timestamp

package
v0.1.2-alpha Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jul 9, 2017 License: MIT Imports: 2 Imported by: 0

Documentation

Overview

Package timestamp is a generated protocol buffer package.

It is generated from these files:

timestamp/timestamp.proto

It has these top-level messages:

Timestamp

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type Timestamp

type Timestamp struct {
	*js.Object
}

A Timestamp represents a point in time independent of any time zone or calendar, represented as seconds and fractions of seconds at nanosecond resolution in UTC Epoch time. It is encoded using the Proleptic Gregorian Calendar which extends the Gregorian calendar backwards to year one. It is encoded assuming all minutes are 60 seconds long, i.e. leap seconds are "smeared" so that no leap second table is needed for interpretation. Range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings. See [https://www.ietf.org/rfc/rfc3339.txt](https://www.ietf.org/rfc/rfc3339.txt).

Examples

Example 1: Compute Timestamp from POSIX `time()`.

Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);

Example 2: Compute Timestamp from POSIX `gettimeofday()`.

struct timeval tv;
gettimeofday(&tv, NULL);

Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);

Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.

FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;

// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));

Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.

long millis = System.currentTimeMillis();

Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
    .setNanos((int) ((millis % 1000) * 1000000)).build();

Example 5: Compute Timestamp from current time in Python.

timestamp = Timestamp()
timestamp.GetCurrentTime()

JSON Mapping

In JSON format, the Timestamp type is encoded as a string in the [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required, though only UTC (as indicated by "Z") is presently supported.

For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.

In JavaScript, one can convert a Date object to this format using the standard [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString] method. In Python, a standard `datetime.datetime` object can be converted to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's [`ISODateTimeFormat.dateTime()`]( http://joda-time.sourceforge.net/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime()) to obtain a formatter capable of generating timestamps in this format.

func (*Timestamp) Deserialize

func (m *Timestamp) Deserialize(rawBytes []byte) (*Timestamp, error)

Deserialize unmarshals a Timestamp from a slice of bytes.

func (*Timestamp) GetNanos

func (m *Timestamp) GetNanos() int32

GetNanos gets the Nanos of the Timestamp. Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.

func (*Timestamp) GetSeconds

func (m *Timestamp) GetSeconds() int64

GetSeconds gets the Seconds of the Timestamp. Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.

func (*Timestamp) New

func (m *Timestamp) New(seconds int64, nanos int32) *Timestamp

New creates a new Timestamp. Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive. Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.

func (*Timestamp) Serialize

func (m *Timestamp) Serialize() ([]byte, error)

Serialize marshals Timestamp to a slice of bytes.

func (*Timestamp) SetNanos

func (m *Timestamp) SetNanos(v int32)

SetNanos sets the Nanos of the Timestamp. Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.

func (*Timestamp) SetSeconds

func (m *Timestamp) SetSeconds(v int64)

SetSeconds sets the Seconds of the Timestamp. Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL