun(w, gain, off float32) float32
- func SigInvFun61(w float32) float32
- func SynapseVarByName(varNm string) (int, error)
- type ActAvg
- type ActAvgParams
- type ActInitParams
- type ActNoiseParams
- type ActNoiseType
- type ActParams
- func (ac *ActParams) ActFmG(nrn *Neuron)
- func (ac *ActParams) DecayState(nrn *Neuron, decay float32)
- func (ac *ActParams) Defaults()
- func (ac *ActParams) GeFmRaw(nrn *Neuron, geRaw float32)
- func (ac *ActParams) GeThrFmG(nrn *Neuron) float32
- func (ac *ActParams) GeThrFmGnoK(nrn *Neuron) float32
- func (ac *ActParams) GiFmRaw(nrn *Neuron, giRaw float32)
- func (ac *ActParams) HardClamp(nrn *Neuron)
- func (ac *ActParams) HasHardClamp(nrn *Neuron) bool
- func (ac *ActParams) InetFmG(vm, ge, gi, gk float32) float32
- func (ac *ActParams) InitActQs(nrn *Neuron)
- func (ac *ActParams) InitActs(nrn *Neuron)
- func (ac *ActParams) InitGInc(nrn *Neuron)
- func (ac *ActParams) Update()
- func (ac *ActParams) VmFmG(nrn *Neuron)
- type AvgLParams
- type ClampParams
- type CosDiffParams
- type CosDiffStats
- type DWtNormParams
- type DtParams
- type InhibParams
- type LayFunChan
- type Layer
- func (ly *Layer) ActFmG(ltime *Time)
- func (ly *Layer) AllParams() string
- func (ly *Layer) AlphaCycInit()
- func (ly *Layer) ApplyExt(ext etensor.Tensor)
- func (ly *Layer) ApplyExt1D(ext []float64)
- func (ly *Layer) ApplyExt1D32(ext []float32)
- func (ly *Layer) ApplyExt1DTsr(ext etensor.Tensor)
- func (ly *Layer) ApplyExt2D(ext etensor.Tensor)
- func (ly *Layer) ApplyExt2Dto4D(ext etensor.Tensor)
- func (ly *Layer) ApplyExt4D(ext etensor.Tensor)
- func (ly *Layer) ApplyExtFlags() (clrmsk, setmsk int32, toTarg bool)
- func (ly *Layer) AsLeabra() *Layer
- func (ly *Layer) AvgLFmAvgM()
- func (ly *Layer) AvgMaxAct(ltime *Time)
- func (ly *Layer) AvgMaxGe(ltime *Time)
- func (ly *Layer) Build() error
- func (ly *Layer) BuildPools(nu int) error
- func (ly *Layer) BuildPrjns() error
- func (ly *Layer) BuildSubPools()
- func (ly *Layer) CosDiffFmActs()
- func (ly *Layer) CostEst() (neur, syn, tot int)
- func (ly *Layer) CyclePost(ltime *Time)
- func (ly *Layer) DWt()
- func (ly *Layer) DecayState(decay float32)
- func (ly *Layer) DecayStatePool(pool int, decay float32)
- func (ly *Layer) Defaults()
- func (ly *Layer) GFmInc(ltime *Time)
- func (ly *Layer) GFmIncNeur(ltime *Time)
- func (ly *Layer) GScaleFmAvgAct()
- func (ly *Layer) GenNoise()
- func (ly *Layer) HardClamp()
- func (ly *Layer) InhibFmGeAct(ltime *Time)
- func (ly *Layer) InhibFmPool(ltime *Time)
- func (ly *Layer) InitActAvg()
- func (ly *Layer) InitActs()
- func (ly *Layer) InitExt()
- func (ly *Layer) InitGInc()
- func (ly *Layer) InitWtSym()
- func (ly *Layer) InitWts()
- func (ly *Layer) IsTarget() bool
- func (ly *Layer) LesionNeurons(prop float32) int
- func (ly *Layer) LrateMult(mult float32)
- func (ly *Layer) MSE(tol float32) (sse, mse float64)
- func (ly *Layer) Pool(idx int) *Pool
- func (ly *Layer) PoolInhibFmGeAct(ltime *Time)
- func (ly *Layer) PoolTry(idx int) (*Pool, error)
- func (ly *Layer) QuarterFinal(ltime *Time)
- func (ly *Layer) ReadWtsJSON(r io.Reader) error
- func (ly *Layer) RecvGInc(ltime *Time)
- func (ly *Layer) RecvPrjnVals(vals *[]float32, varNm string, sendLay emer.Layer, sendIdx1D int, ...) error
- func (ly *Layer) SSE(tol float32) float64
- func (ly *Layer) SendGDelta(ltime *Time)
- func (ly *Layer) SendPrjnVals(vals *[]float32, varNm string, recvLay emer.Layer, recvIdx1D int, ...) error
- func (ly *Layer) SetWts(lw *weights.Layer) error
- func (ly *Layer) UnLesionNeurons()
- func (ly *Layer) UnitVal(varNm string, idx []int) float32
- func (ly *Layer) UnitVal1D(varIdx int, idx int) float32
- func (ly *Layer) UnitVals(vals *[]float32, varNm string) error
- func (ly *Layer) UnitValsTensor(tsr etensor.Tensor, varNm string) error
- func (ly *Layer) UnitVarIdx(varNm string) (int, error)
- func (ly *Layer) UnitVarNames() []string
- func (ly *Layer) UnitVarNum() int
- func (ly *Layer) UnitVarProps() map[string]string
- func (ly *Layer) UpdateExtFlags()
- func (ly *Layer) UpdateParams()
- func (ly *Layer) VarRange(varNm string) (min, max float32, err error)
- func (ly *Layer) WriteWtsJSON(w io.Writer, depth int)
- func (ly *Layer) WtBalFmWt()
- func (ly *Layer) WtFail()
- func (ly *Layer) WtFmDWt()
- func (ly *Layer) WtFmLWt()
- type LayerStru
- func (ls *LayerStru) ApplyParams(pars *params.Sheet, setMsg bool) (bool, error)
- func (ls *LayerStru) Class() string
- func (ls *LayerStru) Config(shape []int, typ emer.LayerType)
- func (ls *LayerStru) Idx4DFrom2D(x, y int) ([]int, bool)
- func (ls *LayerStru) Index() int
- func (ls *LayerStru) InitName(lay emer.Layer, name string, net emer.Network)
- func (ls *LayerStru) Is2D() bool
- func (ls *LayerStru) Is4D() bool
- func (ls *LayerStru) IsOff() bool
- func (ls *LayerStru) Label() string
- func (ls *LayerStru) NPools() int
- func (ls *LayerStru) NRecvPrjns() int
- func (ls *LayerStru) NSendPrjns() int
- func (ls *LayerStru) Name() string
- func (ls *LayerStru) NonDefaultParams() string
- func (ls *LayerStru) Pos() mat32.Vec3
- func (ls *LayerStru) RecipToSendPrjn(spj emer.Prjn) (emer.Prjn, bool)
- func (ls *LayerStru) RecvPrjn(idx int) emer.Prjn
- func (ls *LayerStru) RecvPrjns() *emer.Prjns
- func (ls *LayerStru) RelPos() relpos.Rel
- func (ls *LayerStru) SendPrjn(idx int) emer.Prjn
- func (ls *LayerStru) SendPrjns() *emer.Prjns
- func (ls *LayerStru) SetClass(cls string)
- func (ls *LayerStru) SetIndex(idx int)
- func (ls *LayerStru) SetName(nm string)
- func (ls *LayerStru) SetOff(off bool)
- func (ls *LayerStru) SetPos(pos mat32.Vec3)
- func (ls *LayerStru) SetRelPos(rel relpos.Rel)
- func (ls *LayerStru) SetShape(shape []int)
- func (ls *LayerStru) SetThread(thr int)
- func (ls *LayerStru) SetType(typ emer.LayerType)
- func (ls *LayerStru) Shape() *etensor.Shape
- func (ls *LayerStru) Size() mat32.Vec2
- func (ls *LayerStru) Thread() int
- func (ls *LayerStru) Type() emer.LayerType
- func (ls *LayerStru) TypeName() string
- type LeabraLayer
- type LeabraNetwork
- type LeabraPrjn
- type LearnNeurParams
- type LearnSynParams
- func (ls *LearnSynParams) BCMdWt(suAvgSLrn, ruAvgSLrn, ruAvgL float32) float32
- func (ls *LearnSynParams) CHLdWt(suAvgSLrn, suAvgM, ruAvgSLrn, ruAvgM, ruAvgL float32) (err, bcm float32)
- func (ls *LearnSynParams) Defaults()
- func (ls *LearnSynParams) LWtFmWt(syn *Synapse)
- func (ls *LearnSynParams) Update()
- func (ls *LearnSynParams) WtFail(wt *float32)
- func (ls *LearnSynParams) WtFmDWt(wbInc, wbDec float32, dwt, wt, lwt *float32, scale float32)
- func (ls *LearnSynParams) WtFmLWt(syn *Synapse)
- type LrnActAvgParams
- type MomentumParams
- type Network
- func (nt *Network) ActFmG(ltime *Time)
- func (nt *Network) AlphaCycInit()
- func (nt *Network) AlphaCycInitImpl()
- func (nt *Network) AsLeabra() *Network
- func (nt *Network) AvgMaxAct(ltime *Time)
- func (nt *Network) AvgMaxGe(ltime *Time)
- func (nt *Network) CollectDWts(dwts *[]float32, nwts int) bool
- func (nt *Network) Cycle(ltime *Time)
- func (nt *Network) CycleImpl(ltime *Time)
- func (nt *Network) CyclePost(ltime *Time)
- func (nt *Network) CyclePostImpl(ltime *Time)
- func (nt *Network) DWt()
- func (nt *Network) DWtImpl()
- func (nt *Network) DecayState(decay float32)
- func (nt *Network) Defaults()
- func (nt *Network) GScaleFmAvgAct()
- func (nt *Network) InhibFmGeAct(ltime *Time)
- func (nt *Network) InitActs()
- func (nt *Network) InitExt()
- func (nt *Network) InitGInc()
- func (nt *Network) InitTopoScales()
- func (nt *Network) InitWts()
- func (nt *Network) LayersSetOff(off bool)
- func (nt *Network) LrateMult(mult float32)
- func (nt *Network) NewLayer() emer.Layer
- func (nt *Network) NewPrjn() emer.Prjn
- func (nt *Network) QuarterFinal(ltime *Time)
- func (nt *Network) QuarterFinalImpl(ltime *Time)
- func (nt *Network) SendGDelta(ltime *Time)
- func (nt *Network) SetDWts(dwts []float32)
- func (nt *Network) SizeReport() string
- func (nt *Network) SynVarNames() []string
- func (nt *Network) SynVarProps() map[string]string
- func (nt *Network) ThreadAlloc(nThread int) string
- func (nt *Network) ThreadReport() string
- func (nt *Network) UnLesionNeurons()
- func (nt *Network) UnitVarNames() []string
- func (nt *Network) UnitVarProps() map[string]string
- func (nt *Network) UpdateExtFlags()
- func (nt *Network) UpdateParams()
- func (nt *Network) WtBalFmWt()
- func (nt *Network) WtFail()
- func (nt *Network) WtFmDWt()
- func (nt *Network) WtFmDWtImpl()
- func (nt *Network) WtFmLWt()
- type NetworkStru
- func (nt *NetworkStru) AddLayer(name string, shape []int, typ emer.LayerType) emer.Layer
- func (nt *NetworkStru) AddLayer2D(name string, shapeY, shapeX int, typ emer.LayerType) emer.Layer
- func (nt *NetworkStru) AddLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, typ emer.LayerType) emer.Layer
- func (nt *NetworkStru) AddLayerInit(ly emer.Layer, name string, shape []int, typ emer.LayerType)
- func (nt *NetworkStru) AllParams() string
- func (nt *NetworkStru) AllWtScales() string
- func (nt *NetworkStru) ApplyParams(pars *params.Sheet, setMsg bool) (bool, error)
- func (nt *NetworkStru) BidirConnectLayerNames(low, high string, pat prjn.Pattern) (lowlay, highlay emer.Layer, fwdpj, backpj emer.Prjn, err error)
- func (nt *NetworkStru) BidirConnectLayers(low, high emer.Layer, pat prjn.Pattern) (fwdpj, backpj emer.Prjn)
- func (nt *NetworkStru) BidirConnectLayersPy(low, high emer.Layer, pat prjn.Pattern)
- func (nt *NetworkStru) Bounds() (min, max mat32.Vec3)
- func (nt *NetworkStru) BoundsUpdt()
- func (nt *NetworkStru) Build() error
- func (nt *NetworkStru) BuildThreads()
- func (nt *NetworkStru) ConnectLayerNames(send, recv string, pat prjn.Pattern, typ emer.PrjnType) (rlay, slay emer.Layer, pj emer.Prjn, err error)
- func (nt *NetworkStru) ConnectLayers(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType) emer.Prjn
- func (nt *NetworkStru) ConnectLayersPrjn(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType, pj emer.Prjn) emer.Prjn
- func (nt *NetworkStru) FunTimerStart(fun string)
- func (nt *NetworkStru) FunTimerStop(fun string)
- func (nt *NetworkStru) InitName(net emer.Network, name string)
- func (nt *NetworkStru) Label() string
- func (nt *NetworkStru) LateralConnectLayer(lay emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *NetworkStru) LateralConnectLayerPrjn(lay emer.Layer, pat prjn.Pattern, pj emer.Prjn) emer.Prjn
- func (nt *NetworkStru) Layer(idx int) emer.Layer
- func (nt *NetworkStru) LayerByName(name string) emer.Layer
- func (nt *NetworkStru) LayerByNameTry(name string) (emer.Layer, error)
- func (nt *NetworkStru) Layout()
- func (nt *NetworkStru) MakeLayMap()
- func (nt *NetworkStru) NLayers() int
- func (nt *NetworkStru) Name() string
- func (nt *NetworkStru) NonDefaultParams() string
- func (nt *NetworkStru) OpenWtsCpp(filename gi.FileName) error
- func (nt *NetworkStru) OpenWtsJSON(filename gi.FileName) error
- func (nt *NetworkStru) ReadWtsCpp(r io.Reader) error
- func (nt *NetworkStru) ReadWtsJSON(r io.Reader) error
- func (nt *NetworkStru) SaveWtsJSON(filename gi.FileName) error
- func (nt *NetworkStru) SetWts(nw *weights.Network) error
- func (nt *NetworkStru) StartThreads()
- func (nt *NetworkStru) StdVertLayout()
- func (nt *NetworkStru) StopThreads()
- func (nt *NetworkStru) ThrLayFun(fun func(ly LeabraLayer), funame string)
- func (nt *NetworkStru) ThrTimerReset()
- func (nt *NetworkStru) ThrWorker(tt int)
- func (nt *NetworkStru) TimerReport()
- func (nt *NetworkStru) VarRange(varNm string) (min, max float32, err error)
- func (nt *NetworkStru) WriteWtsJSON(w io.Writer)
- type NeurFlags
- type Neuron
- func (nrn *Neuron) ClearFlag(flag NeurFlags)
- func (nrn *Neuron) ClearMask(mask int32)
- func (nrn *Neuron) HasFlag(flag NeurFlags) bool
- func (nrn *Neuron) IsOff() bool
- func (nrn *Neuron) SetFlag(flag NeurFlags)
- func (nrn *Neuron) SetMask(mask int32)
- func (nrn *Neuron) VarByIndex(idx int) float32
- func (nrn *Neuron) VarByName(varNm string) (float32, error)
- func (nrn *Neuron) VarNames() []string
- type OptThreshParams
- type Pool
- type Prjn
- func (pj *Prjn) AllParams() string
- func (pj *Prjn) AsLeabra() *Prjn
- func (pj *Prjn) Build() error
- func (pj *Prjn) DWt()
- func (pj *Prjn) Defaults()
- func (pj *Prjn) InitGInc()
- func (pj *Prjn) InitWtSym(rpjp LeabraPrjn)
- func (pj *Prjn) InitWts()
- func (pj *Prjn) InitWtsSyn(syn *Synapse)
- func (pj *Prjn) LrateMult(mult float32)
- func (pj *Prjn) ReadWtsJSON(r io.Reader) error
- func (pj *Prjn) RecvGInc()
- func (pj *Prjn) SendGDelta(si int, delta float32)
- func (pj *Prjn) SetClass(cls string) emer.Prjn
- func (pj *Prjn) SetPattern(pat prjn.Pattern) emer.Prjn
- func (pj *Prjn) SetScalesFunc(scaleFun func(si, ri int, send, recv *etensor.Shape) float32)
- func (pj *Prjn) SetScalesRPool(scales etensor.Tensor)
- func (pj *Prjn) SetSynVal(varNm string, sidx, ridx int, val float32) error
- func (pj *Prjn) SetType(typ emer.PrjnType) emer.Prjn
- func (pj *Prjn) SetWts(pw *weights.Prjn) error
- func (pj *Prjn) SetWtsFunc(wtFun func(si, ri int, send, recv *etensor.Shape) float32)
- func (pj *Prjn) SynIdx(sidx, ridx int) int
- func (pj *Prjn) SynVal(varNm string, sidx, ridx int) float32
- func (pj *Prjn) SynVal1D(varIdx int, synIdx int) float32
- func (pj *Prjn) SynVals(vals *[]float32, varNm string) error
- func (pj *Prjn) SynVarIdx(varNm string) (int, error)
- func (pj *Prjn) SynVarNames() []string
- func (pj *Prjn) SynVarNum() int
- func (pj *Prjn) SynVarProps() map[string]string
- func (pj *Prjn) UpdateParams()
- func (pj *Prjn) WriteWtsJSON(w io.Writer, depth int)
- func (pj *Prjn) WtBalFmWt()
- func (pj *Prjn) WtFail()
- func (pj *Prjn) WtFmDWt()
- func (pj *Prjn) WtFmLWt()
- type PrjnStru
- func (ps *PrjnStru) ApplyParams(pars *params.Sheet, setMsg bool) (bool, error)
- func (ps *PrjnStru) BuildStru() error
- func (ps *PrjnStru) Class() string
- func (ps *PrjnStru) Connect(slay, rlay emer.Layer, pat prjn.Pattern, typ emer.PrjnType)
- func (ps *PrjnStru) Init(prjn emer.Prjn)
- func (ps *PrjnStru) IsOff() bool
- func (ps *PrjnStru) Label() string
- func (ps *PrjnStru) Name() string
- func (ps *PrjnStru) NonDefaultParams() string
- func (ps *PrjnStru) Pattern() prjn.Pattern
- func (ps *PrjnStru) PrjnTypeName() string
- func (ps *PrjnStru) RecvLay() emer.Layer
- func (ps *PrjnStru) SendLay() emer.Layer
- func (ps *PrjnStru) SetNIdxSt(n *[]int32, avgmax *minmax.AvgMax32, idxst *[]int32, tn *etensor.Int32) int32
- func (ps *PrjnStru) SetOff(off bool)
- func (ps *PrjnStru) String() string
- func (ps *PrjnStru) Type() emer.PrjnType
- func (ps *PrjnStru) TypeName() string
- func (ps *PrjnStru) Validate(logmsg bool) error
- type Quarters
- func (qt *Quarters) Clear(qtr int)
- func (i *Quarters) FromString(s string) error
- func (qt Quarters) Has(qtr int) bool
- func (qt Quarters) HasNext(qtr int) bool
- func (qt Quarters) HasPrev(qtr int) bool
- func (qt Quarters) MarshalJSON() ([]byte, error)
- func (qt *Quarters) Set(qtr int)
- func (i Quarters) String() string
- func (qt *Quarters) UnmarshalJSON(b []byte) error
- type SelfInhibParams
- type Synapse
- type Time
- type TimeScales
- type WtBalParams
- type WtBalRecvPrjn
- type WtInitParams
- type WtScaleParams
- type WtSigParams
- type XCalParams
Constants ¶
const ( Version = "v1.1.27" GitCommit = "a10ec23" // the commit JUST BEFORE the release VersionDate = "2021-01-12 08:45" // UTC )
const NeuronVarStart = 8
NeuronVarStart is the byte offset of fields in the Neuron structure where the float32 named variables start. Note: all non-float32 infrastructure variables must be at the start!
Variables ¶
var KiT_ActNoiseType = kit.Enums.AddEnum(ActNoiseTypeN, kit.NotBitFlag, nil)
var KiT_Layer = kit.Types.AddType(&Layer{}, LayerProps)
var KiT_Network = kit.Types.AddType(&Network{}, NetworkProps)
var KiT_NeurFlags = kit.Enums.AddEnum(NeurFlagsN, kit.BitFlag, nil)
var KiT_Prjn = kit.Types.AddType(&Prjn{}, PrjnProps)
var KiT_TimeScales = kit.Enums.AddEnum(TimeScalesN, kit.NotBitFlag, nil)
var LayerProps = ki.Props{ "ToolBar": ki.PropSlice{ {"Defaults", ki.Props{ "icon": "reset", "desc": "return all parameters to their intial default values", }}, {"InitWts", ki.Props{ "icon": "update", "desc": "initialize the layer's weight values according to prjn parameters, for all *sending* projections out of this layer", }}, {"InitActs", ki.Props{ "icon": "update", "desc": "initialize the layer's activation values", }}, {"sep-act", ki.BlankProp{}}, {"LesionNeurons", ki.Props{ "icon": "close", "desc": "Lesion (set the Off flag) for given proportion of neurons in the layer (number must be 0 -- 1, NOT percent!)", "Args": ki.PropSlice{ {"Proportion", ki.Props{ "desc": "proportion (0 -- 1) of neurons to lesion", }}, }, }}, {"UnLesionNeurons", ki.Props{ "icon": "reset", "desc": "Un-Lesion (reset the Off flag) for all neurons in the layer", }}, }, }
var NetworkProps = ki.Props{ "ToolBar": ki.PropSlice{ {"SaveWtsJSON", ki.Props{ "label": "Save Wts...", "icon": "file-save", "desc": "Save json-formatted weights", "Args": ki.PropSlice{ {"Weights File Name", ki.Props{ "default-field": "WtsFile", "ext": ".wts,.wts.gz", }}, }, }}, {"OpenWtsJSON", ki.Props{ "label": "Open Wts...", "icon": "file-open", "desc": "Open json-formatted weights", "Args": ki.PropSlice{ {"Weights File Name", ki.Props{ "default-field": "WtsFile", "ext": ".wts,.wts.gz", }}, }, }}, {"sep-file", ki.BlankProp{}}, {"Build", ki.Props{ "icon": "update", "desc": "build the network's neurons and synapses according to current params", }}, {"InitWts", ki.Props{ "icon": "update", "desc": "initialize the network weight values according to prjn parameters", }}, {"InitActs", ki.Props{ "icon": "update", "desc": "initialize the network activation values", }}, {"sep-act", ki.BlankProp{}}, {"AddLayer", ki.Props{ "label": "Add Layer...", "icon": "new", "desc": "add a new layer to network", "Args": ki.PropSlice{ {"Layer Name", ki.Props{}}, {"Layer Shape", ki.Props{ "desc": "shape of layer, typically 2D (Y, X) or 4D (Pools Y, Pools X, Units Y, Units X)", }}, {"Layer Type", ki.Props{ "desc": "type of layer -- used for determining how inputs are applied", }}, }, }}, {"ConnectLayerNames", ki.Props{ "label": "Connect Layers...", "icon": "new", "desc": "add a new connection between layers in the network", "Args": ki.PropSlice{ {"Send Layer Name", ki.Props{}}, {"Recv Layer Name", ki.Props{}}, {"Pattern", ki.Props{ "desc": "pattern to connect with", }}, {"Prjn Type", ki.Props{ "desc": "type of projection -- direction, or other more specialized factors", }}, }, }}, {"AllWtScales", ki.Props{ "icon": "file-sheet", "desc": "AllWtScales returns a listing of all WtScale parameters in the Network in all Layers, Recv projections. These are among the most important and numerous of parameters (in larger networks) -- this helps keep track of what they all are set to.", "show-return": true, }}, }, }
var NeuronVarProps = map[string]string{
"Vm": `min:"0" max:"1"`,
"ActDel": `auto-scale:"+"`,
"ActDif": `auto-scale:"+"`,
}
var NeuronVars = []string{"Act", "ActLrn", "Ge", "Gi", "Gk", "Inet", "Vm", "Targ", "Ext", "AvgSS", "AvgS", "AvgM", "AvgL", "AvgLLrn", "AvgSLrn", "ActQ0", "ActQ1", "ActQ2", "ActM", "ActP", "ActDif", "ActDel", "ActAvg", "Noise", "GiSyn", "GiSelf", "ActSent", "GeRaw", "GiRaw", "GknaFast", "GknaMed", "GknaSlow", "Spike", "ISI", "ISIAvg"}
var NeuronVarsMap map[string]int
var PrjnProps = ki.Props{}
var SynapseVarProps = map[string]string{
"DWt": `auto-scale:"+"`,
"Moment": `auto-scale:"+"`,
}
var SynapseVars = []string{"Wt", "LWt", "DWt", "Norm", "Moment", "Scale"}
var SynapseVarsMap map[string]int
Functions ¶
func JsonToParams ¶
JsonToParams reformates json output to suitable params display output
func NeuronVarIdxByName ¶ added in v1.1.26
NeuronVarIdxByName returns the index of the variable in the Neuron, or error
func SigFun61 ¶
SigFun61 is the sigmoid function for value w in 0-1 range, with default gain = 6, offset = 1 params
func SigInvFun61 ¶
SigInvFun61 is the inverse of the sigmoid function, with default gain = 6, offset = 1 params
func SynapseVarByName ¶ added in v1.1.26
SynapseVarByName returns the index of the variable in the Synapse, or error
Types ¶
type ActAvg ¶
type ActAvg struct { ActMAvg float32 `desc:"running-average minus-phase activity -- used for adapting inhibition -- see ActAvgParams.Tau for time constant etc"` ActPAvg float32 `desc:"running-average plus-phase activity -- used for synaptic input scaling -- see ActAvgParams.Tau for time constant etc"` ActPAvgEff float32 `desc:"ActPAvg * ActAvgParams.Adjust -- adjusted effective layer activity directly used in synaptic input scaling"` }
ActAvg are running-average activation levels used for netinput scaling and adaptive inhibition
type ActAvgParams ¶
type ActAvgParams struct { Init float32 `` /* 462-byte string literal not displayed */ Fixed bool `` /* 190-byte string literal not displayed */ UseExtAct bool `` /* 343-byte string literal not displayed */ UseFirst bool `` /* 166-byte string literal not displayed */ Tau float32 `` /* 177-byte string literal not displayed */ Adjust float32 `` /* 576-byte string literal not displayed */ Dt float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"rate = 1 / tau"` }
ActAvgParams represents expected average activity levels in the layer. Used for computing running-average computation that is then used for netinput scaling. Also specifies time constant for updating average and for the target value for adapting inhibition in inhib_adapt.
func (*ActAvgParams) AvgFmAct ¶
func (aa *ActAvgParams) AvgFmAct(avg *float32, act float32)
AvgFmAct updates the running-average activation given average activity level in layer
func (*ActAvgParams) Defaults ¶
func (aa *ActAvgParams) Defaults()
func (*ActAvgParams) EffFmAvg ¶
func (aa *ActAvgParams) EffFmAvg(eff *float32, avg float32)
EffFmAvg updates the effective value from the running-average value
func (*ActAvgParams) EffInit ¶
func (aa *ActAvgParams) EffInit() float32
EffInit returns the initial value applied during InitWts for the AvgPAvgEff effective layer activity
func (*ActAvgParams) Update ¶
func (aa *ActAvgParams) Update()
type ActInitParams ¶
type ActInitParams struct { Decay float32 `def:"0,1" max:"1" min:"0" desc:"proportion to decay activation state toward initial values at start of every trial"` Vm float32 `` /* 193-byte string literal not displayed */ Act float32 `def:"0" desc:"initial activation value -- typically 0"` Ge float32 `` /* 268-byte string literal not displayed */ }
ActInitParams are initial values for key network state variables. Initialized at start of trial with Init_Acts or DecayState.
func (*ActInitParams) Defaults ¶
func (ai *ActInitParams) Defaults()
func (*ActInitParams) Update ¶
func (ai *ActInitParams) Update()
type ActNoiseParams ¶
type ActNoiseParams struct { erand.RndParams Type ActNoiseType `desc:"where and how to add processing noise"` Fixed bool `` /* 227-byte string literal not displayed */ }
ActNoiseParams contains parameters for activation-level noise
func (*ActNoiseParams) Defaults ¶
func (an *ActNoiseParams) Defaults()
func (*ActNoiseParams) Update ¶
func (an *ActNoiseParams) Update()
type ActNoiseType ¶
type ActNoiseType int
ActNoiseType are different types / locations of random noise for activations
const ( // NoNoise means no noise added NoNoise ActNoiseType = iota // VmNoise means noise is added to the membrane potential. // IMPORTANT: this should NOT be used for rate-code (NXX1) activations, // because they do not depend directly on the vm -- this then has no effect VmNoise // GeNoise means noise is added to the excitatory conductance (Ge). // This should be used for rate coded activations (NXX1) GeNoise // ActNoise means noise is added to the final rate code activation ActNoise // GeMultNoise means that noise is multiplicative on the Ge excitatory conductance values GeMultNoise ActNoiseTypeN )
The activation noise types
func (*ActNoiseType) FromString ¶
func (i *ActNoiseType) FromString(s string) error
func (ActNoiseType) MarshalJSON ¶
func (ev ActNoiseType) MarshalJSON() ([]byte, error)
func (ActNoiseType) String ¶
func (i ActNoiseType) String() string
func (*ActNoiseType) UnmarshalJSON ¶
func (ev *ActNoiseType) UnmarshalJSON(b []byte) error
type ActParams ¶
type ActParams struct { XX1 nxx1.Params `view:"inline" desc:"Noisy X/X+1 rate code activation function parameters"` OptThresh OptThreshParams `view:"inline" desc:"optimization thresholds for faster processing"` Init ActInitParams `` /* 127-byte string literal not displayed */ Dt DtParams `view:"inline" desc:"time and rate constants for temporal derivatives / updating of activation state"` Gbar chans.Chans `view:"inline" desc:"[Defaults: 1, .2, 1, 1] maximal conductances levels for channels"` Erev chans.Chans `view:"inline" desc:"[Defaults: 1, .3, .25, .1] reversal potentials for each channel"` Clamp ClampParams `view:"inline" desc:"how external inputs drive neural activations"` Noise ActNoiseParams `view:"inline" desc:"how, where, when, and how much noise to add to activations"` VmRange minmax.F32 `view:"inline" desc:"range for Vm membrane potential -- [0, 2.0] by default"` KNa knadapt.Params `` /* 252-byte string literal not displayed */ ErevSubThr chans.Chans `inactive:"+" view:"-" json:"-" xml:"-" desc:"Erev - Act.Thr for each channel -- used in computing GeThrFmG among others"` ThrSubErev chans.Chans `inactive:"+" view:"-" json:"-" xml:"-" desc:"Act.Thr - Erev for each channel -- used in computing GeThrFmG among others"` }
leabra.ActParams contains all the activation computation params and functions for basic Leabra, at the neuron level . This is included in leabra.Layer to drive the computation.
func (*ActParams) DecayState ¶
DecayState decays the activation state toward initial values in proportion to given decay parameter Called with ac.Init.Decay by Layer during AlphaCycInit
func (*ActParams) GeFmRaw ¶ added in v1.1.26
GeFmRaw integrates Ge excitatory conductance from GeRaw value (can add other terms to geRaw prior to calling this)
func (*ActParams) GeThrFmG ¶
GeThrFmG computes the threshold for Ge based on all other conductances, including Gk. This is used for computing the adapted Act value.
func (*ActParams) GeThrFmGnoK ¶ added in v1.1.26
GeThrFmGnoK computes the threshold for Ge based on other conductances, excluding Gk. This is used for computing the non-adapted ActLrn value.
func (*ActParams) GiFmRaw ¶ added in v1.1.26
GiFmRaw integrates GiSyn inhibitory synaptic conductance from GiRaw value (can add other terms to geRaw prior to calling this)
func (*ActParams) HardClamp ¶
HardClamp clamps activation from external input -- just does it -- use HasHardClamp to check if it should do it. Also adds any Noise *if* noise is set to ActNoise.
func (*ActParams) HasHardClamp ¶
HasHardClamp returns true if this neuron has external input that should be hard clamped
func (*ActParams) InitActQs ¶ added in v1.1.26
InitActQs initializes quarter-based activation states in neuron (ActQ0-2, ActM, ActP, ActDif) Called from InitActs, which is called from InitWts, but otherwise not automatically called (DecayState is used instead)
func (*ActParams) InitActs ¶
InitActs initializes activation state in neuron -- called during InitWts but otherwise not automatically called (DecayState is used instead)
func (*ActParams) InitGInc ¶ added in v1.1.26
InitGinc initializes the Ge excitatory and Gi inhibitory conductance accumulation states including ActSent and G*Raw values. called at start of trial always, and can be called optionally when delta-based Ge computation needs to be updated (e.g., weights might have changed strength)
type AvgLParams ¶
type AvgLParams struct { Init float32 `def:"0.4" min:"0" max:"1" desc:"initial AvgL value at start of training"` Gain float32 `` /* 501-byte string literal not displayed */ Min float32 `` /* 219-byte string literal not displayed */ Tau float32 `` /* 273-byte string literal not displayed */ LrnMax float32 `` /* 570-byte string literal not displayed */ LrnMin float32 `` /* 350-byte string literal not displayed */ ErrMod bool `def:"true" desc:"modulate amount learning by normalized level of error within layer"` ModMin float32 `` /* 200-byte string literal not displayed */ Dt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` LrnFact float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"(LrnMax - LrnMin) / (Gain - Min)"` }
AvgLParams are parameters for computing the long-term floating average value, AvgL which is used for driving BCM-style hebbian learning in XCAL -- this form of learning increases contrast of weights and generally decreases overall activity of neuron, to prevent "hog" units -- it is computed as a running average of the (gain multiplied) medium-time-scale average activation at the end of the alpha-cycle. Also computes an adaptive amount of BCM learning, AvgLLrn, based on AvgL.
func (*AvgLParams) AvgLFmAvgM ¶
func (al *AvgLParams) AvgLFmAvgM(avgM float32, avgL, lrn *float32)
AvgLFmAvgM computes long-term average activation value, and learning factor, from given medium-scale running average activation avgM
func (*AvgLParams) Defaults ¶
func (al *AvgLParams) Defaults()
func (*AvgLParams) ErrModFmLayErr ¶
func (al *AvgLParams) ErrModFmLayErr(layCosDiffAvg float32) float32
ErrModFmLayErr computes AvgLLrn multiplier from layer cosine diff avg statistic
func (*AvgLParams) Update ¶
func (al *AvgLParams) Update()
type ClampParams ¶
type ClampParams struct { Hard bool `` /* 200-byte string literal not displayed */ Range minmax.F32 `` /* 153-byte string literal not displayed */ Gain float32 `viewif:"!Hard" def:"0.02:0.5" desc:"soft clamp gain factor (Ge += Gain * Ext)"` Avg bool `` /* 181-byte string literal not displayed */ AvgGain float32 `` /* 145-byte string literal not displayed */ }
ClampParams are for specifying how external inputs are clamped onto network activation values
func (*ClampParams) AvgGe ¶
func (cp *ClampParams) AvgGe(ext, ge float32) float32
AvgGe computes Avg-based Ge clamping value if using that option.
func (*ClampParams) Defaults ¶
func (cp *ClampParams) Defaults()
func (*ClampParams) Update ¶
func (cp *ClampParams) Update()
type CosDiffParams ¶
type CosDiffParams struct { Tau float32 `` /* 592-byte string literal not displayed */ Dt float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"rate constant = 1 / Tau"` DtC float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"complement of rate constant = 1 - Dt"` }
CosDiffParams specify how to integrate cosine of difference between plus and minus phase activations Used to modulate amount of hebbian learning, and overall learning rate.
func (*CosDiffParams) AvgVarFmCos ¶
func (cd *CosDiffParams) AvgVarFmCos(avg, vr *float32, cos float32)
AvgVarFmCos updates the average and variance from current cosine diff value
func (*CosDiffParams) Defaults ¶
func (cd *CosDiffParams) Defaults()
func (*CosDiffParams) Update ¶
func (cd *CosDiffParams) Update()
type CosDiffStats ¶
type CosDiffStats struct { Cos float32 `` /* 185-byte string literal not displayed */ Avg float32 `` /* 234-byte string literal not displayed */ Var float32 `` /* 193-byte string literal not displayed */ AvgLrn float32 `desc:"1 - Avg and 0 for non-Hidden layers"` ModAvgLLrn float32 `` /* 144-byte string literal not displayed */ }
CosDiffStats holds cosine-difference statistics at the layer level
func (*CosDiffStats) Init ¶
func (cd *CosDiffStats) Init()
type DWtNormParams ¶
type DWtNormParams struct { On bool `` /* 184-byte string literal not displayed */ DecayTau float32 `` /* 172-byte string literal not displayed */ NormMin float32 `` /* 157-byte string literal not displayed */ LrComp float32 `` /* 264-byte string literal not displayed */ Stats bool `` /* 134-byte string literal not displayed */ DecayDt float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"rate constant of decay = 1 / decay_tau"` DecayDtC float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"complement rate constant of decay = 1 - (1 / decay_tau)"` }
DWtNormParams are weight change (dwt) normalization parameters, using MAX(ABS(dwt)) aggregated over Sending connections in a given projection for a given unit. Slowly decays and instantly resets to any current max(abs) Serves as an estimate of the variance in the weight changes, assuming zero net mean overall.
func (*DWtNormParams) Defaults ¶
func (dn *DWtNormParams) Defaults()
func (*DWtNormParams) NormFmAbsDWt ¶
func (dn *DWtNormParams) NormFmAbsDWt(norm *float32, absDwt float32) float32
DWtNormParams updates the dwnorm running max_abs, slowly decaying value jumps up to max(abs_dwt) and slowly decays returns the effective normalization factor, as a multiplier, including lrate comp
func (*DWtNormParams) Update ¶
func (dn *DWtNormParams) Update()
type DtParams ¶
type DtParams struct { Integ float32 `` /* 649-byte string literal not displayed */ VmTau float32 `` /* 455-byte string literal not displayed */ GTau float32 `` /* 601-byte string literal not displayed */ AvgTau float32 `` /* 206-byte string literal not displayed */ VmDt float32 `view:"-" json:"-" xml:"-" desc:"nominal rate = Integ / tau"` GDt float32 `view:"-" json:"-" xml:"-" desc:"rate = Integ / tau"` AvgDt float32 `view:"-" json:"-" xml:"-" desc:"rate = 1 / tau"` }
DtParams are time and rate constants for temporal derivatives in Leabra (Vm, net input)
type InhibParams ¶
type InhibParams struct { Layer fffb.Params `view:"inline" desc:"inhibition across the entire layer"` Pool fffb.Params `view:"inline" desc:"inhibition across sub-pools of units, for layers with 4D shape"` Self SelfInhibParams `` /* 161-byte string literal not displayed */ ActAvg ActAvgParams `` /* 144-byte string literal not displayed */ }
leabra.InhibParams contains all the inhibition computation params and functions for basic Leabra This is included in leabra.Layer to support computation. This also includes other misc layer-level params such as running-average activation in the layer which is used for netinput rescaling and potentially for adapting inhibition over time
func (*InhibParams) Defaults ¶
func (ip *InhibParams) Defaults()
func (*InhibParams) Update ¶
func (ip *InhibParams) Update()
type LayFunChan ¶
type LayFunChan chan func(ly LeabraLayer)
LayFunChan is a channel that runs LeabraLayer functions
type Layer ¶
type Layer struct { LayerStru Act ActParams `view:"add-fields" desc:"Activation parameters and methods for computing activations"` Inhib InhibParams `view:"add-fields" desc:"Inhibition parameters and methods for computing layer-level inhibition"` Learn LearnNeurParams `view:"add-fields" desc:"Learning parameters and methods that operate at the neuron level"` Neurons []Neuron `` /* 133-byte string literal not displayed */ Pools []Pool `` /* 234-byte string literal not displayed */ CosDiff CosDiffStats `desc:"cosine difference between ActM, ActP stats"` }
leabra.Layer has parameters for running a basic rate-coded Leabra layer
func (*Layer) ActFmG ¶
ActFmG computes rate-code activation from Ge, Gi, Gl conductances and updates learning running-average activations from that Act
func (*Layer) AlphaCycInit ¶
func (ly *Layer) AlphaCycInit()
AlphaCycInit handles all initialization at start of new input pattern, including computing input scaling from running average activation etc. should already have presented the external input to the network at this point.
func (*Layer) ApplyExt ¶
ApplyExt applies external input in the form of an etensor.Float32. If dimensionality of tensor matches that of layer, and is 2D or 4D, then each dimension is iterated separately, so any mismatch preserves dimensional structure. Otherwise, the flat 1D view of the tensor is used. If the layer is a Target or Compare layer type, then it goes in Targ otherwise it goes in Ext
func (*Layer) ApplyExt1D ¶
ApplyExt1D applies external input in the form of a flat 1-dimensional slice of floats If the layer is a Target or Compare layer type, then it goes in Targ otherwise it goes in Ext
func (*Layer) ApplyExt1D32 ¶ added in v1.1.26
ApplyExt1D32 applies external input in the form of a flat 1-dimensional slice of float32s. If the layer is a Target or Compare layer type, then it goes in Targ otherwise it goes in Ext
func (*Layer) ApplyExt1DTsr ¶ added in v1.1.26
ApplyExt1DTsr applies external input using 1D flat interface into tensor. If the layer is a Target or Compare layer type, then it goes in Targ otherwise it goes in Ext
func (*Layer) ApplyExt2D ¶ added in v1.1.26
ApplyExt2D applies 2D tensor external input
func (*Layer) ApplyExt2Dto4D ¶ added in v1.1.26
ApplyExt2Dto4D applies 2D tensor external input to a 4D layer
func (*Layer) ApplyExt4D ¶ added in v1.1.26
ApplyExt4D applies 4D tensor external input
func (*Layer) ApplyExtFlags ¶
ApplyExtFlags gets the clear mask and set mask for updating neuron flags based on layer type, and whether input should be applied to Targ (else Ext)
func (*Layer) AsLeabra ¶
AsLeabra returns this layer as a leabra.Layer -- all derived layers must redefine this to return the base Layer type, so that the LeabraLayer interface does not need to include accessors to all the basic stuff
func (*Layer) AvgLFmAvgM ¶
func (ly *Layer) AvgLFmAvgM()
AvgLFmAvgM updates AvgL long-term running average activation that drives BCM Hebbian learning
func (*Layer) BuildPools ¶
BuildPools builds the inhibitory pools structures -- nu = number of units in layer
func (*Layer) BuildPrjns ¶
BuildPrjns builds the projections, recv-side
func (*Layer) BuildSubPools ¶
func (ly *Layer) BuildSubPools()
BuildSubPools initializes neuron start / end indexes for sub-pools
func (*Layer) CosDiffFmActs ¶
func (ly *Layer) CosDiffFmActs()
CosDiffFmActs computes the cosine difference in activation state between minus and plus phases. this is also used for modulating the amount of BCM hebbian learning
func (*Layer) CostEst ¶ added in v1.1.26
CostEst returns the estimated computational cost associated with this layer, separated by neuron-level and synapse-level, in arbitrary units where cost per synapse is 1. Neuron-level computation is more expensive but there are typically many fewer neurons, so in larger networks, synaptic costs tend to dominate. Neuron cost is estimated from TimerReport output for large networks.
func (*Layer) CyclePost ¶ added in v1.1.26
CyclePost is called after the standard Cycle update, as a separate network layer loop. This is reserved for any kind of special ad-hoc types that need to do something special after Act is finally computed. For example, sending a neuromodulatory signal such as dopamine.
func (*Layer) DWt ¶
func (ly *Layer) DWt()
DWt computes the weight change (learning) -- calls DWt method on sending projections
func (*Layer) DecayState ¶
DecayState decays activation state by given proportion (default is on ly.Act.Init.Decay). This does *not* call InitGInc -- must call that separately at start of AlphaCyc
func (*Layer) DecayStatePool ¶ added in v1.1.26
DecayStatePool decays activation state by given proportion in given sub-pool index (0 based)
func (*Layer) GFmInc ¶
GFmInc integrates new synaptic conductances from increments sent during last SendGDelta.
func (*Layer) GFmIncNeur ¶ added in v1.1.26
GFmIncNeur is the neuron-level code for GFmInc that integrates overall Ge, Gi values from their G*Raw accumulators.
func (*Layer) GScaleFmAvgAct ¶
func (ly *Layer) GScaleFmAvgAct()
GScaleFmAvgAct computes the scaling factor for synaptic input conductances G, based on sending layer average activation. This attempts to automatically adjust for overall differences in raw activity coming into the units to achieve a general target of around .5 to 1 for the integrated Ge value.
func (*Layer) GenNoise ¶
func (ly *Layer) GenNoise()
GenNoise generates random noise for all neurons
func (*Layer) HardClamp ¶
func (ly *Layer) HardClamp()
HardClamp hard-clamps the activations in the layer -- called during AlphaCycInit for hard-clamped Input layers
func (*Layer) InhibFmGeAct ¶
InhibFmGeAct computes inhibition Gi from Ge and Act averages within relevant Pools
func (*Layer) InhibFmPool ¶ added in v1.1.26
InhibFmPool computes inhibition Gi from Pool-level aggregated inhibition, including self and syn
func (*Layer) InitActAvg ¶
func (ly *Layer) InitActAvg()
InitActAvg initializes the running-average activation values that drive learning.
func (*Layer) InitActs ¶
func (ly *Layer) InitActs()
InitActs fully initializes activation state -- only called automatically during InitWts
func (*Layer) InitExt ¶
func (ly *Layer) InitExt()
InitExt initializes external input state -- called prior to apply ext
func (*Layer) InitGInc ¶
func (ly *Layer) InitGInc()
InitGinc initializes the Ge excitatory and Gi inhibitory conductance accumulation states including ActSent and G*Raw values. called at start of trial always, and can be called optionally when delta-based Ge computation needs to be updated (e.g., weights might have changed strength)
func (*Layer) InitWtSym ¶
func (ly *Layer) InitWtSym()
InitWtsSym initializes the weight symmetry -- higher layers copy weights from lower layers
func (*Layer) InitWts ¶
func (ly *Layer) InitWts()
InitWts initializes the weight values in the network, i.e., resetting learning Also calls InitActs
func (*Layer) IsTarget ¶ added in v1.1.26
IsTarget returns true if this layer is a Target layer. By default, returns true for layers of Type == emer.Target Other Target layers include the TRCLayer in deep predictive learning. This is used for turning off BCM hebbian learning, in CosDiffFmActs to set the CosDiff.ModAvgLLrn value for error-modulated level of hebbian learning. It is also used in WtBal to not apply it to target layers. In both cases, Target layers are purely error-driven.
func (*Layer) LesionNeurons ¶
LesionNeurons lesions (sets the Off flag) for given proportion (0-1) of neurons in layer returns number of neurons lesioned. Emits error if prop > 1 as indication that percent might have been passed
func (*Layer) LrateMult ¶ added in v1.1.26
LrateMult sets the new Lrate parameter for Prjns to LrateInit * mult. Useful for implementing learning rate schedules.
func (*Layer) MSE ¶
MSE returns the sum-squared-error and mean-squared-error over the layer, in terms of ActP - ActM (valid even on non-target layers FWIW). Uses the given tolerance per-unit to count an error at all (e.g., .5 = activity just has to be on the right side of .5).
func (*Layer) PoolInhibFmGeAct ¶ added in v1.1.26
PoolInhibFmGeAct computes inhibition Gi from Ge and Act averages within relevant Pools
func (*Layer) QuarterFinal ¶
QuarterFinal does updating after end of a quarter
func (*Layer) ReadWtsJSON ¶
ReadWtsJSON reads the weights from this layer from the receiver-side perspective in a JSON text format. This is for a set of weights that were saved *for one layer only* and is not used for the network-level ReadWtsJSON, which reads into a separate structure -- see SetWts method.
func (*Layer) RecvGInc ¶ added in v1.1.26
RecvGInc calls RecvGInc on receiving projections to collect Neuron-level G*Inc values. This is called by GFmInc overall method, but separated out for cases that need to do something different.
func (*Layer) RecvPrjnVals ¶ added in v1.1.26
func (ly *Layer) RecvPrjnVals(vals *[]float32, varNm string, sendLay emer.Layer, sendIdx1D int, prjnType string) error
RecvPrjnVals fills in values of given synapse variable name, for projection into given sending layer and neuron 1D index, for all receiving neurons in this layer, into given float32 slice (only resized if not big enough). prjnType is the string representation of the prjn type -- used if non-empty, useful when there are multiple projections between two layers. Returns error on invalid var name. If the receiving neuron is not connected to the given sending layer or neuron then the value is set to math32.NaN(). Returns error on invalid var name or lack of recv prjn (vals always set to nan on prjn err).
func (*Layer) SSE ¶
SSE returns the sum-squared-error over the layer, in terms of ActP - ActM (valid even on non-target layers FWIW). Uses the given tolerance per-unit to count an error at all (e.g., .5 = activity just has to be on the right side of .5). Use this in Python which only allows single return values.
func (*Layer) SendGDelta ¶
SendGDelta sends change in activation since last sent, to increment recv synaptic conductances G, if above thresholds
func (*Layer) SendPrjnVals ¶ added in v1.1.26
func (ly *Layer) SendPrjnVals(vals *[]float32, varNm string, recvLay emer.Layer, recvIdx1D int, prjnType string) error
SendPrjnVals fills in values of given synapse variable name, for projection into given receiving layer and neuron 1D index, for all sending neurons in this layer, into given float32 slice (only resized if not big enough). prjnType is the string representation of the prjn type -- used if non-empty, useful when there are multiple projections between two layers. Returns error on invalid var name. If the sending neuron is not connected to the given receiving layer or neuron then the value is set to math32.NaN(). Returns error on invalid var name or lack of recv prjn (vals always set to nan on prjn err).
func (*Layer) SetWts ¶ added in v1.1.26
SetWts sets the weights for this layer from weights.Layer decoded values
func (*Layer) UnLesionNeurons ¶
func (ly *Layer) UnLesionNeurons()
UnLesionNeurons unlesions (clears the Off flag) for all neurons in the layer
func (*Layer) UnitVal ¶
UnitVal returns value of given variable name on given unit, using shape-based dimensional index
func (*Layer) UnitVal1D ¶
UnitVal1D returns value of given variable index on given unit, using 1-dimensional index. returns NaN on invalid index. This is the core unit var access method used by other methods, so it is the only one that needs to be updated for derived layer types.
func (*Layer) UnitVals ¶
UnitVals fills in values of given variable name on unit, for each unit in the layer, into given float32 slice (only resized if not big enough). Returns error on invalid var name.
func (*Layer) UnitValsTensor ¶
UnitValsTensor returns values of given variable name on unit for each unit in the layer, as a float32 tensor in same shape as layer units.
func (*Layer) UnitVarIdx ¶ added in v1.1.26
UnitVarIdx returns the index of given variable within the Neuron, according to *this layer's* UnitVarNames() list (using a map to lookup index), or -1 and error message if not found.
func (*Layer) UnitVarNames ¶
UnitVarNames returns a list of variable names available on the units in this layer
func (*Layer) UnitVarNum ¶ added in v1.1.26
UnitVarNum returns the number of Neuron-level variables for this layer. This is needed for extending indexes in derived types.
func (*Layer) UnitVarProps ¶ added in v1.1.26
UnitVarProps returns properties for variables
func (*Layer) UpdateExtFlags ¶ added in v1.1.26
func (ly *Layer) UpdateExtFlags()
UpdateExtFlags updates the neuron flags for external input based on current layer Type field -- call this if the Type has changed since the last ApplyExt* method call.
func (*Layer) UpdateParams ¶
func (ly *Layer) UpdateParams()
UpdateParams updates all params given any changes that might have been made to individual values including those in the receiving projections of this layer
func (*Layer) VarRange ¶
VarRange returns the min / max values for given variable todo: support r. s. projection values
func (*Layer) WriteWtsJSON ¶
WriteWtsJSON writes the weights from this layer from the receiver-side perspective in a JSON text format. We build in the indentation logic to make it much faster and more efficient.
func (*Layer) WtBalFmWt ¶
func (ly *Layer) WtBalFmWt()
WtBalFmWt computes the Weight Balance factors based on average recv weights
func (*Layer) WtFail ¶ added in v1.1.27
func (ly *Layer) WtFail()
WtFail zeros out effective synaptic weights to simulate synaptic communication failures.
type LayerStru ¶
type LayerStru struct { LeabraLay LeabraLayer `` /* 299-byte string literal not displayed */ Network emer.Network `` /* 141-byte string literal not displayed */ Nm string `` /* 151-byte string literal not displayed */ Cls string `desc:"Class is for applying parameter styles, can be space separated multple tags"` Off bool `desc:"inactivate this layer -- allows for easy experimentation"` Shp etensor.Shape `` /* 219-byte string literal not displayed */ Typ emer.LayerType `` /* 161-byte string literal not displayed */ Thr int `` /* 216-byte string literal not displayed */ Rel relpos.Rel `view:"inline" desc:"Spatial relationship to other layer, determines positioning"` Ps mat32.Vec3 `` /* 154-byte string literal not displayed */ Idx int `` /* 258-byte string literal not displayed */ RcvPrjns emer.Prjns `desc:"list of receiving projections into this layer from other layers"` SndPrjns emer.Prjns `desc:"list of sending projections from this layer to other layers"` }
leabra.LayerStru manages the structural elements of the layer, which are common to any Layer type
func (*LayerStru) ApplyParams ¶
ApplyParams applies given parameter style Sheet to this layer and its recv projections. Calls UpdateParams on anything set to ensure derived parameters are all updated. If setMsg is true, then a message is printed to confirm each parameter that is set. it always prints a message if a parameter fails to be set. returns true if any params were set, and error if there were any errors.
func (*LayerStru) Idx4DFrom2D ¶ added in v1.1.26
func (*LayerStru) InitName ¶
InitName MUST be called to initialize the layer's pointer to itself as an emer.Layer which enables the proper interface methods to be called. Also sets the name, and the parent network that this layer belongs to (which layers may want to retain).
func (*LayerStru) NPools ¶
NPools returns the number of unit sub-pools according to the shape parameters. Currently supported for a 4D shape, where the unit pools are the first 2 Y,X dims and then the units within the pools are the 2nd 2 Y,X dims
func (*LayerStru) NRecvPrjns ¶
func (*LayerStru) NSendPrjns ¶
func (*LayerStru) NonDefaultParams ¶
NonDefaultParams returns a listing of all parameters in the Layer that are not at their default values -- useful for setting param styles etc.
func (*LayerStru) RecipToSendPrjn ¶
RecipToSendPrjn finds the reciprocal projection relative to the given sending projection found within the SendPrjns of this layer. This is then a recv prjn within this layer:
S=A -> R=B recip: R=A <- S=B -- ly = A -- we are the sender of srj and recv of rpj.
returns false if not found.
type LeabraLayer ¶
type LeabraLayer interface { emer.Layer // AsLeabra returns this layer as a leabra.Layer -- so that the LeabraLayer // interface does not need to include accessors to all the basic stuff AsLeabra() *Layer // InitWts initializes the weight values in the network, i.e., resetting learning // Also calls InitActs InitWts() // InitActAvg initializes the running-average activation values that drive learning. InitActAvg() // InitActs fully initializes activation state -- only called automatically during InitWts InitActs() // InitWtsSym initializes the weight symmetry -- higher layers copy weights from lower layers InitWtSym() // InitExt initializes external input state -- called prior to apply ext InitExt() // ApplyExt applies external input in the form of an etensor.Tensor // If the layer is a Target or Compare layer type, then it goes in Targ // otherwise it goes in Ext. ApplyExt(ext etensor.Tensor) // ApplyExt1D applies external input in the form of a flat 1-dimensional slice of floats // If the layer is a Target or Compare layer type, then it goes in Targ // otherwise it goes in Ext ApplyExt1D(ext []float64) // UpdateExtFlags updates the neuron flags for external input based on current // layer Type field -- call this if the Type has changed since the last // ApplyExt* method call. UpdateExtFlags() // IsTarget returns true if this layer is a Target layer. // By default, returns true for layers of Type == emer.Target // Other Target layers include the TRCLayer in deep predictive learning. // This is used for turning off BCM hebbian learning, // in CosDiffFmActs to set the CosDiff.ModAvgLLrn value // for error-modulated level of hebbian learning. // It is also used in WtBal to not apply it to target layers. // In both cases, Target layers are purely error-driven. IsTarget() bool // AlphaCycInit handles all initialization at start of new input pattern, // including computing netinput scaling from running average activation etc. // should already have presented the external input to the network at this point. AlphaCycInit() // AvgLFmAvgM updates AvgL long-term running average activation that // drives BCM Hebbian learning AvgLFmAvgM() // GScaleFmAvgAct computes the scaling factor for synaptic conductance input // based on sending layer average activation. // This attempts to automatically adjust for overall differences in raw // activity coming into the units to achieve a general target // of around .5 to 1 for the integrated G values. GScaleFmAvgAct() // GenNoise generates random noise for all neurons GenNoise() // DecayState decays activation state by given proportion (default is on ly.Act.Init.Decay) DecayState(decay float32) // HardClamp hard-clamps the activations in the layer -- called during AlphaCycInit // for hard-clamped Input layers HardClamp() // InitGInc initializes synaptic conductance increments -- optional InitGInc() // SendGDelta sends change in activation since last sent, to increment recv // synaptic conductances G, if above thresholds SendGDelta(ltime *Time) // GFmInc integrates new synaptic conductances from increments sent during last SendGDelta GFmInc(ltime *Time) // AvgMaxGe computes the average and max Ge stats, used in inhibition AvgMaxGe(ltime *Time) // InhibiFmGeAct computes inhibition Gi from Ge and Act averages within relevant Pools InhibFmGeAct(ltime *Time) // ActFmG computes rate-code activation from Ge, Gi, Gl conductances // and updates learning running-average activations from that Act ActFmG(ltime *Time) // AvgMaxAct computes the average and max Act stats, used in inhibition AvgMaxAct(ltime *Time) // CyclePost is called after the standard Cycle update, as a separate // network layer loop. // This is reserved for any kind of special ad-hoc types that // need to do something special after Act is finally computed. // For example, sending a neuromodulatory signal such as dopamine. CyclePost(ltime *Time) // QuarterFinal does updating after end of a quarter QuarterFinal(ltime *Time) // CosDiffFmActs computes the cosine difference in activation state // between minus and plus phases. // This is also used for modulating the amount of BCM hebbian learning CosDiffFmActs() // DWt computes the weight change (learning) -- calls DWt method on sending projections DWt() // WtFmDWt updates the weights from delta-weight changes -- on the sending projections WtFmDWt() // WtBalFmWt computes the Weight Balance factors based on average recv weights WtBalFmWt() // WtFmLWt sets the effective weight value from the linear weight value. // This also removes any current weight failure zeros. WtFmLWt() // WtFail zeros out effective synaptic weights to simulate synaptic communication failures. WtFail() // LrateMult sets the new Lrate parameter for Prjns to LrateInit * mult. // Useful for implementing learning rate schedules. LrateMult(mult float32) }
LeabraLayer defines the essential algorithmic API for Leabra, at the layer level. These are the methods that the leabra.Network calls on its layers at each step of processing. Other Layer types can selectively re-implement (override) these methods to modify the computation, while inheriting the basic behavior for non-overridden methods.
All of the structural API is in emer.Layer, which this interface also inherits for convenience.
type LeabraNetwork ¶ added in v1.1.26
type LeabraNetwork interface { emer.Network // AsLeabra returns this network as a leabra.Network -- so that the // LeabraNetwork interface does not need to include accessors // to all the basic stuff AsLeabra() *Network // AlphaCycInitImpl handles all initialization at start of new input pattern, including computing // input scaling from running average activation etc. AlphaCycInitImpl() // CycleImpl runs one cycle of activation updating: // * Sends Ge increments from sending to receiving layers // * Average and Max Ge stats // * Inhibition based on Ge stats and Act Stats (computed at end of Cycle) // * Activation from Ge, Gi, and Gl // * Average and Max Act stats // This basic version doesn't use the time info, but more specialized types do, and we // want to keep a consistent API for end-user code. CycleImpl(ltime *Time) // CyclePostImpl is called after the standard Cycle update, and calls CyclePost // on Layers -- this is reserved for any kind of special ad-hoc types that // need to do something special after Act is finally computed. // For example, sending a neuromodulatory signal such as dopamine. CyclePostImpl(ltime *Time) // QuarterFinalImpl does updating after end of a quarter QuarterFinalImpl(ltime *Time) // DWtImpl computes the weight change (learning) based on current // running-average activation values DWtImpl() // WtFmDWtImpl updates the weights from delta-weight changes. // Also calls WtBalFmWt every WtBalInterval times WtFmDWtImpl() }
LeabraNetwork defines the essential algorithmic API for Leabra, at the network level. These are the methods that the user calls in their Sim code: * AlphaCycInit * Cycle * QuarterFinal * DWt * WtFmDwt Because we don't want to have to force the user to use the interface cast in calling these methods, we provide Impl versions here that are the implementations which the user-facing method calls.
Typically most changes in algorithm can be accomplished directly in the Layer or Prjn level, but sometimes (e.g., in deep) additional full-network passes are required.
All of the structural API is in emer.Network, which this interface also inherits for convenience.
type LeabraPrjn ¶
type LeabraPrjn interface { emer.Prjn // AsLeabra returns this prjn as a leabra.Prjn -- so that the LeabraPrjn // interface does not need to include accessors to all the basic stuff. AsLeabra() *Prjn // InitWts initializes weight values according to Learn.WtInit params InitWts() // InitWtSym initializes weight symmetry -- is given the reciprocal projection where // the Send and Recv layers are reversed. InitWtSym(rpj LeabraPrjn) // InitGInc initializes the per-projection synaptic conductance threadsafe increments. // This is not typically needed (called during InitWts only) but can be called when needed InitGInc() // SendGDelta sends the delta-activation from sending neuron index si, // to integrate synaptic conductances on receivers SendGDelta(si int, delta float32) // RecvGInc increments the receiver's synaptic conductances from those of all the projections. RecvGInc() // DWt computes the weight change (learning) -- on sending projections DWt() // WtFmDWt updates the synaptic weight values from delta-weight changes -- on sending projections WtFmDWt() // WtBalFmWt computes the Weight Balance factors based on average recv weights WtBalFmWt() // WtFmLWt sets the effective weight value from the linear weight value. // This also removes any current weight failure zeros. WtFmLWt() // WtFail zeros out effective synaptic weights to simulate synaptic communication failures. WtFail() // LrateMult sets the new Lrate parameter for Prjns to LrateInit * mult. // Useful for implementing learning rate schedules. LrateMult(mult float32) }
LeabraPrjn defines the essential algorithmic API for Leabra, at the projection level. These are the methods that the leabra.Layer calls on its prjns at each step of processing. Other Prjn types can selectively re-implement (override) these methods to modify the computation, while inheriting the basic behavior for non-overridden methods.
All of the structural API is in emer.Prjn, which this interface also inherits for convenience.
type LearnNeurParams ¶
type LearnNeurParams struct { ActAvg LrnActAvgParams `view:"inline" desc:"parameters for computing running average activations that drive learning"` AvgL AvgLParams `view:"inline" desc:"parameters for computing AvgL long-term running average"` CosDiff CosDiffParams `view:"inline" desc:"parameters for computing cosine diff between minus and plus phase"` }
leabra.LearnNeurParams manages learning-related parameters at the neuron-level. This is mainly the running average activations that drive learning
func (*LearnNeurParams) AvgLFmAvgM ¶
func (ln *LearnNeurParams) AvgLFmAvgM(nrn *Neuron)
AvgLFmAct computes long-term average activation value, and learning factor, from current AvgM. Called at start of new alpha-cycle.
func (*LearnNeurParams) AvgsFmAct ¶
func (ln *LearnNeurParams) AvgsFmAct(nrn *Neuron)
AvgsFmAct updates the running averages based on current learning activation. Computed after new activation for current cycle is updated.
func (*LearnNeurParams) Defaults ¶
func (ln *LearnNeurParams) Defaults()
func (*LearnNeurParams) InitActAvg ¶
func (ln *LearnNeurParams) InitActAvg(nrn *Neuron)
InitActAvg initializes the running-average activation values that drive learning. Called by InitWts (at start of learning).
func (*LearnNeurParams) Update ¶
func (ln *LearnNeurParams) Update()
type LearnSynParams ¶
type LearnSynParams struct { Learn bool `desc:"enable learning for this projection"` Lrate float32 `desc:"current effective learning rate (multiplies DWt values, determining rate of change of weights)"` LrateInit float32 `` /* 194-byte string literal not displayed */ XCal XCalParams `view:"inline" desc:"parameters for the XCal learning rule"` WtSig WtSigParams `view:"inline" desc:"parameters for the sigmoidal contrast weight enhancement"` Norm DWtNormParams `view:"inline" desc:"parameters for normalizing weight changes by abs max dwt"` Momentum MomentumParams `view:"inline" desc:"parameters for momentum across weight changes"` WtBal WtBalParams `view:"inline" desc:"parameters for balancing strength of weight increases vs. decreases"` }
leabra.LearnSynParams manages learning-related parameters at the synapse-level.
func (*LearnSynParams) BCMdWt ¶ added in v1.1.26
func (ls *LearnSynParams) BCMdWt(suAvgSLrn, ruAvgSLrn, ruAvgL float32) float32
BCMdWt returns the BCM Hebbian weight change for AvgSLrn vs. AvgL long-term average floating activation on the receiver.
func (*LearnSynParams) CHLdWt ¶
func (ls *LearnSynParams) CHLdWt(suAvgSLrn, suAvgM, ruAvgSLrn, ruAvgM, ruAvgL float32) (err, bcm float32)
CHLdWt returns the error-driven and BCM Hebbian weight change components for the temporally eXtended Contrastive Attractor Learning (XCAL), CHL version
func (*LearnSynParams) Defaults ¶
func (ls *LearnSynParams) Defaults()
func (*LearnSynParams) LWtFmWt ¶
func (ls *LearnSynParams) LWtFmWt(syn *Synapse)
LWtFmWt updates the linear weight value based on the current effective Wt value. effective weight is sigmoidally contrast-enhanced relative to the linear weight.
func (*LearnSynParams) Update ¶
func (ls *LearnSynParams) Update()
func (*LearnSynParams) WtFail ¶ added in v1.1.27
func (ls *LearnSynParams) WtFail(wt *float32)
WtFail zeros out effective synaptic weights to simulate synaptic communication failures.
func (*LearnSynParams) WtFmDWt ¶
func (ls *LearnSynParams) WtFmDWt(wbInc, wbDec float32, dwt, wt, lwt *float32, scale float32)
WtFmDWt updates the synaptic weights from accumulated weight changes wbInc and wbDec are the weight balance factors, wt is the sigmoidal contrast-enhanced weight and lwt is the linear weight value
func (*LearnSynParams) WtFmLWt ¶
func (ls *LearnSynParams) WtFmLWt(syn *Synapse)
WtFmLWt updates the effective weight value based on the current linear Wt value. effective weight is sigmoidally contrast-enhanced relative to the linear weight.
type LrnActAvgParams ¶
type LrnActAvgParams struct { SSTau float32 `` /* 532-byte string literal not displayed */ STau float32 `` /* 378-byte string literal not displayed */ MTau float32 `` /* 518-byte string literal not displayed */ LrnM float32 `` /* 618-byte string literal not displayed */ Init float32 `def:"0.15" min:"0" max:"1" desc:"initial value for average"` SSDt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` SDt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` MDt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` LrnS float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"1-LrnM"` }
LrnActAvgParams has rate constants for averaging over activations at different time scales, to produce the running average activation values that then drive learning in the XCAL learning rules
func (*LrnActAvgParams) AvgsFmAct ¶
func (aa *LrnActAvgParams) AvgsFmAct(ruAct float32, avgSS, avgS, avgM, avgSLrn *float32)
AvgsFmAct computes averages based on current act
func (*LrnActAvgParams) Defaults ¶
func (aa *LrnActAvgParams) Defaults()
func (*LrnActAvgParams) Update ¶
func (aa *LrnActAvgParams) Update()
type MomentumParams ¶
type MomentumParams struct { On bool `def:"true" desc:"whether to use standard simple momentum"` MTau float32 `` /* 189-byte string literal not displayed */ LrComp float32 `` /* 288-byte string literal not displayed */ MDt float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"rate constant of momentum integration = 1 / m_tau"` MDtC float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"complement rate constant of momentum integration = 1 - (1 / m_tau)"` }
MomentumParams implements standard simple momentum -- accentuates consistent directions of weight change and cancels out dithering -- biologically captures slower timecourse of longer-term plasticity mechanisms.
func (*MomentumParams) Defaults ¶
func (mp *MomentumParams) Defaults()
func (*MomentumParams) MomentFmDWt ¶
func (mp *MomentumParams) MomentFmDWt(moment *float32, dwt float32) float32
MomentFmDWt updates synaptic moment variable based on dwt weight change value and returns new momentum factor * LrComp
func (*MomentumParams) Update ¶
func (mp *MomentumParams) Update()
type Network ¶
type Network struct { NetworkStru WtBalInterval int `def:"10" desc:"how frequently to update the weight balance average weight factor -- relatively expensive"` WtBalCtr int `inactive:"+" desc:"counter for how long it has been since last WtBal"` }
leabra.Network has parameters for running a basic rate-coded Leabra network
func (*Network) AlphaCycInit ¶
func (nt *Network) AlphaCycInit()
AlphaCycInit handles all initialization at start of new input pattern, including computing input scaling from running average activation etc.
func (*Network) AlphaCycInitImpl ¶ added in v1.1.26
func (nt *Network) AlphaCycInitImpl()
AlphaCycInitImpl handles all initialization at start of new input pattern, including computing input scaling from running average activation etc.
func (*Network) CollectDWts ¶ added in v1.1.26
CollectDWts writes all of the synaptic DWt values to given dwts slice which is pre-allocated to given nwts size if dwts is nil, in which case the method returns true so that the actual length of dwts can be passed next time around. Used for MPI sharing of weight changes across processors.
func (*Network) Cycle ¶
Cycle runs one cycle of activation updating: * Sends Ge increments from sending to receiving layers * Average and Max Ge stats * Inhibition based on Ge stats and Act Stats (computed at end of Cycle) * Activation from Ge, Gi, and Gl * Average and Max Act stats This basic version doesn't use the time info, but more specialized types do, and we want to keep a consistent API for end-user code.
func (*Network) CycleImpl ¶ added in v1.1.26
CycleImpl runs one cycle of activation updating: * Sends Ge increments from sending to receiving layers * Average and Max Ge stats * Inhibition based on Ge stats and Act Stats (computed at end of Cycle) * Activation from Ge, Gi, and Gl * Average and Max Act stats This basic version doesn't use the time info, but more specialized types do, and we want to keep a consistent API for end-user code.
func (*Network) CyclePost ¶ added in v1.1.26
CyclePost is called after the standard Cycle update, and calls CyclePost on Layers -- this is reserved for any kind of special ad-hoc types that need to do something special after Act is finally computed. For example, sending a neuromodulatory signal such as dopamine.
func (*Network) CyclePostImpl ¶ added in v1.1.26
CyclePostImpl is called after the standard Cycle update, and calls CyclePost on Layers -- this is reserved for any kind of special ad-hoc types that need to do something special after Act is finally computed. For example, sending a neuromodulatory signal such as dopamine.
func (*Network) DWt ¶
func (nt *Network) DWt()
DWt computes the weight change (learning) based on current running-average activation values
func (*Network) DWtImpl ¶ added in v1.1.26
func (nt *Network) DWtImpl()
DWtImpl computes the weight change (learning) based on current running-average activation values
func (*Network) DecayState ¶ added in v1.1.26
DecayState decays activation state by given proportion e.g., 1 = decay completely, and 0 = decay not at all This is called automatically in AlphaCycInit, but is avail here for ad-hoc decay cases.
func (*Network) Defaults ¶
func (nt *Network) Defaults()
Defaults sets all the default parameters for all layers and projections
func (*Network) GScaleFmAvgAct ¶ added in v1.1.26
func (nt *Network) GScaleFmAvgAct()
GScaleFmAvgAct computes the scaling factor for synaptic input conductances G, based on sending layer average activation. This attempts to automatically adjust for overall differences in raw activity coming into the units to achieve a general target of around .5 to 1 for the integrated Ge value. This is automatically done during AlphaCycInit, but if scaling parameters are changed at any point thereafter during AlphaCyc, this must be called.
func (*Network) InhibFmGeAct ¶
InhibiFmGeAct computes inhibition Gi from Ge and Act stats within relevant Pools
func (*Network) InitActs ¶
func (nt *Network) InitActs()
InitActs fully initializes activation state -- not automatically called
func (*Network) InitExt ¶
func (nt *Network) InitExt()
InitExt initializes external input state -- call prior to applying external inputs to layers
func (*Network) InitGInc ¶ added in v1.1.26
func (nt *Network) InitGInc()
InitGinc initializes the Ge excitatory and Gi inhibitory conductance accumulation states including ActSent and G*Raw values. called at start of trial always (at layer level), and can be called optionally when delta-based Ge computation needs to be updated (e.g., weights might have changed strength)
func (*Network) InitTopoScales ¶ added in v1.1.26
func (nt *Network) InitTopoScales()
InitTopoScales initializes synapse-specific scale parameters from prjn types that support them, with flags set to support it, includes: prjn.PoolTile prjn.Circle. call before InitWts if using Topo wts
func (*Network) InitWts ¶
func (nt *Network) InitWts()
InitWts initializes synaptic weights and all other associated long-term state variables including running-average state values (e.g., layer running average activations etc)
func (*Network) LayersSetOff ¶ added in v1.1.26
LayersSetOff sets the Off flag for all layers to given setting
func (*Network) LrateMult ¶ added in v1.1.26
LrateMult sets the new Lrate parameter for Prjns to LrateInit * mult. Useful for implementing learning rate schedules.
func (*Network) QuarterFinal ¶
QuarterFinal does updating after end of a quarter
func (*Network) QuarterFinalImpl ¶ added in v1.1.26
QuarterFinalImpl does updating after end of a quarter
func (*Network) SendGDelta ¶
SendGeDelta sends change in activation since last sent, if above thresholds and integrates sent deltas into GeRaw and time-integrated Ge values
func (*Network) SetDWts ¶ added in v1.1.26
SetDWts sets the DWt weight changes from given array of floats, which must be correct size
func (*Network) SizeReport ¶ added in v1.1.26
SizeReport returns a string reporting the size of each layer and projection in the network, and total memory footprint.
func (*Network) SynVarNames ¶ added in v1.1.26
SynVarNames returns the names of all the variables on the synapses in this network. Not all projections need to support all variables, but must safely return 0's for unsupported ones. The order of this list determines NetView variable display order. This is typically a global list so do not modify!
func (*Network) SynVarProps ¶ added in v1.1.26
SynVarProps returns properties for variables
func (*Network) ThreadAlloc ¶ added in v1.1.26
ThreadAlloc allocates layers to given number of threads, attempting to evenly divide computation. Returns report of thread allocations and estimated computational cost per thread.
func (*Network) ThreadReport ¶ added in v1.1.26
ThreadReport returns report of thread allocations and estimated computational cost per thread.
func (*Network) UnLesionNeurons ¶ added in v1.1.26
func (nt *Network) UnLesionNeurons()
UnLesionNeurons unlesions neurons in all layers in the network. Provides a clean starting point for subsequent lesion experiments.
func (*Network) UnitVarNames ¶ added in v1.1.26
UnitVarNames returns a list of variable names available on the units in this network. Not all layers need to support all variables, but must safely return 0's for unsupported ones. The order of this list determines NetView variable display order. This is typically a global list so do not modify!
func (*Network) UnitVarProps ¶ added in v1.1.26
UnitVarProps returns properties for variables
func (*Network) UpdateExtFlags ¶ added in v1.1.26
func (nt *Network) UpdateExtFlags()
UpdateExtFlags updates the neuron flags for external input based on current layer Type field -- call this if the Type has changed since the last ApplyExt* method call.
func (*Network) UpdateParams ¶
func (nt *Network) UpdateParams()
UpdateParams updates all the derived parameters if any have changed, for all layers and projections
func (*Network) WtBalFmWt ¶
func (nt *Network) WtBalFmWt()
WtBalFmWt updates the weight balance factors based on average recv weights
func (*Network) WtFail ¶ added in v1.1.27
func (nt *Network) WtFail()
WtFail zeros out effective synaptic weights to simulate synaptic communication failures.
func (*Network) WtFmDWt ¶
func (nt *Network) WtFmDWt()
WtFmDWt updates the weights from delta-weight changes. Also calls WtBalFmWt every WtBalInterval times
func (*Network) WtFmDWtImpl ¶ added in v1.1.26
func (nt *Network) WtFmDWtImpl()
WtFmDWtImpl updates the weights from delta-weight changes. Also calls WtBalFmWt every WtBalInterval times
type NetworkStru ¶
type NetworkStru struct { EmerNet emer.Network `` /* 274-byte string literal not displayed */ Nm string `desc:"overall name of network -- helps discriminate if there are multiple"` Layers emer.Layers `desc:"list of layers"` WtsFile string `desc:"filename of last weights file loaded or saved"` LayMap map[string]emer.Layer `view:"-" desc:"map of name to layers -- layer names must be unique"` MinPos mat32.Vec3 `view:"-" desc:"minimum display position in network"` MaxPos mat32.Vec3 `view:"-" desc:"maximum display position in network"` MetaData map[string]string `` /* 194-byte string literal not displayed */ NThreads int `` /* 203-byte string literal not displayed */ LockThreads bool `` /* 165-byte string literal not displayed */ ThrLay [][]emer.Layer `` /* 179-byte string literal not displayed */ ThrChans []LayFunChan `view:"-" desc:"layer function channels, per thread"` ThrTimes []timer.Time `view:"-" desc:"timers for each thread, so you can see how evenly the workload is being distributed"` FunTimes map[string]*timer.Time `view:"-" desc:"timers for each major function (step of processing)"` WaitGp sync.WaitGroup `view:"-" desc:"network-level wait group for synchronizing threaded layer calls"` }
leabra.NetworkStru holds the basic structural components of a network (layers)
func (*NetworkStru) AddLayer ¶
AddLayer adds a new layer with given name and shape to the network. 2D and 4D layer shapes are generally preferred but not essential -- see AddLayer2D and 4D for convenience methods for those. 4D layers enable pool (unit-group) level inhibition in Leabra networks, for example. shape is in row-major format with outer-most dimensions first: e.g., 4D 3, 2, 4, 5 = 3 rows (Y) of 2 cols (X) of pools, with each unit group having 4 rows (Y) of 5 (X) units.
func (*NetworkStru) AddLayer2D ¶
AddLayer2D adds a new layer with given name and 2D shape to the network. 2D and 4D layer shapes are generally preferred but not essential.
func (*NetworkStru) AddLayer4D ¶
func (nt *NetworkStru) AddLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, typ emer.LayerType) emer.Layer
AddLayer4D adds a new layer with given name and 4D shape to the network. 4D layers enable pool (unit-group) level inhibition in Leabra networks, for example. shape is in row-major format with outer-most dimensions first: e.g., 4D 3, 2, 4, 5 = 3 rows (Y) of 2 cols (X) of pools, with each pool having 4 rows (Y) of 5 (X) neurons.
func (*NetworkStru) AddLayerInit ¶ added in v1.1.26
AddLayerInit is implementation routine that takes a given layer and adds it to the network, and initializes and configures it properly.
func (*NetworkStru) AllParams ¶
func (nt *NetworkStru) AllParams() string
AllParams returns a listing of all parameters in the Network.
func (*NetworkStru) AllWtScales ¶ added in v1.1.26
func (nt *NetworkStru) AllWtScales() string
AllWtScales returns a listing of all WtScale parameters in the Network in all Layers, Recv projections. These are among the most important and numerous of parameters (in larger networks) -- this helps keep track of what they all are set to.
func (*NetworkStru) ApplyParams ¶
ApplyParams applies given parameter style Sheet to layers and prjns in this network. Calls UpdateParams to ensure derived parameters are all updated. If setMsg is true, then a message is printed to confirm each parameter that is set. it always prints a message if a parameter fails to be set. returns true if any params were set, and error if there were any errors.
func (*NetworkStru) BidirConnectLayerNames ¶ added in v1.1.26
func (nt *NetworkStru) BidirConnectLayerNames(low, high string, pat prjn.Pattern) (lowlay, highlay emer.Layer, fwdpj, backpj emer.Prjn, err error)
BidirConnectLayerNames establishes bidirectional projections between two layers, referenced by name, with low = the lower layer that sends a Forward projection to the high layer, and receives a Back projection in the opposite direction. Returns error if not successful. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) BidirConnectLayers ¶ added in v1.1.26
func (nt *NetworkStru) BidirConnectLayers(low, high emer.Layer, pat prjn.Pattern) (fwdpj, backpj emer.Prjn)
BidirConnectLayers establishes bidirectional projections between two layers, with low = lower layer that sends a Forward projection to the high layer, and receives a Back projection in the opposite direction. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) BidirConnectLayersPy ¶ added in v1.1.26
func (nt *NetworkStru) BidirConnectLayersPy(low, high emer.Layer, pat prjn.Pattern)
BidirConnectLayersPy establishes bidirectional projections between two layers, with low = lower layer that sends a Forward projection to the high layer, and receives a Back projection in the opposite direction. Does not yet actually connect the units within the layers -- that requires Build. Py = python version with no return vals.
func (*NetworkStru) Bounds ¶
func (nt *NetworkStru) Bounds() (min, max mat32.Vec3)
func (*NetworkStru) BoundsUpdt ¶
func (nt *NetworkStru) BoundsUpdt()
BoundsUpdt updates the Min / Max display bounds for 3D display
func (*NetworkStru) Build ¶
func (nt *NetworkStru) Build() error
Build constructs the layer and projection state based on the layer shapes and patterns of interconnectivity
func (*NetworkStru) BuildThreads ¶
func (nt *NetworkStru) BuildThreads()
BuildThreads constructs the layer thread allocation based on Thread setting in the layers
func (*NetworkStru) ConnectLayerNames ¶
func (nt *NetworkStru) ConnectLayerNames(send, recv string, pat prjn.Pattern, typ emer.PrjnType) (rlay, slay emer.Layer, pj emer.Prjn, err error)
ConnectLayerNames establishes a projection between two layers, referenced by name adding to the recv and send projection lists on each side of the connection. Returns error if not successful. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) ConnectLayers ¶
func (nt *NetworkStru) ConnectLayers(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType) emer.Prjn
ConnectLayers establishes a projection between two layers, adding to the recv and send projection lists on each side of the connection. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) ConnectLayersPrjn ¶ added in v1.1.26
func (nt *NetworkStru) ConnectLayersPrjn(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType, pj emer.Prjn) emer.Prjn
ConnectLayersPrjn makes connection using given projection between two layers, adding given prjn to the recv and send projection lists on each side of the connection. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) FunTimerStart ¶
func (nt *NetworkStru) FunTimerStart(fun string)
FunTimerStart starts function timer for given function name -- ensures creation of timer
func (*NetworkStru) FunTimerStop ¶
func (nt *NetworkStru) FunTimerStop(fun string)
FunTimerStop stops function timer -- timer must already exist
func (*NetworkStru) InitName ¶
func (nt *NetworkStru) InitName(net emer.Network, name string)
InitName MUST be called to initialize the network's pointer to itself as an emer.Network which enables the proper interface methods to be called. Also sets the name.
func (*NetworkStru) Label ¶
func (nt *NetworkStru) Label() string
func (*NetworkStru) LateralConnectLayer ¶ added in v1.1.26
LateralConnectLayer establishes a self-projection within given layer. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) LateralConnectLayerPrjn ¶ added in v1.1.26
func (nt *NetworkStru) LateralConnectLayerPrjn(lay emer.Layer, pat prjn.Pattern, pj emer.Prjn) emer.Prjn
LateralConnectLayerPrjn makes lateral self-projection using given projection. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkStru) LayerByName ¶
func (nt *NetworkStru) LayerByName(name string) emer.Layer
LayerByName returns a layer by looking it up by name in the layer map (nil if not found). Will create the layer map if it is nil or a different size than layers slice, but otherwise needs to be updated manually.
func (*NetworkStru) LayerByNameTry ¶
func (nt *NetworkStru) LayerByNameTry(name string) (emer.Layer, error)
LayerByNameTry returns a layer by looking it up by name -- emits a log error message if layer is not found
func (*NetworkStru) Layout ¶
func (nt *NetworkStru) Layout()
Layout computes the 3D layout of layers based on their relative position settings
func (*NetworkStru) MakeLayMap ¶
func (nt *NetworkStru) MakeLayMap()
MakeLayMap updates layer map based on current layers
func (*NetworkStru) NLayers ¶
func (nt *NetworkStru) NLayers() int
func (*NetworkStru) NonDefaultParams ¶
func (nt *NetworkStru) NonDefaultParams() string
NonDefaultParams returns a listing of all parameters in the Network that are not at their default values -- useful for setting param styles etc.
func (*NetworkStru) OpenWtsCpp ¶ added in v1.1.26
func (nt *NetworkStru) OpenWtsCpp(filename gi.FileName) error
OpenWtsCpp opens network weights (and any other state that adapts with learning) from old C++ emergent format. If filename has .gz extension, then file is gzip uncompressed.
func (*NetworkStru) OpenWtsJSON ¶
func (nt *NetworkStru) OpenWtsJSON(filename gi.FileName) error
OpenWtsJSON opens network weights (and any other state that adapts with learning) from a JSON-formatted file. If filename has .gz extension, then file is gzip uncompressed.
func (*NetworkStru) ReadWtsCpp ¶ added in v1.1.26
func (nt *NetworkStru) ReadWtsCpp(r io.Reader) error
ReadWtsCpp reads the weights from old C++ emergent format. Reads entire file into a temporary weights.Weights structure that is then passed to Layers etc using SetWts method.
func (*NetworkStru) ReadWtsJSON ¶
func (nt *NetworkStru) ReadWtsJSON(r io.Reader) error
ReadWtsJSON reads network weights from the receiver-side perspective in a JSON text format. Reads entire file into a temporary weights.Weights structure that is then passed to Layers etc using SetWts method.
func (*NetworkStru) SaveWtsJSON ¶
func (nt *NetworkStru) SaveWtsJSON(filename gi.FileName) error
SaveWtsJSON saves network weights (and any other state that adapts with learning) to a JSON-formatted file. If filename has .gz extension, then file is gzip compressed.
func (*NetworkStru) SetWts ¶ added in v1.1.26
func (nt *NetworkStru) SetWts(nw *weights.Network) error
SetWts sets the weights for this network from weights.Network decoded values
func (*NetworkStru) StartThreads ¶
func (nt *NetworkStru) StartThreads()
StartThreads starts up the computation threads, which monitor the channels for work
func (*NetworkStru) StdVertLayout ¶
func (nt *NetworkStru) StdVertLayout()
StdVertLayout arranges layers in a standard vertical (z axis stack) layout, by setting the Rel settings
func (*NetworkStru) StopThreads ¶
func (nt *NetworkStru) StopThreads()
StopThreads stops the computation threads
func (*NetworkStru) ThrLayFun ¶
func (nt *NetworkStru) ThrLayFun(fun func(ly LeabraLayer), funame string)
ThrLayFun calls function on layer, using threaded (go routine worker) computation if NThreads > 1 and otherwise just iterates over layers in the current thread.
func (*NetworkStru) ThrTimerReset ¶
func (nt *NetworkStru) ThrTimerReset()
ThrTimerReset resets the per-thread timers
func (*NetworkStru) ThrWorker ¶
func (nt *NetworkStru) ThrWorker(tt int)
ThrWorker is the worker function run by the worker threads
func (*NetworkStru) TimerReport ¶
func (nt *NetworkStru) TimerReport()
TimerReport reports the amount of time spent in each function, and in each thread
func (*NetworkStru) VarRange ¶
func (nt *NetworkStru) VarRange(varNm string) (min, max float32, err error)
VarRange returns the min / max values for given variable todo: support r. s. projection values
func (*NetworkStru) WriteWtsJSON ¶
func (nt *NetworkStru) WriteWtsJSON(w io.Writer)
WriteWtsJSON writes the weights from this layer from the receiver-side perspective in a JSON text format. We build in the indentation logic to make it much faster and more efficient.
type NeurFlags ¶
type NeurFlags int32
NeurFlags are bit-flags encoding relevant binary state for neurons
const ( // NeurOff flag indicates that this neuron has been turned off (i.e., lesioned) NeurOff NeurFlags = iota // NeurHasExt means the neuron has external input in its Ext field NeurHasExt // NeurHasTarg means the neuron has external target input in its Targ field NeurHasTarg // NeurHasCmpr means the neuron has external comparison input in its Targ field -- used for computing // comparison statistics but does not drive neural activity ever NeurHasCmpr NeurFlagsN )
The neuron flags
func (*NeurFlags) FromString ¶
func (NeurFlags) MarshalJSON ¶
func (*NeurFlags) UnmarshalJSON ¶
type Neuron ¶
type Neuron struct { Flags NeurFlags `desc:"bit flags for binary state variables"` SubPool int32 `` /* 214-byte string literal not displayed */ Act float32 `` /* 477-byte string literal not displayed */ ActLrn float32 `` /* 436-byte string literal not displayed */ Ge float32 `desc:"total excitatory synaptic conductance -- the net excitatory input to the neuron -- does *not* include Gbar.E"` Gi float32 `desc:"total inhibitory synaptic conductance -- the net inhibitory input to the neuron -- does *not* include Gbar.I"` Gk float32 `` /* 148-byte string literal not displayed */ Inet float32 `desc:"net current produced by all channels -- drives update of Vm"` Vm float32 `desc:"membrane potential -- integrates Inet current over time"` Targ float32 `desc:"target value: drives learning to produce this activation value"` Ext float32 `desc:"external input: drives activation of unit from outside influences (e.g., sensory input)"` AvgSS float32 `` /* 254-byte string literal not displayed */ AvgS float32 `` /* 190-byte string literal not displayed */ AvgM float32 `` /* 148-byte string literal not displayed */ AvgL float32 `` /* 127-byte string literal not displayed */ AvgLLrn float32 `` /* 356-byte string literal not displayed */ AvgSLrn float32 `` /* 414-byte string literal not displayed */ ActQ0 float32 `desc:"the activation state at start of current alpha cycle (same as the state at end of previous cycle)"` ActQ1 float32 `desc:"the activation state at end of first quarter of current alpha cycle"` ActQ2 float32 `desc:"the activation state at end of second quarter of current alpha cycle"` ActM float32 `desc:"the activation state at end of third quarter, which is the traditional posterior-cortical minus phase activation"` ActP float32 `desc:"the activation state at end of fourth quarter, which is the traditional posterior-cortical plus_phase activation"` ActDif float32 `` /* 164-byte string literal not displayed */ ActDel float32 `desc:"delta activation: change in Act from one cycle to next -- can be useful to track where changes are taking place"` ActAvg float32 `` /* 216-byte string literal not displayed */ Noise float32 `desc:"noise value added to unit (ActNoiseParams determines distribution, and when / where it is added)"` GiSyn float32 `` /* 168-byte string literal not displayed */ GiSelf float32 `desc:"total amount of self-inhibition -- time-integrated to avoid oscillations"` ActSent float32 `desc:"last activation value sent (only send when diff is over threshold)"` GeRaw float32 `desc:"raw excitatory conductance (net input) received from sending units (send delta's are added to this value)"` GiRaw float32 `desc:"raw inhibitory conductance (net input) received from sending units (send delta's are added to this value)"` GknaFast float32 `` /* 130-byte string literal not displayed */ GknaMed float32 `` /* 131-byte string literal not displayed */ GknaSlow float32 `` /* 129-byte string literal not displayed */ Spike float32 `desc:"whether neuron has spiked or not (0 or 1), for discrete spiking neurons."` ISI float32 `desc:"current inter-spike-interval -- counts up since last spike. Starts at -1 when initialized."` ISIAvg float32 `` /* 204-byte string literal not displayed */ }
leabra.Neuron holds all of the neuron (unit) level variables -- this is the most basic version with rate-code only and no optional features at all. All variables accessible via Unit interface must be float32 and start at the top, in contiguous order
func (*Neuron) VarByIndex ¶
VarByIndex returns variable using index (0 = first variable in NeuronVars list)
type OptThreshParams ¶
type OptThreshParams struct { Send float32 `def:"0.1" desc:"don't send activation when act <= send -- greatly speeds processing"` Delta float32 `` /* 129-byte string literal not displayed */ }
OptThreshParams provides optimization thresholds for faster processing
func (*OptThreshParams) Defaults ¶
func (ot *OptThreshParams) Defaults()
func (*OptThreshParams) Update ¶
func (ot *OptThreshParams) Update()
type Pool ¶
type Pool struct {
StIdx, EdIdx int `desc:"starting and ending (exlusive) indexes for the list of neurons in this pool"`
Inhib fffb.Inhib `desc:"FFFB inhibition computed values, including Ge and Act AvgMax which drive inhibition"`
ActM minmax.AvgMax32 `desc:"minus phase average and max Act activation values, for ActAvg updt"`
ActP minmax.AvgMax32 `desc:"plus phase average and max Act activation values, for ActAvg updt"`
ActAvg ActAvg `desc:"running-average activation levels used for netinput scaling and adaptive inhibition"`
}
Pool contains computed values for FFFB inhibition, and various other state values for layers and pools (unit groups) that can be subject to inhibition, including: * average / max stats on Ge and Act that drive inhibition * average activity overall that is used for normalizing netin (at layer level)
type Prjn ¶
type Prjn struct { PrjnStru WtInit WtInitParams `view:"inline" desc:"initial random weight distribution"` WtScale WtScaleParams `` /* 130-byte string literal not displayed */ Learn LearnSynParams `view:"add-fields" desc:"synaptic-level learning parameters"` Syns []Synapse `desc:"synaptic state values, ordered by the sending layer units which owns them -- one-to-one with SConIdx array"` // misc state variables below: GScale float32 `` /* 145-byte string literal not displayed */ GInc []float32 `` /* 192-byte string literal not displayed */ WbRecv []WtBalRecvPrjn `desc:"weight balance state variables for this projection, one per recv neuron"` }
leabra.Prjn is a basic Leabra projection with synaptic learning parameters
func (*Prjn) AsLeabra ¶
AsLeabra returns this prjn as a leabra.Prjn -- all derived prjns must redefine this to return the base Prjn type, so that the LeabraPrjn interface does not need to include accessors to all the basic stuff.
func (*Prjn) Build ¶
Build constructs the full connectivity among the layers as specified in this projection. Calls PrjnStru.BuildStru and then allocates the synaptic values in Syns accordingly.
func (*Prjn) DWt ¶
func (pj *Prjn) DWt()
DWt computes the weight change (learning) -- on sending projections
func (*Prjn) InitGInc ¶
func (pj *Prjn) InitGInc()
InitGInc initializes the per-projection GInc threadsafe increment -- not typically needed (called during InitWts only) but can be called when needed
func (*Prjn) InitWtSym ¶
func (pj *Prjn) InitWtSym(rpjp LeabraPrjn)
InitWtSym initializes weight symmetry -- is given the reciprocal projection where the Send and Recv layers are reversed.
func (*Prjn) InitWts ¶
func (pj *Prjn) InitWts()
InitWts initializes weight values according to Learn.WtInit params
func (*Prjn) InitWtsSyn ¶ added in v1.1.26
InitWtsSyn initializes weight values based on WtInit randomness parameters for an individual synapse. It also updates the linear weight value based on the sigmoidal weight value.
func (*Prjn) LrateMult ¶ added in v1.1.26
LrateMult sets the new Lrate parameter for Prjns to LrateInit * mult. Useful for implementing learning rate schedules.
func (*Prjn) ReadWtsJSON ¶
ReadWtsJSON reads the weights from this projection from the receiver-side perspective in a JSON text format. This is for a set of weights that were saved *for one prjn only* and is not used for the network-level ReadWtsJSON, which reads into a separate structure -- see SetWts method.
func (*Prjn) RecvGInc ¶
func (pj *Prjn) RecvGInc()
RecvGInc increments the receiver's GeRaw or GiRaw from that of all the projections.
func (*Prjn) SendGDelta ¶
SendGDelta sends the delta-activation from sending neuron index si, to integrate synaptic conductances on receivers
func (*Prjn) SetScalesFunc ¶ added in v1.1.26
SetScalesFunc initializes synaptic Scale values using given function based on receiving and sending unit indexes.
func (*Prjn) SetScalesRPool ¶ added in v1.1.26
SetScalesRPool initializes synaptic Scale values using given tensor of values which has unique values for each recv neuron within a given pool i.e., recv layer must have 4D pool structure.
func (*Prjn) SetSynVal ¶
SetSynVal sets value of given variable name on the synapse between given send, recv unit indexes (1D, flat indexes) returns error for access errors.
func (*Prjn) SetWts ¶ added in v1.1.26
SetWts sets the weights for this projection from weights.Prjn decoded values
func (*Prjn) SetWtsFunc ¶ added in v1.1.26
SetWtsFunc initializes synaptic Wt value using given function based on receiving and sending unit indexes.
func (*Prjn) SynIdx ¶ added in v1.1.26
SynIdx returns the index of the synapse between given send, recv unit indexes (1D, flat indexes). Returns -1 if synapse not found between these two neurons. Requires searching within connections for receiving unit.
func (*Prjn) SynVal ¶
SynVal returns value of given variable name on the synapse between given send, recv unit indexes (1D, flat indexes). Returns math32.NaN() for access errors (see SynValTry for error message)
func (*Prjn) SynVal1D ¶ added in v1.1.26
SynVal1D returns value of given variable index (from SynVarIdx) on given SynIdx. Returns NaN on invalid index. This is the core synapse var access method used by other methods, so it is the only one that needs to be updated for derived layer types.
func (*Prjn) SynVals ¶
SynVals sets values of given variable name for each synapse, using the natural ordering of the synapses (sender based for Leabra), into given float32 slice (only resized if not big enough). Returns error on invalid var name.
func (*Prjn) SynVarIdx ¶ added in v1.1.26
SynVarIdx returns the index of given variable within the synapse, according to *this prjn's* SynVarNames() list (using a map to lookup index), or -1 and error message if not found.
func (*Prjn) SynVarNames ¶
func (*Prjn) SynVarNum ¶ added in v1.1.26
SynVarNum returns the number of synapse-level variables for this prjn. This is needed for extending indexes in derived types.
func (*Prjn) SynVarProps ¶ added in v1.1.26
SynVarProps returns properties for variables
func (*Prjn) UpdateParams ¶
func (pj *Prjn) UpdateParams()
UpdateParams updates all params given any changes that might have been made to individual values
func (*Prjn) WriteWtsJSON ¶
WriteWtsJSON writes the weights from this projection from the receiver-side perspective in a JSON text format. We build in the indentation logic to make it much faster and more efficient.
func (*Prjn) WtBalFmWt ¶
func (pj *Prjn) WtBalFmWt()
WtBalFmWt computes the Weight Balance factors based on average recv weights
func (*Prjn) WtFail ¶ added in v1.1.27
func (pj *Prjn) WtFail()
WtFail zeros out effective synaptic weights to simulate synaptic communication failures.
type PrjnStru ¶
type PrjnStru struct { LeabraPrj LeabraPrjn `` /* 269-byte string literal not displayed */ Off bool `desc:"inactivate this projection -- allows for easy experimentation"` Cls string `desc:"Class is for applying parameter styles, can be space separated multple tags"` Notes string `desc:"can record notes about this projection here"` Send emer.Layer `desc:"sending layer for this projection"` Recv emer.Layer `` /* 169-byte string literal not displayed */ Pat prjn.Pattern `desc:"pattern of connectivity"` Typ emer.PrjnType `` /* 154-byte string literal not displayed */ RConN []int32 `view:"-" desc:"number of recv connections for each neuron in the receiving layer, as a flat list"` RConNAvgMax minmax.AvgMax32 `inactive:"+" desc:"average and maximum number of recv connections in the receiving layer"` RConIdxSt []int32 `view:"-" desc:"starting index into ConIdx list for each neuron in receiving layer -- just a list incremented by ConN"` RConIdx []int32 `` /* 213-byte string literal not displayed */ RSynIdx []int32 `` /* 185-byte string literal not displayed */ SConN []int32 `view:"-" desc:"number of sending connections for each neuron in the sending layer, as a flat list"` SConNAvgMax minmax.AvgMax32 `inactive:"+" desc:"average and maximum number of sending connections in the sending layer"` SConIdxSt []int32 `view:"-" desc:"starting index into ConIdx list for each neuron in sending layer -- just a list incremented by ConN"` SConIdx []int32 `` /* 213-byte string literal not displayed */ }
PrjnStru contains the basic structural information for specifying a projection of synaptic connections between two layers, and maintaining all the synaptic connection-level data. The exact same struct object is added to the Recv and Send layers, and it manages everything about the connectivity, and methods on the Prjn handle all the relevant computation.
func (*PrjnStru) ApplyParams ¶
ApplyParams applies given parameter style Sheet to this projection. Calls UpdateParams if anything set to ensure derived parameters are all updated. If setMsg is true, then a message is printed to confirm each parameter that is set. it always prints a message if a parameter fails to be set. returns true if any params were set, and error if there were any errors.
func (*PrjnStru) BuildStru ¶
BuildStru constructs the full connectivity among the layers as specified in this projection. Calls Validate and returns false if invalid. Pat.Connect is called to get the pattern of the connection. Then the connection indexes are configured according to that pattern.
func (*PrjnStru) Connect ¶
Connect sets the connectivity between two layers and the pattern to use in interconnecting them
func (*PrjnStru) Init ¶
Init MUST be called to initialize the prjn's pointer to itself as an emer.Prjn which enables the proper interface methods to be called.
func (*PrjnStru) NonDefaultParams ¶
NonDefaultParams returns a listing of all parameters in the Layer that are not at their default values -- useful for setting param styles etc.
func (*PrjnStru) PrjnTypeName ¶ added in v1.1.26
func (*PrjnStru) SetNIdxSt ¶
func (ps *PrjnStru) SetNIdxSt(n *[]int32, avgmax *minmax.AvgMax32, idxst *[]int32, tn *etensor.Int32) int32
SetNIdxSt sets the *ConN and *ConIdxSt values given n tensor from Pat. Returns total number of connections for this direction.
type Quarters ¶
type Quarters int32
Quarters are the different alpha trial quarters, as a bitflag, for use in relevant timing parameters where quarters need to be specified. The Q1..4 defined values are integer *bit positions* -- use Set, Has etc methods to set bits from these bit positions.
const ( // Q1 is the first quarter, which, due to 0-based indexing, shows up as Quarter = 0 in timer Q1 Quarters = iota Q2 Q3 Q4 QuartersN )
The quarters
func (*Quarters) Clear ¶ added in v1.1.26
Clear clears given quarter bit (qtr = 0..3 = same as Quarters)
func (*Quarters) FromString ¶
func (Quarters) Has ¶ added in v1.1.26
Has returns true if the given quarter is set (qtr = 0..3 = same as Quarters)
func (Quarters) HasNext ¶ added in v1.1.26
HasNext returns true if the quarter after given quarter is set. This wraps around from Q4 to Q1. (qtr = 0..3 = same as Quarters)
func (Quarters) HasPrev ¶ added in v1.1.26
HasPrev returns true if the quarter before given quarter is set. This wraps around from Q1 to Q4. (qtr = 0..3 = same as Quarters)
func (Quarters) MarshalJSON ¶
func (*Quarters) Set ¶ added in v1.1.26
Set sets given quarter bit (adds to any existing) (qtr = 0..3 = same as Quarters)
func (*Quarters) UnmarshalJSON ¶
type SelfInhibParams ¶
type SelfInhibParams struct { On bool `desc:"enable neuron self-inhibition"` Gi float32 `` /* 247-byte string literal not displayed */ Tau float32 `` /* 373-byte string literal not displayed */ Dt float32 `inactive:"+" view:"-" json:"-" xml:"-" desc:"rate = 1 / tau"` }
SelfInhibParams defines parameters for Neuron self-inhibition -- activation of the neuron directly feeds back to produce a proportional additional contribution to Gi
func (*SelfInhibParams) Defaults ¶
func (si *SelfInhibParams) Defaults()
func (*SelfInhibParams) Inhib ¶
func (si *SelfInhibParams) Inhib(self *float32, act float32)
Inhib updates the self inhibition value based on current unit activation
func (*SelfInhibParams) Update ¶
func (si *SelfInhibParams) Update()
type Synapse ¶
type Synapse struct { Wt float32 `desc:"synaptic weight value -- sigmoid contrast-enhanced"` LWt float32 `` /* 216-byte string literal not displayed */ DWt float32 `desc:"change in synaptic weight, from learning"` Norm float32 `` /* 162-byte string literal not displayed */ Moment float32 `` /* 148-byte string literal not displayed */ Scale float32 `` /* 445-byte string literal not displayed */ }
leabra.Synapse holds state for the synaptic connection between neurons
func (*Synapse) SetVarByIndex ¶ added in v1.1.26
func (*Synapse) SetVarByName ¶
SetVarByName sets synapse variable to given value
func (*Synapse) VarByIndex ¶ added in v1.1.26
VarByIndex returns variable using index (0 = first variable in SynapseVars list)
type Time ¶
type Time struct { Time float32 `desc:"accumulated amount of time the network has been running, in simulation-time (not real world time), in seconds"` Cycle int `` /* 217-byte string literal not displayed */ CycleTot int `` /* 151-byte string literal not displayed */ Quarter int `` /* 224-byte string literal not displayed */ PlusPhase bool `desc:"true if this is the plus phase (final quarter = 3) -- else minus phase"` TimePerCyc float32 `def:"0.001" desc:"amount of time to increment per cycle"` CycPerQtr int `def:"25" desc:"number of cycles per quarter to run -- 25 = standard 100 msec alpha-cycle"` }
leabra.Time contains all the timing state and parameter information for running a model
func (*Time) AlphaCycStart ¶
func (tm *Time) AlphaCycStart()
AlphaCycStart starts a new alpha-cycle (set of 4 quarters)
func (*Time) QuarterCycle ¶ added in v1.1.26
QuarterCycle returns the number of cycles into current quarter
func (*Time) QuarterInc ¶
func (tm *Time) QuarterInc()
QuarterInc increments at the quarter level, updating Quarter and PlusPhase
type TimeScales ¶
type TimeScales int32
TimeScales are the different time scales associated with overall simulation running, and can be used to parameterize the updating and control flow of simulations at different scales. The definitions become increasingly subjective imprecise as the time scales increase. This is not used directly in the algorithm code -- all control is responsibility of the end simulation. This list is designed to standardize terminology across simulations and establish a common conceptual framework for time -- it can easily be extended in specific simulations to add needed additional levels, although using one of the existing standard values is recommended wherever possible.
const ( // Cycle is the finest time scale -- typically 1 msec -- a single activation update. Cycle TimeScales = iota // FastSpike is typically 10 cycles = 10 msec (100hz) = the fastest spiking time // generally observed in the brain. This can be useful for visualizing updates // at a granularity in between Cycle and Quarter. FastSpike // Quarter is typically 25 cycles = 25 msec (40hz) = 1/4 of the 100 msec alpha trial // This is also the GammaCycle (gamma = 40hz), but we use Quarter functionally // by virtue of there being 4 per AlphaCycle. Quarter // Phase is either Minus or Plus phase -- Minus = first 3 quarters, Plus = last quarter Phase // BetaCycle is typically 50 cycles = 50 msec (20 hz) = one beta-frequency cycle. // Gating in the basal ganglia and associated updating in prefrontal cortex // occurs at this frequency. BetaCycle // AlphaCycle is typically 100 cycles = 100 msec (10 hz) = one alpha-frequency cycle, // which is the fundamental unit of learning in posterior cortex. AlphaCycle // ThetaCycle is typically 200 cycles = 200 msec (5 hz) = two alpha-frequency cycles. // This is the modal duration of a saccade, the update frequency of medial temporal lobe // episodic memory, and the minimal predictive learning cycle (perceive an Alpha 1, predict on 2). ThetaCycle // Event is the smallest unit of naturalistic experience that coheres unto itself // (e.g., something that could be described in a sentence). // Typically this is on the time scale of a few seconds: e.g., reaching for // something, catching a ball. Event // Trial is one unit of behavior in an experiment -- it is typically environmentally // defined instead of endogenously defined in terms of basic brain rhythms. // In the minimal case it could be one AlphaCycle, but could be multiple, and // could encompass multiple Events (e.g., one event is fixation, next is stimulus, // last is response) Trial // Tick is one step in a sequence -- often it is useful to have Trial count // up throughout the entire Epoch but also include a Tick to count trials // within a Sequence Tick // Sequence is a sequential group of Trials (not always needed). Sequence // Condition is a collection of Blocks that share the same set of parameters. // This is intermediate between Block and Run levels. Condition // Block is a collection of Trials, Sequences or Events, often used in experiments // when conditions are varied across blocks. Block // Epoch is used in two different contexts. In machine learning, it represents a // collection of Trials, Sequences or Events that constitute a "representative sample" // of the environment. In the simplest case, it is the entire collection of Trials // used for training. In electrophysiology, it is a timing window used for organizing // the analysis of electrode data. Epoch // Run is a complete run of a model / subject, from training to testing, etc. // Often multiple runs are done in an Expt to obtain statistics over initial // random weights etc. Run // Expt is an entire experiment -- multiple Runs through a given protocol / set of // parameters. Expt // Scene is a sequence of events that constitutes the next larger-scale coherent unit // of naturalistic experience corresponding e.g., to a scene in a movie. // Typically consists of events that all take place in one location over // e.g., a minute or so. This could be a paragraph or a page or so in a book. Scene // Episode is a sequence of scenes that constitutes the next larger-scale unit // of naturalistic experience e.g., going to the grocery store or eating at a // restaurant, attending a wedding or other "event". // This could be a chapter in a book. Episode TimeScalesN )
The time scales
func (*TimeScales) FromString ¶
func (i *TimeScales) FromString(s string) error
func (TimeScales) MarshalJSON ¶
func (ev TimeScales) MarshalJSON() ([]byte, error)
func (TimeScales) String ¶
func (i TimeScales) String() string
func (*TimeScales) UnmarshalJSON ¶
func (ev *TimeScales) UnmarshalJSON(b []byte) error
type WtBalParams ¶
type WtBalParams struct { On bool `` /* 561-byte string literal not displayed */ AvgThr float32 `` /* 351-byte string literal not displayed */ HiThr float32 `` /* 146-byte string literal not displayed */ HiGain float32 `` /* 188-byte string literal not displayed */ LoThr float32 `` /* 145-byte string literal not displayed */ LoGain float32 `` /* 273-byte string literal not displayed */ }
WtBalParams are weight balance soft renormalization params: maintains overall weight balance by progressively penalizing weight increases as a function of how strong the weights are overall (subject to thresholding) and long time-averaged activation. Plugs into soft bounding function.
func (*WtBalParams) Defaults ¶
func (wb *WtBalParams) Defaults()
func (*WtBalParams) Update ¶
func (wb *WtBalParams) Update()
func (*WtBalParams) WtBal ¶
func (wb *WtBalParams) WtBal(wbAvg float32) (fact, inc, dec float32)
WtBal computes weight balance factors for increase and decrease based on extent to which weights and average act exceed thresholds
type WtBalRecvPrjn ¶
type WtBalRecvPrjn struct { Avg float32 `desc:"average of effective weight values that exceed WtBal.AvgThr across given Recv Neuron's connections for given Prjn"` Fact float32 `` /* 154-byte string literal not displayed */ Inc float32 `desc:"weight balance increment factor -- extra multiplier to add to weight increases to maintain overall weight balance"` Dec float32 `desc:"weight balance decrement factor -- extra multiplier to add to weight decreases to maintain overall weight balance"` }
WtBalRecvPrjn are state variables used in computing the WtBal weight balance function There is one of these for each Recv Neuron participating in the projection.
func (*WtBalRecvPrjn) Init ¶
func (wb *WtBalRecvPrjn) Init()
type WtInitParams ¶ added in v1.1.26
type WtInitParams struct { erand.RndParams Sym bool `` /* 130-byte string literal not displayed */ }
WtInitParams are weight initialization parameters -- basically the random distribution parameters but also Symmetry flag
func (*WtInitParams) Defaults ¶ added in v1.1.26
func (wp *WtInitParams) Defaults()
type WtScaleParams ¶
type WtScaleParams struct { Abs float32 `def:"1" min:"0" desc:"absolute scaling, which is not subject to normalization: directly multiplies weight values"` Rel float32 `` /* 169-byte string literal not displayed */ }
/ WtScaleParams are weight scaling parameters: modulates overall strength of projection, using both absolute and relative factors
func (*WtScaleParams) Defaults ¶
func (ws *WtScaleParams) Defaults()
func (*WtScaleParams) FullScale ¶
func (ws *WtScaleParams) FullScale(savg, snu, ncon float32) float32
FullScale returns full scaling factor, which is product of Abs * Rel * SLayActScale
func (*WtScaleParams) SLayActScale ¶
func (ws *WtScaleParams) SLayActScale(savg, snu, ncon float32) float32
SLayActScale computes scaling factor based on sending layer activity level (savg), number of units in sending layer (snu), and number of recv connections (ncon). Uses a fixed sem_extra standard-error-of-the-mean (SEM) extra value of 2 to add to the average expected number of active connections to receive, for purposes of computing scaling factors with partial connectivity For 25% layer activity, binomial SEM = sqrt(p(1-p)) = .43, so 3x = 1.3 so 2 is a reasonable default.
func (*WtScaleParams) Update ¶
func (ws *WtScaleParams) Update()
type WtSigParams ¶
type WtSigParams struct { Gain float32 `def:"1,6" min:"0" desc:"gain (contrast, sharpness) of the weight contrast function (1 = linear)"` Off float32 `def:"1" min:"0" desc:"offset of the function (1=centered at .5, >1=higher, <1=lower) -- 1 is standard for XCAL"` SoftBound bool `def:"true" desc:"apply exponential soft bounding to the weight changes"` PFail float32 `` /* 146-byte string literal not displayed */ PFailWtMax float32 `` /* 195-byte string literal not displayed */ }
WtSigParams are sigmoidal weight contrast enhancement function parameters
func (*WtSigParams) Defaults ¶
func (ws *WtSigParams) Defaults()
func (*WtSigParams) LinFmSigWt ¶
func (ws *WtSigParams) LinFmSigWt(sw float32) float32
LinFmSigWt returns linear weight from sigmoidal contrast-enhanced weight
func (*WtSigParams) SigFmLinWt ¶
func (ws *WtSigParams) SigFmLinWt(lw float32) float32
SigFmLinWt returns sigmoidal contrast-enhanced weight from linear weight
func (*WtSigParams) Update ¶
func (ws *WtSigParams) Update()
func (*WtSigParams) WtFail ¶ added in v1.1.26
func (ws *WtSigParams) WtFail(wt float32) bool
WtFail returns true if synapse should fail
func (*WtSigParams) WtFailP ¶ added in v1.1.26
func (ws *WtSigParams) WtFailP(wt float32) float32
WtFailP returns probability of weight (synapse) failure given current weight value
type XCalParams ¶
type XCalParams struct { MLrn float32 `` /* 316-byte string literal not displayed */ SetLLrn bool `` /* 459-byte string literal not displayed */ LLrn float32 `` /* 279-byte string literal not displayed */ DRev float32 `` /* 270-byte string literal not displayed */ DThr float32 `` /* 139-byte string literal not displayed */ LrnThr float32 `` /* 338-byte string literal not displayed */ DRevRatio float32 `` /* 131-byte string literal not displayed */ }
XCalParams are parameters for temporally eXtended Contrastive Attractor Learning function (XCAL) which is the standard learning equation for leabra .
func (*XCalParams) DWt ¶
func (xc *XCalParams) DWt(srval, thrP float32) float32
DWt is the XCAL function for weight change -- the "check mark" function -- no DGain, no ThrPMin
func (*XCalParams) Defaults ¶
func (xc *XCalParams) Defaults()
func (*XCalParams) LongLrate ¶
func (xc *XCalParams) LongLrate(avgLLrn float32) float32
LongLrate returns the learning rate for long-term floating average component (BCM)
func (*XCalParams) Update ¶
func (xc *XCalParams) Update()