Documentation ¶
Index ¶
- Constants
- Variables
- func GetModuleID(instance interface{}) string
- func GetModuleName(instance interface{}) string
- func GoModule() *debug.Module
- func JoinNetworkAddress(network, host, port string) string
- func Listen(network, addr string) (net.Listener, error)
- func ListenPacket(network, addr string) (net.PacketConn, error)
- func Load(cfgJSON []byte, forceReload bool) error
- func Log() *zap.Logger
- func Modules() []string
- func ParseStructTag(tag string) (map[string]string, error)
- func RegisterModule(instance Module) error
- func RemoveMetaFields(rawJSON []byte) []byte
- func Run(cfg *Config) error
- func SplitNetworkAddress(a string) (network, host, port string, err error)
- func Stop() error
- func TrapSignals()
- func Validate(cfg *Config) error
- type APIError
- type AdminConfig
- type AdminHandler
- type AdminHandlerFunc
- type AdminRoute
- type AdminRouter
- type App
- type CleanerUpper
- type Config
- type Constructor
- type Context
- func (ctx Context) App(name string) (interface{}, error)
- func (ctx Context) LoadModule(structPointer interface{}, fieldName string) (interface{}, error)
- func (ctx Context) LoadModuleByID(id string, rawMsg json.RawMessage) (interface{}, error)
- func (ctx Context) Logger(mod Module) *zap.Logger
- func (ctx *Context) OnCancel(f func())
- func (ctx Context) Storage() certmagic.Storage
- type CtxKey
- type CustomLog
- type Destructor
- type DiscardWriter
- type Duration
- type LogSampling
- type Logging
- type Module
- type ModuleID
- type ModuleInfo
- type ModuleMap
- type ParsedAddress
- type Provisioner
- type ReplacementFunc
- type Replacer
- type ReplacerFunc
- type StandardLibLog
- type StderrWriter
- type StdoutWriter
- type StorageConverter
- type UsagePool
- func (up *UsagePool) Delete(key interface{}) (deleted bool, err error)
- func (up *UsagePool) LoadOrNew(key interface{}, construct Constructor) (value interface{}, loaded bool, err error)
- func (up *UsagePool) LoadOrStore(key, val interface{}) (value interface{}, loaded bool)
- func (up *UsagePool) Range(f func(key, value interface{}) bool)
- type Validator
- type WriterOpener
Examples ¶
Constants ¶
const ( ExitCodeSuccess = iota ExitCodeFailedStartup ExitCodeForceQuit ExitCodeFailedQuit )
Exit codes. Generally, you should NOT automatically restart the process if the exit code is ExitCodeFailedStartup (1).
Variables ¶
var ( // DefaultAdminListen is the address for the admin // listener, if none is specified at startup. DefaultAdminListen = "localhost:2019" // ErrInternalRedir indicates an internal redirect // and is useful when admin API handlers rewrite // the request; in that case, authentication and // authorization needs to happen again for the // rewritten request. ErrInternalRedir = fmt.Errorf("internal redirect; re-authorization required") // DefaultAdminConfig is the default configuration // for the administration endpoint. DefaultAdminConfig = &AdminConfig{ Listen: DefaultAdminListen, } )
Functions ¶
func GetModuleID ¶
func GetModuleID(instance interface{}) string
GetModuleID returns a module's ID from an instance of its value. If the value is not a module, an empty string will be returned.
func GetModuleName ¶
func GetModuleName(instance interface{}) string
GetModuleName returns a module's name (the last label of its ID) from an instance of its value. If the value is not a module, an empty string will be returned.
func GoModule ¶
GoModule returns the build info of this Caddy build from debug.BuildInfo (requires Go modules). If no version information is available, a non-nil value will still be returned, but with an unknown version.
func JoinNetworkAddress ¶
JoinNetworkAddress combines network, host, and port into a single address string of the form accepted by ParseNetworkAddress(). For unix sockets, the network should be "unix" (or "unixgram" or "unixpacket") and the path to the socket should be given as the host parameter.
func Listen ¶
Listen returns a listener suitable for use in a Caddy module. Always be sure to close listeners when you are done with them.
func ListenPacket ¶
func ListenPacket(network, addr string) (net.PacketConn, error)
ListenPacket returns a net.PacketConn suitable for use in a Caddy module. Always be sure to close the PacketConn when you are done.
func Load ¶
Load loads the given config JSON and runs it only if it is different from the current config or forceReload is true.
func Modules ¶
func Modules() []string
Modules returns the names of all registered modules in ascending lexicographical order.
func ParseStructTag ¶
ParseStructTag parses a caddy struct tag into its keys and values. It is very simple. The expected syntax is: `caddy:"key1=val1 key2=val2 ..."`
func RegisterModule ¶
RegisterModule registers a module by receiving a plain/empty value of the module. For registration to be properly recorded, this should be called in the init phase of runtime. Typically, the module package will do this as a side-effect of being imported. This function returns an error if the module's info is incomplete or invalid, or if the module is already registered.
func RemoveMetaFields ¶
RemoveMetaFields removes meta fields like "@id" from a JSON message.
func SplitNetworkAddress ¶
SplitNetworkAddress splits a into its network, host, and port components. Note that port may be a port range (:X-Y), or omitted for unix sockets.
func Stop ¶
func Stop() error
Stop stops running the current configuration. It is the antithesis of Run(). This function will log any errors that occur during the stopping of individual apps and continue to stop the others. Stop should only be called if not replacing with a new config.
func TrapSignals ¶
func TrapSignals()
TrapSignals create signal/interrupt handlers as best it can for the current OS. This is a rather invasive function to call in a Go program that captures signals already, so in that case it would be better to implement these handlers yourself.
Types ¶
type APIError ¶
APIError is a structured error that every API handler should return for consistency in logging and client responses. If Message is unset, then Err.Error() will be serialized in its place.
type AdminConfig ¶
type AdminConfig struct { // If true, the admin endpoint will be completely disabled. // Note that this makes any runtime changes to the config // impossible, since the interface to do so is through the // admin endpoint. Disabled bool `json:"disabled,omitempty"` // The address to which the admin endpoint's listener should // bind itself. Can be any single network address that can be // parsed by Caddy. Default: localhost:2019 Listen string `json:"listen,omitempty"` // If true, CORS headers will be emitted, and requests to the // API will be rejected if their `Host` and `Origin` headers // do not match the expected value(s). Use `origins` to // customize which origins/hosts are allowed.If `origins` is // not set, the listen address is the only value allowed by // default. EnforceOrigin bool `json:"enforce_origin,omitempty"` // The list of allowed origins for API requests. Only used if // `enforce_origin` is true. If not set, the listener address // will be the default value. If set but empty, no origins will // be allowed. Origins []string `json:"origins,omitempty"` }
AdminConfig configures Caddy's API endpoint, which is used to manage Caddy while it is running.
type AdminHandler ¶
type AdminHandler interface {
ServeHTTP(http.ResponseWriter, *http.Request) error
}
AdminHandler is like http.Handler except ServeHTTP may return an error.
If any handler encounters an error, it should be returned for proper handling.
type AdminHandlerFunc ¶
type AdminHandlerFunc func(http.ResponseWriter, *http.Request) error
AdminHandlerFunc is a convenience type like http.HandlerFunc.
func (AdminHandlerFunc) ServeHTTP ¶
func (f AdminHandlerFunc) ServeHTTP(w http.ResponseWriter, r *http.Request) error
ServeHTTP implements the Handler interface.
type AdminRoute ¶
type AdminRoute struct { Pattern string Handler AdminHandler }
AdminRoute represents a route for the admin endpoint.
type AdminRouter ¶
type AdminRouter interface {
Routes() []AdminRoute
}
AdminRouter is a type which can return routes for the admin API.
type CleanerUpper ¶
type CleanerUpper interface {
Cleanup() error
}
CleanerUpper is implemented by modules which may have side-effects such as opened files, spawned goroutines, or allocated some sort of non-stack state when they were provisioned. This method should deallocate/cleanup those resources to prevent memory leaks. Cleanup should be fast and efficient. Cleanup should work even if Provision returns an error, to allow cleaning up from partial provisionings.
type Config ¶
type Config struct { Admin *AdminConfig `json:"admin,omitempty"` Logging *Logging `json:"logging,omitempty"` // StorageRaw is a storage module that defines how/where Caddy // stores assets (such as TLS certificates). By default, this is // the local file system (`caddy.storage.file_system` module). // If the `XDG_DATA_HOME` environment variable is set, then // `$XDG_DATA_HOME/caddy` is the default folder. Otherwise, // `$HOME/.local/share/caddy` is the default folder. StorageRaw json.RawMessage `json:"storage,omitempty" caddy:"namespace=caddy.storage inline_key=module"` // AppsRaw are the apps that Caddy will load and run. The // app module name is the key, and the app's config is the // associated value. AppsRaw ModuleMap `json:"apps,omitempty" caddy:"namespace="` // contains filtered or unexported fields }
Config is the top (or beginning) of the Caddy configuration structure. Caddy config is expressed natively as a JSON document. If you prefer not to work with JSON directly, there are [many config adapters](/docs/config-adapters) available that can convert various inputs into Caddy JSON.
Many parts of this config are extensible through the use of Caddy modules. Fields which have a json.RawMessage type and which appear as dots (•••) in the online docs can be fulfilled by modules in a certain module namespace. The docs show which modules can be used in a given place.
Whenever a module is used, its name must be given either inline as part of the module, or as the key to the module's value. The docs will make it clear which to use.
Generally, all config settings are optional, as it is Caddy convention to have good, documented default values. If a parameter is required, the docs should say so.
Go programs which are directly building a Config struct value should take care to populate the JSON-encodable fields of the struct (i.e. the fields with `json` struct tags) if employing the module lifecycle (e.g. Provision method calls).
type Constructor ¶
type Constructor func() (Destructor, error)
Constructor is a function that returns a new value that can destruct itself when it is no longer needed.
type Context ¶
Context is a type which defines the lifetime of modules that are loaded and provides access to the parent configuration that spawned the modules which are loaded. It should be used with care and wrapped with derivation functions from the standard context package only if you don't need the Caddy specific features. These contexts are cancelled when the lifetime of the modules loaded from it is over.
Use NewContext() to get a valid value (but most modules will not actually need to do this).
func NewContext ¶
func NewContext(ctx Context) (Context, context.CancelFunc)
NewContext provides a new context derived from the given context ctx. Normally, you will not need to call this function unless you are loading modules which have a different lifespan than the ones for the context the module was provisioned with. Be sure to call the cancel func when the context is to be cleaned up so that modules which are loaded will be properly unloaded. See standard library context package's documentation.
func (Context) App ¶
App returns the configured app named name. If no app with that name is currently configured, a new empty one will be instantiated. (The app module must still be registered.)
func (Context) LoadModule ¶
LoadModule loads the Caddy module(s) from the specified field of the parent struct pointer and returns the loaded module(s). The struct pointer and its field name as a string are necessary so that reflection can be used to read the struct tag on the field to get the module namespace and inline module name key (if specified).
The field can be any one of the supported raw module types: json.RawMessage, []json.RawMessage, map[string]json.RawMessage, or []map[string]json.RawMessage. ModuleMap may be used in place of map[string]json.RawMessage. The return value's underlying type mirrors the input field's type:
json.RawMessage => interface{} []json.RawMessage => []interface{} map[string]json.RawMessage => map[string]interface{} []map[string]json.RawMessage => []map[string]interface{}
The field must have a "caddy" struct tag in this format:
caddy:"key1=val1 key2=val2"
To load modules, a "namespace" key is required. For example, to load modules in the "http.handlers" namespace, you'd put: `namespace=http.handlers` in the Caddy struct tag.
The module name must also be available. If the field type is a map or slice of maps, then key is assumed to be the module name if an "inline_key" is NOT specified in the caddy struct tag. In this case, the module name does NOT need to be specified in-line with the module itself.
If not a map, or if inline_key is non-empty, then the module name must be embedded into the values, which must be objects; then there must be a key in those objects where its associated value is the module name. This is called the "inline key", meaning the key containing the module's name that is defined inline with the module itself. You must specify the inline key in a struct tag, along with the namespace:
caddy:"namespace=http.handlers inline_key=handler"
This will look for a key/value pair like `"handler": "..."` in the json.RawMessage in order to know the module name.
To make use of the loaded module(s) (the return value), you will probably want to type-assert each interface{} value(s) to the types that are useful to you and store them on the same struct. Storing them on the same struct makes for easy garbage collection when your host module is no longer needed.
Loaded modules have already been provisioned and validated. Upon returning successfully, this method clears the json.RawMessage(s) in the field since the raw JSON is no longer needed, and this allows the GC to free up memory.
Example ¶
// this whole first part is just setting up for the example; // note the struct tags - very important; we specify inline_key // because that is the only way to know the module name var ctx Context myStruct := &struct { // This godoc comment will appear in module documentation. GuestModuleRaw json.RawMessage `json:"guest_module,omitempty" caddy:"namespace=example inline_key=name"` // this is where the decoded module will be stored; in this // example, we pretend we need an io.Writer but it can be // any interface type that is useful to you guestModule io.Writer }{ GuestModuleRaw: json.RawMessage(`{"name":"module_name","foo":"bar"}`), } // if a guest module is provided, we can load it easily if myStruct.GuestModuleRaw != nil { mod, err := ctx.LoadModule(myStruct, "GuestModuleRaw") if err != nil { // you'd want to actually handle the error here // return fmt.Errorf("loading guest module: %v", err) } // mod contains the loaded and provisioned module, // it is now ready for us to use myStruct.guestModule = mod.(io.Writer) } // use myStruct.guestModule from now on
Output:
Example (Array) ¶
// this whole first part is just setting up for the example; // note the struct tags - very important; we specify inline_key // because that is the only way to know the module name var ctx Context myStruct := &struct { // This godoc comment will appear in module documentation. GuestModulesRaw []json.RawMessage `json:"guest_modules,omitempty" caddy:"namespace=example inline_key=name"` // this is where the decoded module will be stored; in this // example, we pretend we need an io.Writer but it can be // any interface type that is useful to you guestModules []io.Writer }{ GuestModulesRaw: []json.RawMessage{ json.RawMessage(`{"name":"module1_name","foo":"bar1"}`), json.RawMessage(`{"name":"module2_name","foo":"bar2"}`), }, } // since our input is []json.RawMessage, the output will be []interface{} mods, err := ctx.LoadModule(myStruct, "GuestModulesRaw") if err != nil { // you'd want to actually handle the error here // return fmt.Errorf("loading guest modules: %v", err) } for _, mod := range mods.([]interface{}) { myStruct.guestModules = append(myStruct.guestModules, mod.(io.Writer)) } // use myStruct.guestModules from now on
Output:
Example (Map) ¶
// this whole first part is just setting up for the example; // note the struct tags - very important; we don't specify // inline_key because the map key is the module name var ctx Context myStruct := &struct { // This godoc comment will appear in module documentation. GuestModulesRaw ModuleMap `json:"guest_modules,omitempty" caddy:"namespace=example"` // this is where the decoded module will be stored; in this // example, we pretend we need an io.Writer but it can be // any interface type that is useful to you guestModules map[string]io.Writer }{ GuestModulesRaw: ModuleMap{ "module1_name": json.RawMessage(`{"foo":"bar1"}`), "module2_name": json.RawMessage(`{"foo":"bar2"}`), }, } // since our input is map[string]json.RawMessage, the output will be map[string]interface{} mods, err := ctx.LoadModule(myStruct, "GuestModulesRaw") if err != nil { // you'd want to actually handle the error here // return fmt.Errorf("loading guest modules: %v", err) } for modName, mod := range mods.(map[string]interface{}) { myStruct.guestModules[modName] = mod.(io.Writer) } // use myStruct.guestModules from now on
Output:
func (Context) LoadModuleByID ¶
func (ctx Context) LoadModuleByID(id string, rawMsg json.RawMessage) (interface{}, error)
LoadModuleByID decodes rawMsg into a new instance of mod and returns the value. If mod.New is nil, an error is returned. If the module implements Validator or Provisioner interfaces, those methods are invoked to ensure the module is fully configured and valid before being used.
This is a lower-level method and will usually not be called directly by most modules. However, this method is useful when dynamically loading/unloading modules in their own context, like from embedded scripts, etc.
type CtxKey ¶
type CtxKey string
CtxKey is a value type for use with context.WithValue.
const ReplacerCtxKey CtxKey = "replacer"
ReplacerCtxKey is the context key for a replacer.
type CustomLog ¶
type CustomLog struct { // The writer defines where log entries are emitted. WriterRaw json.RawMessage `json:"writer,omitempty" caddy:"namespace=caddy.logging.writers inline_key=output"` // The encoder is how the log entries are formatted or encoded. EncoderRaw json.RawMessage `json:"encoder,omitempty" caddy:"namespace=caddy.logging.encoders inline_key=format"` // Level is the minimum level to emit, and is inclusive. // Possible levels: DEBUG, INFO, WARN, ERROR, PANIC, and FATAL Level string `json:"level,omitempty"` // Sampling configures log entry sampling. If enabled, // only some log entries will be emitted. This is useful // for improving performance on extremely high-pressure // servers. Sampling *LogSampling `json:"sampling,omitempty"` // Include defines the names of loggers to emit in this // log. For example, to include only logs emitted by the // admin API, you would include "admin.api". Include []string `json:"include,omitempty"` // Exclude defines the names of loggers that should be // skipped by this log. For example, to exclude only // HTTP access logs, you would exclude "http.log.access". Exclude []string `json:"exclude,omitempty"` // contains filtered or unexported fields }
CustomLog represents a custom logger configuration.
By default, a log will emit all log entries. Some entries will be skipped if sampling is enabled. Further, the Include and Exclude parameters define which loggers (by name) are allowed or rejected from emitting in this log. If both Include and Exclude are populated, their values must be mutually exclusive, and longer namespaces have priority. If neither are populated, all logs are emitted.
type Destructor ¶
type Destructor interface {
Destruct() error
}
Destructor is a value that can clean itself up when it is deallocated.
type DiscardWriter ¶
type DiscardWriter struct{}
DiscardWriter discards all writes.
func (DiscardWriter) CaddyModule ¶
func (DiscardWriter) CaddyModule() ModuleInfo
CaddyModule returns the Caddy module information.
func (DiscardWriter) OpenWriter ¶
func (DiscardWriter) OpenWriter() (io.WriteCloser, error)
OpenWriter returns ioutil.Discard that can't be closed.
func (DiscardWriter) String ¶
func (DiscardWriter) String() string
func (DiscardWriter) WriterKey ¶
func (DiscardWriter) WriterKey() string
WriterKey returns a unique key representing discard.
type Duration ¶
Duration can be an integer or a string. An integer is interpreted as nanoseconds. If a string, it is a Go time.Duration value such as `300ms`, `1.5h`, or `2h45m`; valid units are `ns`, `us`/`µs`, `ms`, `s`, `m`, and `h`.
func (*Duration) UnmarshalJSON ¶
UnmarshalJSON satisfies json.Unmarshaler.
type LogSampling ¶
type LogSampling struct { // The window over which to conduct sampling. Interval time.Duration `json:"interval,omitempty"` // Log this many entries within a given level and // message for each interval. First int `json:"first,omitempty"` // If more entries with the same level and message // are seen during the same interval, keep one in // this many entries until the end of the interval. Thereafter int `json:"thereafter,omitempty"` }
LogSampling configures log entry sampling.
type Logging ¶
type Logging struct { // Sink is the destination for all unstructured logs emitted // from Go's standard library logger. These logs are common // in dependencies that are not designed specifically for use // in Caddy. Because it is global and unstructured, the sink // lacks most advanced features and customizations. Sink *StandardLibLog `json:"sink,omitempty"` // Logs are your logs, keyed by an arbitrary name of your // choosing. The default log can be customized by defining // a log called "default". You can further define other logs // and filter what kinds of entries they accept. Logs map[string]*CustomLog `json:"logs,omitempty"` // contains filtered or unexported fields }
Logging facilitates logging within Caddy.
By default, all logs at INFO level and higher are written to standard error ("stderr" writer) in a human-readable format ("console" encoder). The default log is called "default" and you can customize it. You can also define additional logs.
All defined logs accept all log entries by default, but you can filter by level and module/logger names. A logger's name is the same as the module's name, but a module may append to logger names for more specificity. For example, you can filter logs emitted only by HTTP handlers using the name "http.handlers", because all HTTP handler module names have that prefix.
Caddy logs (except the sink) are mostly zero-allocation, so they are very high-performing in terms of memory and CPU time. Enabling sampling can further increase throughput on extremely high-load servers.
type Module ¶
type Module interface { // This method indicates that the type is a Caddy // module. The returned ModuleInfo must have both // a name and a constructor function. This method // must not have any side-effects. CaddyModule() ModuleInfo }
Module is a type that is used as a Caddy module. In addition to this interface, most modules will implement some interface expected by their host module in order to be useful. To learn which interface(s) to implement, see the documentation for the host module. At a bare minimum, this interface, when implemented, only provides the module's ID and constructor function.
Modules will often implement additional interfaces including Provisioner, Validator, and CleanerUpper. If a module implements these interfaces, their methods are called during the module's lifespan.
When a module is loaded by a host module, the following happens: 1) ModuleInfo.New() is called to get a new instance of the module. 2) The module's configuration is unmarshaled into that instance. 3) If the module is a Provisioner, the Provision() method is called. 4) If the module is a Validator, the Validate() method is called. 5) The module will probably be type-asserted from interface{} to some other, more useful interface expected by the host module. For example, HTTP handler modules are type-asserted as caddyhttp.MiddlewareHandler values. 6) When a module's containing Context is canceled, if it is a CleanerUpper, its Cleanup() method is called.
type ModuleID ¶
type ModuleID string
ModuleID is a string that uniquely identifies a Caddy module. A module ID is lightly structured. It consists of dot-separated labels which form a simple hierarchy from left to right. The last label is the module name, and the labels before that constitute the namespace (or scope).
Thus, a module ID has the form: <namespace>.<id>
An ID with no dot has the empty namespace, which is appropriate for app modules (these are "top-level" modules that Caddy core loads and runs).
Module IDs should be lowercase and use underscore (_) instead of spaces.
Example valid names: - http - http.handlers.file_server - caddy.logging.encoders.json
type ModuleInfo ¶
type ModuleInfo struct { // ID is the "full name" of the module. It // must be unique and properly namespaced. ID ModuleID // New returns a pointer to a new, empty // instance of the module's type. This // function must not have any side-effects. New func() Module }
ModuleInfo represents a registered Caddy module.
func GetModule ¶
func GetModule(name string) (ModuleInfo, error)
GetModule returns module information from its ID (full name).
func GetModules ¶
func GetModules(scope string) []ModuleInfo
GetModules returns all modules in the given scope/namespace. For example, a scope of "foo" returns modules named "foo.bar", "foo.loo", but not "bar", "foo.bar.loo", etc. An empty scope returns top-level modules, for example "foo" or "bar". Partial scopes are not matched (i.e. scope "foo.ba" does not match name "foo.bar").
Because modules are registered to a map under the hood, the returned slice will be sorted to keep it deterministic.
func (ModuleInfo) String ¶
func (mi ModuleInfo) String() string
type ModuleMap ¶
type ModuleMap map[string]json.RawMessage
ModuleMap is a map that can contain multiple modules, where the map key is the module's name. (The namespace is usually read from an associated field's struct tag.) Because the module's name is given as the key in a module map, the name does not have to be given in the json.RawMessage.
type ParsedAddress ¶
ParsedAddress contains the individual components for a parsed network address of the form accepted by ParseNetworkAddress(). Network should be a network value accepted by Go's net package. Port ranges are given by [StartPort, EndPort].
func ParseNetworkAddress ¶
func ParseNetworkAddress(addr string) (ParsedAddress, error)
ParseNetworkAddress parses addr into its individual components. The input string is expected to be of the form "network/host:port-range" where any part is optional. The default network, if unspecified, is tcp. Port ranges are inclusive.
Network addresses are distinct from URLs and do not use URL syntax.
func (ParsedAddress) IsUnixNetwork ¶
func (pa ParsedAddress) IsUnixNetwork() bool
IsUnixNetwork returns true if pa.Network is unix, unixgram, or unixpacket.
func (ParsedAddress) JoinHostPort ¶
func (pa ParsedAddress) JoinHostPort(offset uint) string
JoinHostPort is like net.JoinHostPort, but where the port is StartPort + offset.
func (ParsedAddress) PortRangeSize ¶
func (pa ParsedAddress) PortRangeSize() uint
PortRangeSize returns how many ports are in pa's port range. Port ranges are inclusive, so the size is the difference of start and end ports plus one.
func (ParsedAddress) String ¶
func (pa ParsedAddress) String() string
String reconstructs the address string to the form expected by ParseNetworkAddress().
type Provisioner ¶
Provisioner is implemented by modules which may need to perform some additional "setup" steps immediately after being loaded. Provisioning should be fast (imperceptible running time). If any side-effects result in the execution of this function (e.g. creating global state, any other allocations which require garbage collection, opening files, starting goroutines etc.), be sure to clean up properly by implementing the CleanerUpper interface to avoid leaking resources.
type ReplacementFunc ¶
ReplacementFunc is a function that is called when a replacement is being performed. It receives the variable (i.e. placeholder name) and the value that will be the replacement, and returns the value that will actually be the replacement, or an error. Note that errors are sometimes ignored by replacers.
type Replacer ¶
type Replacer interface { Set(variable, value string) Delete(variable string) Map(ReplacerFunc) ReplaceAll(input, empty string) string ReplaceKnown(input, empty string) string ReplaceOrErr(input string, errOnEmpty, errOnUnknown bool) (string, error) ReplaceFunc(input string, f ReplacementFunc) (string, error) }
Replacer can replace values in strings.
type ReplacerFunc ¶
ReplacerFunc is a function that returns a replacement for the given key along with true if the function is able to service that key (even if the value is blank). If the function does not recognize the key, false should be returned.
type StandardLibLog ¶
type StandardLibLog struct { // The module that writes out log entries for the sink. WriterRaw json.RawMessage `json:"writer,omitempty" caddy:"namespace=caddy.logging.writers inline_key=output"` // contains filtered or unexported fields }
StandardLibLog configures the default Go standard library global logger in the log package. This is necessary because module dependencies which are not built specifically for Caddy will use the standard logger. This is also known as the "sink" logger.
type StderrWriter ¶
type StderrWriter struct{}
StderrWriter writes logs to standard error.
func (StderrWriter) CaddyModule ¶
func (StderrWriter) CaddyModule() ModuleInfo
CaddyModule returns the Caddy module information.
func (StderrWriter) OpenWriter ¶
func (StderrWriter) OpenWriter() (io.WriteCloser, error)
OpenWriter returns os.Stderr that can't be closed.
func (StderrWriter) String ¶
func (StderrWriter) String() string
func (StderrWriter) WriterKey ¶
func (StderrWriter) WriterKey() string
WriterKey returns a unique key representing stderr.
type StdoutWriter ¶
type StdoutWriter struct{}
StdoutWriter writes logs to standard out.
func (StdoutWriter) CaddyModule ¶
func (StdoutWriter) CaddyModule() ModuleInfo
CaddyModule returns the Caddy module information.
func (StdoutWriter) OpenWriter ¶
func (StdoutWriter) OpenWriter() (io.WriteCloser, error)
OpenWriter returns os.Stdout that can't be closed.
func (StdoutWriter) String ¶
func (StdoutWriter) String() string
func (StdoutWriter) WriterKey ¶
func (StdoutWriter) WriterKey() string
WriterKey returns a unique key representing stdout.
type StorageConverter ¶
StorageConverter is a type that can convert itself to a valid, usable certmagic.Storage value. (The value might be short-lived.) This interface allows us to adapt any CertMagic storage implementation into a consistent API for Caddy configuration.
type UsagePool ¶
UsagePool is a thread-safe map that pools values based on usage (reference counting). Values are only inserted if they do not already exist. There are two ways to add values to the pool:
- LoadOrStore will increment usage and store the value immediately if it does not already exist.
- LoadOrNew will atomically check for existence and construct the value immediately if it does not already exist, or increment the usage otherwise, then store that value in the pool. When the constructed value is finally deleted from the pool (when its usage reaches 0), it will be cleaned up by calling Destruct().
The use of LoadOrNew allows values to be created and reused and finally cleaned up only once, even though they may have many references throughout their lifespan. This is helpful, for example, when sharing thread-safe io.Writers that you only want to open and close once.
There is no way to overwrite existing keys in the pool without first deleting it as many times as it was stored. Deleting too many times will panic.
The implementation does not use a sync.Pool because UsagePool needs additional atomicity to run the constructor functions when creating a new value when LoadOrNew is used. (We could probably use sync.Pool but we'd still have to layer our own additional locks on top.)
An empty UsagePool is NOT safe to use; always call NewUsagePool() to make a new one.
func NewUsagePool ¶
func NewUsagePool() *UsagePool
NewUsagePool returns a new usage pool that is ready to use.
func (*UsagePool) Delete ¶
Delete decrements the usage count for key and removes the value from the underlying map if the usage is 0. It returns true if the usage count reached 0 and the value was deleted. It panics if the usage count drops below 0; always call Delete precisely as many times as LoadOrStore.
func (*UsagePool) LoadOrNew ¶
func (up *UsagePool) LoadOrNew(key interface{}, construct Constructor) (value interface{}, loaded bool, err error)
LoadOrNew loads the value associated with key from the pool if it already exists. If the key doesn't exist, it will call construct to create a new value and then stores that in the pool. An error is only returned if the constructor returns an error. The loaded or constructed value is returned. The loaded return value is true if the value already existed and was loaded, or false if it was newly constructed.
func (*UsagePool) LoadOrStore ¶
LoadOrStore loads the value associated with key from the pool if it already exists, or stores it if it does not exist. It returns the value that was either loaded or stored, and true if the value already existed and was
func (*UsagePool) Range ¶
Range iterates the pool similarly to how sync.Map.Range() does: it calls f for every key in the pool, and if f returns false, iteration is stopped. Ranging does not affect usage counts.
This method is somewhat naive and acquires a read lock on the entire pool during iteration, so do your best to make f() really fast, m'kay?
type Validator ¶
type Validator interface {
Validate() error
}
Validator is implemented by modules which can verify that their configurations are valid. This method will be called after Provision() (if implemented). Validation should always be fast (imperceptible running time) and an error should be returned only if the value's configuration is invalid.
type WriterOpener ¶
type WriterOpener interface { fmt.Stringer // WriterKey is a string that uniquely identifies this // writer configuration. It is not shown to humans. WriterKey() string // OpenWriter opens a log for writing. The writer // should be safe for concurrent use but need not // be synchronous. OpenWriter() (io.WriteCloser, error) }
WriterOpener is a module that can open a log writer. It can return a human-readable string representation of itself so that operators can understand where the logs are going.
Source Files ¶
Directories ¶
Path | Synopsis |
---|---|
caddy
Package main is the entry point of the Caddy application.
|
Package main is the entry point of the Caddy application. |
modules
|
|
caddyhttp/encode
Package encode implements an encoder middleware for Caddy.
|
Package encode implements an encoder middleware for Caddy. |
caddytls/distributedstek
Package distributedstek provides TLS session ticket ephemeral keys (STEKs) in a distributed fashion by utilizing configured storage for locking and key sharing.
|
Package distributedstek provides TLS session ticket ephemeral keys (STEKs) in a distributed fashion by utilizing configured storage for locking and key sharing. |
pkg
|
|