Documentation ¶
Index ¶
- Constants
- func AtomicInstructionName(oc OpcodeAtomic) (ret string)
- func ExternTypeName(t ValueType) string
- func InstructionName(oc Opcode) string
- func MemoryPagesToBytesNum(pages uint32) (bytesNum uint64)
- func MiscInstructionName(oc OpcodeMisc) string
- func PagesToUnitOfBytes(pages uint32) string
- func RefTypeName(t RefType) (ret string)
- func SectionIDName(sectionID SectionID) string
- func SplitCallStack(ft *FunctionType, stack []uint64) (params []uint64, results []uint64, err error)
- func ValueTypeName(t ValueType) string
- func VectorInstructionName(oc OpcodeVec) (ret string)
- type Code
- type ConstantExpression
- type CustomSection
- type DataInstance
- type DataSegment
- type ElementInstance
- type ElementMode
- type ElementSegment
- type Engine
- type Export
- type ExternType
- type FunctionDefinition
- func (f *FunctionDefinition) DebugName() string
- func (f *FunctionDefinition) ExportNames() []string
- func (f *FunctionDefinition) GoFunction() interface{}
- func (f *FunctionDefinition) Import() (moduleName, name string, isImport bool)
- func (f *FunctionDefinition) Index() uint32
- func (f *FunctionDefinition) ModuleName() string
- func (f *FunctionDefinition) Name() string
- func (f *FunctionDefinition) ParamNames() []string
- func (f *FunctionDefinition) ParamTypes() []ValueType
- func (f *FunctionDefinition) ResultNames() []string
- func (f *FunctionDefinition) ResultTypes() []ValueType
- type FunctionType
- type FunctionTypeID
- type Global
- type GlobalInstance
- type GlobalType
- type HostFunc
- type HostFuncExporter
- type Import
- type Index
- type IndirectNameMap
- type Memory
- type MemoryDefinition
- func (f *MemoryDefinition) ExportNames() []string
- func (f *MemoryDefinition) Import() (moduleName, name string, isImport bool)
- func (f *MemoryDefinition) Index() uint32
- func (f *MemoryDefinition) Max() (max uint32, encoded bool)
- func (f *MemoryDefinition) Min() uint32
- func (f *MemoryDefinition) ModuleName() string
- type MemoryInstance
- func (m *MemoryInstance) Definition() api.MemoryDefinition
- func (m *MemoryInstance) Grow(delta uint32) (result uint32, ok bool)
- func (m *MemoryInstance) PageSize() (result uint32)
- func (m *MemoryInstance) Read(offset, byteCount uint32) ([]byte, bool)
- func (m *MemoryInstance) ReadByte(offset uint32) (byte, bool)
- func (m *MemoryInstance) ReadFloat32Le(offset uint32) (float32, bool)
- func (m *MemoryInstance) ReadFloat64Le(offset uint32) (float64, bool)
- func (m *MemoryInstance) ReadUint16Le(offset uint32) (uint16, bool)
- func (m *MemoryInstance) ReadUint32Le(offset uint32) (uint32, bool)
- func (m *MemoryInstance) ReadUint64Le(offset uint32) (uint64, bool)
- func (m *MemoryInstance) Size() uint32
- func (m *MemoryInstance) Write(offset uint32, val []byte) bool
- func (m *MemoryInstance) WriteByte(offset uint32, v byte) bool
- func (m *MemoryInstance) WriteFloat32Le(offset uint32, v float32) bool
- func (m *MemoryInstance) WriteFloat64Le(offset uint32, v float64) bool
- func (m *MemoryInstance) WriteString(offset uint32, val string) bool
- func (m *MemoryInstance) WriteUint16Le(offset uint32, v uint16) bool
- func (m *MemoryInstance) WriteUint32Le(offset, v uint32) bool
- func (m *MemoryInstance) WriteUint64Le(offset uint32, v uint64) bool
- type Module
- func (m *Module) AllDeclarations() (functions []Index, globals []GlobalType, memory *Memory, tables []Table, ...)
- func (m *Module) AssignModuleID(wasm []byte, listeners []experimental.FunctionListener, ...)
- func (m *Module) BuildMemoryDefinitions()
- func (m *Module) ExportedFunctions() map[string]api.FunctionDefinition
- func (m *Module) ExportedMemories() map[string]api.MemoryDefinition
- func (m *Module) FunctionDefinition(index Index) *FunctionDefinition
- func (m *Module) ImportedFunctions() (ret []api.FunctionDefinition)
- func (m *Module) ImportedMemories() (ret []api.MemoryDefinition)
- func (m *Module) SectionElementCount(sectionID SectionID) uint32
- func (m *Module) Validate(enabledFeatures api.CoreFeatures) error
- type ModuleEngine
- type ModuleID
- type ModuleInstance
- func (m *ModuleInstance) Close(ctx context.Context) (err error)
- func (m *ModuleInstance) CloseModuleOnCanceledOrTimeout(ctx context.Context) context.CancelFunc
- func (m *ModuleInstance) CloseWithCtxErr(ctx context.Context)
- func (m *ModuleInstance) CloseWithExitCode(ctx context.Context, exitCode uint32) (err error)
- func (m *ModuleInstance) ExportedFunction(name string) api.Function
- func (m *ModuleInstance) ExportedFunctionDefinitions() map[string]api.FunctionDefinition
- func (m *ModuleInstance) ExportedGlobal(name string) api.Global
- func (m *ModuleInstance) ExportedMemory(name string) api.Memory
- func (m *ModuleInstance) ExportedMemoryDefinitions() map[string]api.MemoryDefinition
- func (m *ModuleInstance) FailIfClosed() (err error)
- func (m *ModuleInstance) GetFunctionTypeID(t *FunctionType) FunctionTypeID
- func (m *ModuleInstance) Global(idx int) api.Global
- func (m *ModuleInstance) GlobalVal(idx Index) uint64
- func (m *ModuleInstance) IsClosed() bool
- func (m *ModuleInstance) LookupFunction(t *TableInstance, typeId FunctionTypeID, tableOffset Index) api.Function
- func (m *ModuleInstance) Memory() api.Memory
- func (m *ModuleInstance) Name() string
- func (m *ModuleInstance) NumGlobal() int
- func (m *ModuleInstance) String() string
- type NameAssoc
- type NameMap
- type NameMapAssoc
- type NameSection
- type Opcode
- type OpcodeAtomic
- type OpcodeMisc
- type OpcodeVec
- type RefType
- type Reference
- type SectionID
- type Store
- func (s *Store) CloseWithExitCode(ctx context.Context, exitCode uint32) (err error)
- func (s *Store) GetFunctionTypeID(t *FunctionType) (FunctionTypeID, error)
- func (s *Store) GetFunctionTypeIDs(ts []FunctionType) ([]FunctionTypeID, error)
- func (s *Store) Instantiate(ctx context.Context, module *Module, name string, sys *internalsys.Context, ...) (*ModuleInstance, error)
- func (s *Store) Module(moduleName string) api.Module
- type Table
- type TableInstance
- type ValueType
Constants ¶
const ( OpcodeUnreachableName = "unreachable" OpcodeNopName = "nop" OpcodeBlockName = "block" OpcodeLoopName = "loop" OpcodeIfName = "if" OpcodeElseName = "else" OpcodeEndName = "end" OpcodeBrName = "br" OpcodeBrIfName = "br_if" OpcodeBrTableName = "br_table" OpcodeReturnName = "return" OpcodeCallName = "call" OpcodeCallIndirectName = "call_indirect" OpcodeDropName = "drop" OpcodeSelectName = "select" OpcodeTypedSelectName = "typed_select" OpcodeLocalGetName = "local.get" OpcodeLocalSetName = "local.set" OpcodeLocalTeeName = "local.tee" OpcodeGlobalGetName = "global.get" OpcodeGlobalSetName = "global.set" OpcodeI32LoadName = "i32.load" OpcodeI64LoadName = "i64.load" OpcodeF32LoadName = "f32.load" OpcodeF64LoadName = "f64.load" OpcodeI32Load8SName = "i32.load8_s" OpcodeI32Load8UName = "i32.load8_u" OpcodeI32Load16SName = "i32.load16_s" OpcodeI32Load16UName = "i32.load16_u" OpcodeI64Load8SName = "i64.load8_s" OpcodeI64Load8UName = "i64.load8_u" OpcodeI64Load16SName = "i64.load16_s" OpcodeI64Load16UName = "i64.load16_u" OpcodeI64Load32SName = "i64.load32_s" OpcodeI64Load32UName = "i64.load32_u" OpcodeI32StoreName = "i32.store" OpcodeI64StoreName = "i64.store" OpcodeF32StoreName = "f32.store" OpcodeF64StoreName = "f64.store" OpcodeI32Store8Name = "i32.store8" OpcodeI32Store16Name = "i32.store16" OpcodeI64Store8Name = "i64.store8" OpcodeI64Store16Name = "i64.store16" OpcodeI64Store32Name = "i64.store32" OpcodeMemorySizeName = "memory.size" OpcodeMemoryGrowName = "memory.grow" OpcodeI32ConstName = "i32.const" OpcodeI64ConstName = "i64.const" OpcodeF32ConstName = "f32.const" OpcodeF64ConstName = "f64.const" OpcodeI32EqzName = "i32.eqz" OpcodeI32EqName = "i32.eq" OpcodeI32NeName = "i32.ne" OpcodeI32LtSName = "i32.lt_s" OpcodeI32LtUName = "i32.lt_u" OpcodeI32GtSName = "i32.gt_s" OpcodeI32GtUName = "i32.gt_u" OpcodeI32LeSName = "i32.le_s" OpcodeI32LeUName = "i32.le_u" OpcodeI32GeSName = "i32.ge_s" OpcodeI32GeUName = "i32.ge_u" OpcodeI64EqzName = "i64.eqz" OpcodeI64EqName = "i64.eq" OpcodeI64NeName = "i64.ne" OpcodeI64LtSName = "i64.lt_s" OpcodeI64LtUName = "i64.lt_u" OpcodeI64GtSName = "i64.gt_s" OpcodeI64GtUName = "i64.gt_u" OpcodeI64LeSName = "i64.le_s" OpcodeI64LeUName = "i64.le_u" OpcodeI64GeSName = "i64.ge_s" OpcodeI64GeUName = "i64.ge_u" OpcodeF32EqName = "f32.eq" OpcodeF32NeName = "f32.ne" OpcodeF32LtName = "f32.lt" OpcodeF32GtName = "f32.gt" OpcodeF32LeName = "f32.le" OpcodeF32GeName = "f32.ge" OpcodeF64EqName = "f64.eq" OpcodeF64NeName = "f64.ne" OpcodeF64LtName = "f64.lt" OpcodeF64GtName = "f64.gt" OpcodeF64LeName = "f64.le" OpcodeF64GeName = "f64.ge" OpcodeI32ClzName = "i32.clz" OpcodeI32CtzName = "i32.ctz" OpcodeI32PopcntName = "i32.popcnt" OpcodeI32AddName = "i32.add" OpcodeI32SubName = "i32.sub" OpcodeI32MulName = "i32.mul" OpcodeI32DivSName = "i32.div_s" OpcodeI32DivUName = "i32.div_u" OpcodeI32RemSName = "i32.rem_s" OpcodeI32RemUName = "i32.rem_u" OpcodeI32AndName = "i32.and" OpcodeI32OrName = "i32.or" OpcodeI32XorName = "i32.xor" OpcodeI32ShlName = "i32.shl" OpcodeI32ShrSName = "i32.shr_s" OpcodeI32ShrUName = "i32.shr_u" OpcodeI32RotlName = "i32.rotl" OpcodeI32RotrName = "i32.rotr" OpcodeI64ClzName = "i64.clz" OpcodeI64CtzName = "i64.ctz" OpcodeI64PopcntName = "i64.popcnt" OpcodeI64AddName = "i64.add" OpcodeI64SubName = "i64.sub" OpcodeI64MulName = "i64.mul" OpcodeI64DivSName = "i64.div_s" OpcodeI64DivUName = "i64.div_u" OpcodeI64RemSName = "i64.rem_s" OpcodeI64RemUName = "i64.rem_u" OpcodeI64AndName = "i64.and" OpcodeI64OrName = "i64.or" OpcodeI64XorName = "i64.xor" OpcodeI64ShlName = "i64.shl" OpcodeI64ShrSName = "i64.shr_s" OpcodeI64ShrUName = "i64.shr_u" OpcodeI64RotlName = "i64.rotl" OpcodeI64RotrName = "i64.rotr" OpcodeF32AbsName = "f32.abs" OpcodeF32NegName = "f32.neg" OpcodeF32CeilName = "f32.ceil" OpcodeF32FloorName = "f32.floor" OpcodeF32TruncName = "f32.trunc" OpcodeF32NearestName = "f32.nearest" OpcodeF32SqrtName = "f32.sqrt" OpcodeF32AddName = "f32.add" OpcodeF32SubName = "f32.sub" OpcodeF32MulName = "f32.mul" OpcodeF32DivName = "f32.div" OpcodeF32MinName = "f32.min" OpcodeF32MaxName = "f32.max" OpcodeF32CopysignName = "f32.copysign" OpcodeF64AbsName = "f64.abs" OpcodeF64NegName = "f64.neg" OpcodeF64CeilName = "f64.ceil" OpcodeF64FloorName = "f64.floor" OpcodeF64TruncName = "f64.trunc" OpcodeF64NearestName = "f64.nearest" OpcodeF64SqrtName = "f64.sqrt" OpcodeF64AddName = "f64.add" OpcodeF64SubName = "f64.sub" OpcodeF64MulName = "f64.mul" OpcodeF64DivName = "f64.div" OpcodeF64MinName = "f64.min" OpcodeF64MaxName = "f64.max" OpcodeF64CopysignName = "f64.copysign" OpcodeI32WrapI64Name = "i32.wrap_i64" OpcodeI32TruncF32SName = "i32.trunc_f32_s" OpcodeI32TruncF32UName = "i32.trunc_f32_u" OpcodeI32TruncF64SName = "i32.trunc_f64_s" OpcodeI32TruncF64UName = "i32.trunc_f64_u" OpcodeI64ExtendI32SName = "i64.extend_i32_s" OpcodeI64ExtendI32UName = "i64.extend_i32_u" OpcodeI64TruncF32SName = "i64.trunc_f32_s" OpcodeI64TruncF32UName = "i64.trunc_f32_u" OpcodeI64TruncF64SName = "i64.trunc_f64_s" OpcodeI64TruncF64UName = "i64.trunc_f64_u" OpcodeF32ConvertI32SName = "f32.convert_i32_s" OpcodeF32ConvertI32UName = "f32.convert_i32_u" OpcodeF32ConvertI64SName = "f32.convert_i64_s" OpcodeF32ConvertI64UName = "f32.convert_i64u" OpcodeF32DemoteF64Name = "f32.demote_f64" OpcodeF64ConvertI32SName = "f64.convert_i32_s" OpcodeF64ConvertI32UName = "f64.convert_i32_u" OpcodeF64ConvertI64SName = "f64.convert_i64_s" OpcodeF64ConvertI64UName = "f64.convert_i64_u" OpcodeF64PromoteF32Name = "f64.promote_f32" OpcodeI32ReinterpretF32Name = "i32.reinterpret_f32" OpcodeI64ReinterpretF64Name = "i64.reinterpret_f64" OpcodeF32ReinterpretI32Name = "f32.reinterpret_i32" OpcodeF64ReinterpretI64Name = "f64.reinterpret_i64" OpcodeRefNullName = "ref.null" OpcodeRefIsNullName = "ref.is_null" OpcodeRefFuncName = "ref.func" OpcodeTableGetName = "table.get" OpcodeTableSetName = "table.set" OpcodeI32Extend8SName = "i32.extend8_s" OpcodeI32Extend16SName = "i32.extend16_s" OpcodeI64Extend8SName = "i64.extend8_s" OpcodeI64Extend16SName = "i64.extend16_s" OpcodeI64Extend32SName = "i64.extend32_s" OpcodeMiscPrefixName = "misc_prefix" OpcodeVecPrefixName = "vector_prefix" OpcodeAtomicPrefixName = "atomic_prefix" )
const ( OpcodeI32TruncSatF32SName = "i32.trunc_sat_f32_s" OpcodeI32TruncSatF32UName = "i32.trunc_sat_f32_u" OpcodeI32TruncSatF64SName = "i32.trunc_sat_f64_s" OpcodeI32TruncSatF64UName = "i32.trunc_sat_f64_u" OpcodeI64TruncSatF32SName = "i64.trunc_sat_f32_s" OpcodeI64TruncSatF32UName = "i64.trunc_sat_f32_u" OpcodeI64TruncSatF64SName = "i64.trunc_sat_f64_s" OpcodeI64TruncSatF64UName = "i64.trunc_sat_f64_u" OpcodeMemoryInitName = "memory.init" OpcodeDataDropName = "data.drop" OpcodeMemoryCopyName = "memory.copy" OpcodeMemoryFillName = "memory.fill" OpcodeTableInitName = "table.init" OpcodeElemDropName = "elem.drop" OpcodeTableCopyName = "table.copy" OpcodeTableGrowName = "table.grow" OpcodeTableSizeName = "table.size" OpcodeTableFillName = "table.fill" )
const ( OpcodeVecV128LoadName = "v128.load" OpcodeVecV128Load8x8SName = "v128.load8x8_s" OpcodeVecV128Load8x8UName = "v128.load8x8_u" OpcodeVecV128Load16x4SName = "v128.load16x4_s" OpcodeVecV128Load16x4UName = "v128.load16x4_u" OpcodeVecV128Load32x2SName = "v128.load32x2_s" OpcodeVecV128Load32x2UName = "v128.load32x2_u" OpcodeVecV128Load8SplatName = "v128.load8_splat" OpcodeVecV128Load16SplatName = "v128.load16_splat" OpcodeVecV128Load32SplatName = "v128.load32_splat" OpcodeVecV128Load64SplatName = "v128.load64_splat" OpcodeVecV128Load32zeroName = "v128.load32_zero" OpcodeVecV128Load64zeroName = "v128.load64_zero" OpcodeVecV128StoreName = "v128.store" OpcodeVecV128Load8LaneName = "v128.load8_lane" OpcodeVecV128Load16LaneName = "v128.load16_lane" OpcodeVecV128Load32LaneName = "v128.load32_lane" OpcodeVecV128Load64LaneName = "v128.load64_lane" OpcodeVecV128Store8LaneName = "v128.store8_lane" OpcodeVecV128Store16LaneName = "v128.store16_lane" OpcodeVecV128Store32LaneName = "v128.store32_lane" OpcodeVecV128Store64LaneName = "v128.store64_lane" OpcodeVecV128ConstName = "v128.const" OpcodeVecV128i8x16ShuffleName = "v128.shuffle" OpcodeVecI8x16ExtractLaneSName = "i8x16.extract_lane_s" OpcodeVecI8x16ExtractLaneUName = "i8x16.extract_lane_u" OpcodeVecI8x16ReplaceLaneName = "i8x16.replace_lane" OpcodeVecI16x8ExtractLaneSName = "i16x8.extract_lane_s" OpcodeVecI16x8ExtractLaneUName = "i16x8.extract_lane_u" OpcodeVecI16x8ReplaceLaneName = "i16x8.replace_lane" OpcodeVecI32x4ExtractLaneName = "i32x4.extract_lane" OpcodeVecI32x4ReplaceLaneName = "i32x4.replace_lane" OpcodeVecI64x2ExtractLaneName = "i64x2.extract_lane" OpcodeVecI64x2ReplaceLaneName = "i64x2.replace_lane" OpcodeVecF32x4ExtractLaneName = "f32x4.extract_lane" OpcodeVecF32x4ReplaceLaneName = "f32x4.replace_lane" OpcodeVecF64x2ExtractLaneName = "f64x2.extract_lane" OpcodeVecF64x2ReplaceLaneName = "f64x2.replace_lane" OpcodeVecI8x16SwizzleName = "i8x16.swizzle" OpcodeVecI8x16SplatName = "i8x16.splat" OpcodeVecI16x8SplatName = "i16x8.splat" OpcodeVecI32x4SplatName = "i32x4.splat" OpcodeVecI64x2SplatName = "i64x2.splat" OpcodeVecF32x4SplatName = "f32x4.splat" OpcodeVecF64x2SplatName = "f64x2.splat" OpcodeVecI8x16EqName = "i8x16.eq" OpcodeVecI8x16NeName = "i8x16.ne" OpcodeVecI8x16LtSName = "i8x16.lt_s" OpcodeVecI8x16LtUName = "i8x16.lt_u" OpcodeVecI8x16GtSName = "i8x16.gt_s" OpcodeVecI8x16GtUName = "i8x16.gt_u" OpcodeVecI8x16LeSName = "i8x16.le_s" OpcodeVecI8x16LeUName = "i8x16.le_u" OpcodeVecI8x16GeSName = "i8x16.ge_s" OpcodeVecI8x16GeUName = "i8x16.ge_u" OpcodeVecI16x8EqName = "i16x8.eq" OpcodeVecI16x8NeName = "i16x8.ne" OpcodeVecI16x8LtSName = "i16x8.lt_s" OpcodeVecI16x8LtUName = "i16x8.lt_u" OpcodeVecI16x8GtSName = "i16x8.gt_s" OpcodeVecI16x8GtUName = "i16x8.gt_u" OpcodeVecI16x8LeSName = "i16x8.le_s" OpcodeVecI16x8LeUName = "i16x8.le_u" OpcodeVecI16x8GeSName = "i16x8.ge_s" OpcodeVecI16x8GeUName = "i16x8.ge_u" OpcodeVecI32x4EqName = "i32x4.eq" OpcodeVecI32x4NeName = "i32x4.ne" OpcodeVecI32x4LtSName = "i32x4.lt_s" OpcodeVecI32x4LtUName = "i32x4.lt_u" OpcodeVecI32x4GtSName = "i32x4.gt_s" OpcodeVecI32x4GtUName = "i32x4.gt_u" OpcodeVecI32x4LeSName = "i32x4.le_s" OpcodeVecI32x4LeUName = "i32x4.le_u" OpcodeVecI32x4GeSName = "i32x4.ge_s" OpcodeVecI32x4GeUName = "i32x4.ge_u" OpcodeVecI64x2EqName = "i64x2.eq" OpcodeVecI64x2NeName = "i64x2.ne" OpcodeVecI64x2LtSName = "i64x2.lt" OpcodeVecI64x2GtSName = "i64x2.gt" OpcodeVecI64x2LeSName = "i64x2.le" OpcodeVecI64x2GeSName = "i64x2.ge" OpcodeVecF32x4EqName = "f32x4.eq" OpcodeVecF32x4NeName = "f32x4.ne" OpcodeVecF32x4LtName = "f32x4.lt" OpcodeVecF32x4GtName = "f32x4.gt" OpcodeVecF32x4LeName = "f32x4.le" OpcodeVecF32x4GeName = "f32x4.ge" OpcodeVecF64x2EqName = "f64x2.eq" OpcodeVecF64x2NeName = "f64x2.ne" OpcodeVecF64x2LtName = "f64x2.lt" OpcodeVecF64x2GtName = "f64x2.gt" OpcodeVecF64x2LeName = "f64x2.le" OpcodeVecF64x2GeName = "f64x2.ge" OpcodeVecV128NotName = "v128.not" OpcodeVecV128AndName = "v128.and" OpcodeVecV128AndNotName = "v128.andnot" OpcodeVecV128OrName = "v128.or" OpcodeVecV128XorName = "v128.xor" OpcodeVecV128BitselectName = "v128.bitselect" OpcodeVecV128AnyTrueName = "v128.any_true" OpcodeVecI8x16AbsName = "i8x16.abs" OpcodeVecI8x16NegName = "i8x16.neg" OpcodeVecI8x16PopcntName = "i8x16.popcnt" OpcodeVecI8x16AllTrueName = "i8x16.all_true" OpcodeVecI8x16BitMaskName = "i8x16.bitmask" OpcodeVecI8x16NarrowI16x8SName = "i8x16.narrow_i16x8_s" OpcodeVecI8x16NarrowI16x8UName = "i8x16.narrow_i16x8_u" OpcodeVecI8x16ShlName = "i8x16.shl" OpcodeVecI8x16ShrSName = "i8x16.shr_s" OpcodeVecI8x16ShrUName = "i8x16.shr_u" OpcodeVecI8x16AddName = "i8x16.add" OpcodeVecI8x16AddSatSName = "i8x16.add_sat_s" OpcodeVecI8x16AddSatUName = "i8x16.add_sat_u" OpcodeVecI8x16SubName = "i8x16.sub" OpcodeVecI8x16SubSatSName = "i8x16.sub_s" OpcodeVecI8x16SubSatUName = "i8x16.sub_u" OpcodeVecI8x16MinSName = "i8x16.min_s" OpcodeVecI8x16MinUName = "i8x16.min_u" OpcodeVecI8x16MaxSName = "i8x16.max_s" OpcodeVecI8x16MaxUName = "i8x16.max_u" OpcodeVecI8x16AvgrUName = "i8x16.avgr_u" OpcodeVecI16x8ExtaddPairwiseI8x16SName = "i16x8.extadd_pairwise_i8x16_s" OpcodeVecI16x8ExtaddPairwiseI8x16UName = "i16x8.extadd_pairwise_i8x16_u" OpcodeVecI16x8AbsName = "i16x8.abs" OpcodeVecI16x8NegName = "i16x8.neg" OpcodeVecI16x8Q15mulrSatSName = "i16x8.q15mulr_sat_s" OpcodeVecI16x8AllTrueName = "i16x8.all_true" OpcodeVecI16x8BitMaskName = "i16x8.bitmask" OpcodeVecI16x8NarrowI32x4SName = "i16x8.narrow_i32x4_s" OpcodeVecI16x8NarrowI32x4UName = "i16x8.narrow_i32x4_u" OpcodeVecI16x8ExtendLowI8x16SName = "i16x8.extend_low_i8x16_s" OpcodeVecI16x8ExtendHighI8x16SName = "i16x8.extend_high_i8x16_s" OpcodeVecI16x8ExtendLowI8x16UName = "i16x8.extend_low_i8x16_u" OpcodeVecI16x8ExtendHighI8x16UName = "i16x8.extend_high_i8x16_u" OpcodeVecI16x8ShlName = "i16x8.shl" OpcodeVecI16x8ShrSName = "i16x8.shr_s" OpcodeVecI16x8ShrUName = "i16x8.shr_u" OpcodeVecI16x8AddName = "i16x8.add" OpcodeVecI16x8AddSatSName = "i16x8.add_sat_s" OpcodeVecI16x8AddSatUName = "i16x8.add_sat_u" OpcodeVecI16x8SubName = "i16x8.sub" OpcodeVecI16x8SubSatSName = "i16x8.sub_sat_s" OpcodeVecI16x8SubSatUName = "i16x8.sub_sat_u" OpcodeVecI16x8MulName = "i16x8.mul" OpcodeVecI16x8MinSName = "i16x8.min_s" OpcodeVecI16x8MinUName = "i16x8.min_u" OpcodeVecI16x8MaxSName = "i16x8.max_s" OpcodeVecI16x8MaxUName = "i16x8.max_u" OpcodeVecI16x8AvgrUName = "i16x8.avgr_u" OpcodeVecI16x8ExtMulLowI8x16SName = "i16x8.extmul_low_i8x16_s" OpcodeVecI16x8ExtMulHighI8x16SName = "i16x8.extmul_high_i8x16_s" OpcodeVecI16x8ExtMulLowI8x16UName = "i16x8.extmul_low_i8x16_u" OpcodeVecI16x8ExtMulHighI8x16UName = "i16x8.extmul_high_i8x16_u" OpcodeVecI32x4ExtaddPairwiseI16x8SName = "i32x4.extadd_pairwise_i16x8_s" OpcodeVecI32x4ExtaddPairwiseI16x8UName = "i32x4.extadd_pairwise_i16x8_u" OpcodeVecI32x4AbsName = "i32x4.abs" OpcodeVecI32x4NegName = "i32x4.neg" OpcodeVecI32x4AllTrueName = "i32x4.all_true" OpcodeVecI32x4BitMaskName = "i32x4.bitmask" OpcodeVecI32x4ExtendLowI16x8SName = "i32x4.extend_low_i16x8_s" OpcodeVecI32x4ExtendHighI16x8SName = "i32x4.extend_high_i16x8_s" OpcodeVecI32x4ExtendLowI16x8UName = "i32x4.extend_low_i16x8_u" OpcodeVecI32x4ExtendHighI16x8UName = "i32x4.extend_high_i16x8_u" OpcodeVecI32x4ShlName = "i32x4.shl" OpcodeVecI32x4ShrSName = "i32x4.shr_s" OpcodeVecI32x4ShrUName = "i32x4.shr_u" OpcodeVecI32x4AddName = "i32x4.add" OpcodeVecI32x4SubName = "i32x4.sub" OpcodeVecI32x4MulName = "i32x4.mul" OpcodeVecI32x4MinSName = "i32x4.min_s" OpcodeVecI32x4MinUName = "i32x4.min_u" OpcodeVecI32x4MaxSName = "i32x4.max_s" OpcodeVecI32x4MaxUName = "i32x4.max_u" OpcodeVecI32x4DotI16x8SName = "i32x4.dot_i16x8_s" OpcodeVecI32x4ExtMulLowI16x8SName = "i32x4.extmul_low_i16x8_s" OpcodeVecI32x4ExtMulHighI16x8SName = "i32x4.extmul_high_i16x8_s" OpcodeVecI32x4ExtMulLowI16x8UName = "i32x4.extmul_low_i16x8_u" OpcodeVecI32x4ExtMulHighI16x8UName = "i32x4.extmul_high_i16x8_u" OpcodeVecI64x2AbsName = "i64x2.abs" OpcodeVecI64x2NegName = "i64x2.neg" OpcodeVecI64x2AllTrueName = "i64x2.all_true" OpcodeVecI64x2BitMaskName = "i64x2.bitmask" OpcodeVecI64x2ExtendLowI32x4SName = "i64x2.extend_low_i32x4_s" OpcodeVecI64x2ExtendHighI32x4SName = "i64x2.extend_high_i32x4_s" OpcodeVecI64x2ExtendLowI32x4UName = "i64x2.extend_low_i32x4_u" OpcodeVecI64x2ExtendHighI32x4UName = "i64x2.extend_high_i32x4_u" OpcodeVecI64x2ShlName = "i64x2.shl" OpcodeVecI64x2ShrSName = "i64x2.shr_s" OpcodeVecI64x2ShrUName = "i64x2.shr_u" OpcodeVecI64x2AddName = "i64x2.add" OpcodeVecI64x2SubName = "i64x2.sub" OpcodeVecI64x2MulName = "i64x2.mul" OpcodeVecI64x2ExtMulLowI32x4SName = "i64x2.extmul_low_i32x4_s" OpcodeVecI64x2ExtMulHighI32x4SName = "i64x2.extmul_high_i32x4_s" OpcodeVecI64x2ExtMulLowI32x4UName = "i64x2.extmul_low_i32x4_u" OpcodeVecI64x2ExtMulHighI32x4UName = "i64x2.extmul_high_i32x4_u" OpcodeVecF32x4CeilName = "f32x4.ceil" OpcodeVecF32x4FloorName = "f32x4.floor" OpcodeVecF32x4TruncName = "f32x4.trunc" OpcodeVecF32x4NearestName = "f32x4.nearest" OpcodeVecF32x4AbsName = "f32x4.abs" OpcodeVecF32x4NegName = "f32x4.neg" OpcodeVecF32x4SqrtName = "f32x4.sqrt" OpcodeVecF32x4AddName = "f32x4.add" OpcodeVecF32x4SubName = "f32x4.sub" OpcodeVecF32x4MulName = "f32x4.mul" OpcodeVecF32x4DivName = "f32x4.div" OpcodeVecF32x4MinName = "f32x4.min" OpcodeVecF32x4MaxName = "f32x4.max" OpcodeVecF32x4PminName = "f32x4.pmin" OpcodeVecF32x4PmaxName = "f32x4.pmax" OpcodeVecF64x2CeilName = "f64x2.ceil" OpcodeVecF64x2FloorName = "f64x2.floor" OpcodeVecF64x2TruncName = "f64x2.trunc" OpcodeVecF64x2NearestName = "f64x2.nearest" OpcodeVecF64x2AbsName = "f64x2.abs" OpcodeVecF64x2NegName = "f64x2.neg" OpcodeVecF64x2SqrtName = "f64x2.sqrt" OpcodeVecF64x2AddName = "f64x2.add" OpcodeVecF64x2SubName = "f64x2.sub" OpcodeVecF64x2MulName = "f64x2.mul" OpcodeVecF64x2DivName = "f64x2.div" OpcodeVecF64x2MinName = "f64x2.min" OpcodeVecF64x2MaxName = "f64x2.max" OpcodeVecF64x2PminName = "f64x2.pmin" OpcodeVecF64x2PmaxName = "f64x2.pmax" OpcodeVecI32x4TruncSatF32x4SName = "i32x4.trunc_sat_f32x4_s" OpcodeVecI32x4TruncSatF32x4UName = "i32x4.trunc_sat_f32x4_u" OpcodeVecF32x4ConvertI32x4SName = "f32x4.convert_i32x4_s" OpcodeVecF32x4ConvertI32x4UName = "f32x4.convert_i32x4_u" OpcodeVecI32x4TruncSatF64x2SZeroName = "i32x4.trunc_sat_f64x2_s_zero" OpcodeVecI32x4TruncSatF64x2UZeroName = "i32x4.trunc_sat_f64x2_u_zero" OpcodeVecF64x2ConvertLowI32x4SName = "f64x2.convert_low_i32x4_s" OpcodeVecF64x2ConvertLowI32x4UName = "f64x2.convert_low_i32x4_u" OpcodeVecF32x4DemoteF64x2ZeroName = "f32x4.demote_f64x2_zero" OpcodeVecF64x2PromoteLowF32x4ZeroName = "f64x2.promote_low_f32x4" )
const ( OpcodeAtomicMemoryNotifyName = "memory.atomic.notify" OpcodeAtomicMemoryWait32Name = "memory.atomic.wait32" OpcodeAtomicMemoryWait64Name = "memory.atomic.wait64" OpcodeAtomicFenceName = "atomic.fence" OpcodeAtomicI32LoadName = "i32.atomic.load" OpcodeAtomicI64LoadName = "i64.atomic.load" OpcodeAtomicI32Load8UName = "i32.atomic.load8_u" OpcodeAtomicI32Load16UName = "i32.atomic.load16_u" OpcodeAtomicI64Load8UName = "i64.atomic.load8_u" OpcodeAtomicI64Load16UName = "i64.atomic.load16_u" OpcodeAtomicI64Load32UName = "i64.atomic.load32_u" OpcodeAtomicI32StoreName = "i32.atomic.store" OpcodeAtomicI64StoreName = "i64.atomic.store" OpcodeAtomicI32Store8Name = "i32.atomic.store8" OpcodeAtomicI32Store16Name = "i32.atomic.store16" OpcodeAtomicI64Store8Name = "i64.atomic.store8" OpcodeAtomicI64Store16Name = "i64.atomic.store16" OpcodeAtomicI64Store32Name = "i64.atomic.store32" OpcodeAtomicI32RmwAddName = "i32.atomic.rmw.add" OpcodeAtomicI64RmwAddName = "i64.atomic.rmw.add" OpcodeAtomicI32Rmw8AddUName = "i32.atomic.rmw8.add_u" OpcodeAtomicI32Rmw16AddUName = "i32.atomic.rmw16.add_u" OpcodeAtomicI64Rmw8AddUName = "i64.atomic.rmw8.add_u" OpcodeAtomicI64Rmw16AddUName = "i64.atomic.rmw16.add_u" OpcodeAtomicI64Rmw32AddUName = "i64.atomic.rmw32.add_u" OpcodeAtomicI32RmwSubName = "i32.atomic.rmw.sub" OpcodeAtomicI64RmwSubName = "i64.atomic.rmw.sub" OpcodeAtomicI32Rmw8SubUName = "i32.atomic.rmw8.sub_u" OpcodeAtomicI32Rmw16SubUName = "i32.atomic.rmw16.sub_u" OpcodeAtomicI64Rmw8SubUName = "i64.atomic.rmw8.sub_u" OpcodeAtomicI64Rmw16SubUName = "i64.atomic.rmw16.sub_u" OpcodeAtomicI64Rmw32SubUName = "i64.atomic.rmw32.sub_u" OpcodeAtomicI32RmwAndName = "i32.atomic.rmw.and" OpcodeAtomicI64RmwAndName = "i64.atomic.rmw.and" OpcodeAtomicI32Rmw8AndUName = "i32.atomic.rmw8.and_u" OpcodeAtomicI32Rmw16AndUName = "i32.atomic.rmw16.and_u" OpcodeAtomicI64Rmw8AndUName = "i64.atomic.rmw8.and_u" OpcodeAtomicI64Rmw16AndUName = "i64.atomic.rmw16.and_u" OpcodeAtomicI64Rmw32AndUName = "i64.atomic.rmw32.and_u" OpcodeAtomicI32RmwOrName = "i32.atomic.rmw.or" OpcodeAtomicI64RmwOrName = "i64.atomic.rmw.or" OpcodeAtomicI32Rmw8OrUName = "i32.atomic.rmw8.or_u" OpcodeAtomicI32Rmw16OrUName = "i32.atomic.rmw16.or_u" OpcodeAtomicI64Rmw8OrUName = "i64.atomic.rmw8.or_u" OpcodeAtomicI64Rmw16OrUName = "i64.atomic.rmw16.or_u" OpcodeAtomicI64Rmw32OrUName = "i64.atomic.rmw32.or_u" OpcodeAtomicI32RmwXorName = "i32.atomic.rmw.xor" OpcodeAtomicI64RmwXorName = "i64.atomic.rmw.xor" OpcodeAtomicI32Rmw8XorUName = "i32.atomic.rmw8.xor_u" OpcodeAtomicI32Rmw16XorUName = "i32.atomic.rmw16.xor_u" OpcodeAtomicI64Rmw8XorUName = "i64.atomic.rmw8.xor_u" OpcodeAtomicI64Rmw16XorUName = "i64.atomic.rmw16.xor_u" OpcodeAtomicI64Rmw32XorUName = "i64.atomic.rmw32.xor_u" OpcodeAtomicI32RmwXchgName = "i32.atomic.rmw.xchg" OpcodeAtomicI64RmwXchgName = "i64.atomic.rmw.xchg" OpcodeAtomicI32Rmw8XchgUName = "i32.atomic.rmw8.xchg_u" OpcodeAtomicI32Rmw16XchgUName = "i32.atomic.rmw16.xchg_u" OpcodeAtomicI64Rmw8XchgUName = "i64.atomic.rmw8.xchg_u" OpcodeAtomicI64Rmw16XchgUName = "i64.atomic.rmw16.xchg_u" OpcodeAtomicI64Rmw32XchgUName = "i64.atomic.rmw32.xchg_u" OpcodeAtomicI32RmwCmpxchgName = "i32.atomic.rmw.cmpxchg" OpcodeAtomicI64RmwCmpxchgName = "i64.atomic.rmw.cmpxchg" OpcodeAtomicI32Rmw8CmpxchgUName = "i32.atomic.rmw8.cmpxchg_u" OpcodeAtomicI32Rmw16CmpxchgUName = "i32.atomic.rmw16.cmpxchg_u" OpcodeAtomicI64Rmw8CmpxchgUName = "i64.atomic.rmw8.cmpxchg_u" OpcodeAtomicI64Rmw16CmpxchgUName = "i64.atomic.rmw16.cmpxchg_u" OpcodeAtomicI64Rmw32CmpxchgUName = "i64.atomic.rmw32.cmpxchg_u" )
const ( // MemoryPageSize is the unit of memory length in WebAssembly, // and is defined as 2^16 = 65536. // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-instances%E2%91%A0 MemoryPageSize = uint32(65536) // MemoryLimitPages is maximum number of pages defined (2^16). // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#grow-mem MemoryLimitPages = uint32(65536) // MemoryPageSizeInBits satisfies the relation: "1 << MemoryPageSizeInBits == MemoryPageSize". MemoryPageSizeInBits = 16 )
const ( MaximumGlobals = uint32(1 << 27) MaximumFunctionIndex = uint32(1 << 27) MaximumTableIndex = uint32(1 << 27) )
The wazero specific limitation described at RATIONALE.md. TL;DR; We multiply by 8 (to get offsets in bytes) and the multiplication result must be less than 32bit max
const ( ValueTypeI32 = api.ValueTypeI32 ValueTypeI64 = api.ValueTypeI64 ValueTypeF32 = api.ValueTypeF32 ValueTypeF64 = api.ValueTypeF64 // TODO: ValueTypeV128 is not exposed in the api pkg yet. ValueTypeV128 ValueType = 0x7b // TODO: ValueTypeFuncref is not exposed in the api pkg yet. ValueTypeFuncref ValueType = 0x70 ValueTypeExternref = api.ValueTypeExternref )
const ( ExternTypeFunc = api.ExternTypeFunc ExternTypeFuncName = api.ExternTypeFuncName ExternTypeTable = api.ExternTypeTable ExternTypeTableName = api.ExternTypeTableName ExternTypeMemory = api.ExternTypeMemory ExternTypeMemoryName = api.ExternTypeMemoryName ExternTypeGlobal = api.ExternTypeGlobal ExternTypeGlobalName = api.ExternTypeGlobalName )
const ( // RefTypeFuncref represents a reference to a function. RefTypeFuncref = ValueTypeFuncref // RefTypeExternref represents a reference to a host object, which is not currently supported in wazero. RefTypeExternref = ValueTypeExternref )
Variables ¶
This section is empty.
Functions ¶
func AtomicInstructionName ¶
func AtomicInstructionName(oc OpcodeAtomic) (ret string)
AtomicInstructionName returns the instruction name corresponding to the atomic Opcode.
func ExternTypeName ¶
ExternTypeName is an alias of api.ExternTypeName defined to simplify imports.
func InstructionName ¶
InstructionName returns the instruction corresponding to this binary Opcode. See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#a7-index-of-instructions
func MemoryPagesToBytesNum ¶
MemoryPagesToBytesNum converts the given pages into the number of bytes contained in these pages.
func MiscInstructionName ¶
func MiscInstructionName(oc OpcodeMisc) string
MiscInstructionName returns the instruction corresponding to this miscellaneous Opcode.
func PagesToUnitOfBytes ¶
PagesToUnitOfBytes converts the pages to a human-readable form similar to what's specified. e.g. 1 -> "64Ki"
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-instances%E2%91%A0
func RefTypeName ¶
func SectionIDName ¶
SectionIDName returns the canonical name of a module section. https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#sections%E2%91%A0
func SplitCallStack ¶
func SplitCallStack(ft *FunctionType, stack []uint64) (params []uint64, results []uint64, err error)
SplitCallStack returns the input stack resliced to the count of params and results, or errors if it isn't long enough for either.
func ValueTypeName ¶
ValueTypeName is an alias of api.ValueTypeName defined to simplify imports.
func VectorInstructionName ¶
VectorInstructionName returns the instruction name corresponding to the vector Opcode.
Types ¶
type Code ¶
type Code struct { // LocalTypes are any function-scoped variables in insertion order. // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-local LocalTypes []ValueType // Body is a sequence of expressions ending in OpcodeEnd // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-expr Body []byte // GoFunc is non-nil when IsHostFunction and defined in go, either // api.GoFunction or api.GoModuleFunction. When present, LocalTypes and Body must // be nil. // // Note: This has no serialization format, so is not encodable. // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#host-functions%E2%91%A2 GoFunc interface{} // BodyOffsetInCodeSection is the offset of the beginning of the body in the code section. // This is used for DWARF based stack trace where a program counter represents an offset in code section. BodyOffsetInCodeSection uint64 }
Code is an entry in the Module.CodeSection containing the locals and body of the function. See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-code
func MustParseGoReflectFuncCode ¶
func MustParseGoReflectFuncCode(fn interface{}) Code
MustParseGoReflectFuncCode parses Code from the go function or panics.
Exposing this simplifies FunctionDefinition of host functions in built-in host modules and tests.
type ConstantExpression ¶
type CustomSection ¶
CustomSection contains the name and raw data of a custom section.
type DataInstance ¶
type DataInstance = []byte
DataInstance holds bytes corresponding to the data segment in a module.
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/runtime.html#data-instances
type DataSegment ¶
type DataSegment struct { OffsetExpression ConstantExpression Init []byte Passive bool }
func (*DataSegment) IsPassive ¶
func (d *DataSegment) IsPassive() bool
IsPassive returns true if this data segment is "passive" in the sense that memory offset and index is determined at runtime and used by OpcodeMemoryInitName instruction in the bulk memory operations proposal.
type ElementInstance ¶
type ElementInstance = []Reference
ElementInstance represents an element instance in a module.
See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/runtime.html#element-instances
type ElementMode ¶
type ElementMode = byte
ElementMode represents a mode of element segment which is either active, passive or declarative.
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/syntax/modules.html#element-segments
const ( // ElementModeActive is the mode which requires the runtime to initialize table with the contents in .Init field combined with OffsetExpr. ElementModeActive ElementMode = iota // ElementModePassive is the mode which doesn't require the runtime to initialize table, and only used with OpcodeTableInitName. ElementModePassive // ElementModeDeclarative is introduced in reference-types proposal which can be used to declare function indexes used by OpcodeRefFunc. ElementModeDeclarative )
type ElementSegment ¶
type ElementSegment struct { // OffsetExpr returns the table element offset to apply to Init indices. // Note: This can be validated prior to instantiation unless it includes OpcodeGlobalGet (an imported global). OffsetExpr ConstantExpression // TableIndex is the table's index to which this element segment is applied. // Note: This is used if and only if the Mode is active. TableIndex Index // Init indices are (nullable) table elements where each index is the function index by which the module initialize the table. Init []Index // Type holds the type of this element segment, which is the RefType in WebAssembly 2.0. Type RefType // Mode is the mode of this element segment. Mode ElementMode }
ElementSegment are initialization instructions for a TableInstance
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#syntax-elem
func (*ElementSegment) IsActive ¶
func (e *ElementSegment) IsActive() bool
IsActive returns true if the element segment is "active" mode which requires the runtime to initialize table with the contents in .Init field.
type Engine ¶
type Engine interface { // Close closes this engine, and releases all the compiled cache. Close() (err error) // CompileModule implements the same method as documented on wasm.Engine. CompileModule(ctx context.Context, module *Module, listeners []experimental.FunctionListener, ensureTermination bool) error // CompiledModuleCount is exported for testing, to track the size of the compilation cache. CompiledModuleCount() uint32 // DeleteCompiledModule releases compilation caches for the given module (source). // Note: it is safe to call this function for a module from which module instances are instantiated even when these // module instances have outstanding calls. DeleteCompiledModule(module *Module) // NewModuleEngine compiles down the function instances in a module, and returns ModuleEngine for the module. // // * module is the source module from which moduleFunctions are instantiated. This is used for caching. // * instance is the *ModuleInstance which is created from `module`. // // Note: Input parameters must be pre-validated with wasm.Module Validate, to ensure no fields are invalid // due to reasons such as out-of-bounds. NewModuleEngine(module *Module, instance *ModuleInstance) (ModuleEngine, error) }
Engine is a Store-scoped mechanism to compile functions declared or imported by a module. This is a top-level type implemented by an interpreter or compiler.
type Export ¶
type Export struct { Type ExternType // Name is what the host refers to this definition as. Name string // Index is the index of the definition to export, the index is by Type // e.g. If ExternTypeFunc, this is a position in the function index. Index Index }
Export is the binary representation of an export indicated by Type See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-export
type ExternType ¶
type ExternType = api.ExternType
ExternType is an alias of api.ExternType defined to simplify imports.
type FunctionDefinition ¶
type FunctionDefinition struct { internalapi.WazeroOnlyType // Debugname is exported for testing purpose. Debugname string // Functype is exported for testing purpose. Functype *FunctionType // contains filtered or unexported fields }
FunctionDefinition implements api.FunctionDefinition
func (*FunctionDefinition) DebugName ¶
func (f *FunctionDefinition) DebugName() string
DebugName implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) ExportNames ¶
func (f *FunctionDefinition) ExportNames() []string
ExportNames implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) GoFunction ¶
func (f *FunctionDefinition) GoFunction() interface{}
GoFunction implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) Import ¶
func (f *FunctionDefinition) Import() (moduleName, name string, isImport bool)
Import implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) Index ¶
func (f *FunctionDefinition) Index() uint32
Index implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) ModuleName ¶
func (f *FunctionDefinition) ModuleName() string
ModuleName implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) Name ¶
func (f *FunctionDefinition) Name() string
Name implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) ParamNames ¶
func (f *FunctionDefinition) ParamNames() []string
ParamNames implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) ParamTypes ¶
func (f *FunctionDefinition) ParamTypes() []ValueType
ParamTypes implements api.FunctionDefinition ParamTypes.
func (*FunctionDefinition) ResultNames ¶
func (f *FunctionDefinition) ResultNames() []string
ResultNames implements the same method as documented on api.FunctionDefinition.
func (*FunctionDefinition) ResultTypes ¶
func (f *FunctionDefinition) ResultTypes() []ValueType
ResultTypes implements api.FunctionDefinition ResultTypes.
type FunctionType ¶
type FunctionType struct { // Params are the possibly empty sequence of value types accepted by a function with this signature. Params []ValueType // Results are the possibly empty sequence of value types returned by a function with this signature. // // Note: In WebAssembly 1.0 (20191205), there can be at most one result. // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#result-types%E2%91%A0 Results []ValueType // ParamNumInUint64 is the number of uint64 values requires to represent the Wasm param type. ParamNumInUint64 int // ResultsNumInUint64 is the number of uint64 values requires to represent the Wasm result type. ResultNumInUint64 int // contains filtered or unexported fields }
FunctionType is a possibly empty function signature.
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#function-types%E2%91%A0
func DecodeBlockType ¶
func DecodeBlockType(types []FunctionType, r *bytes.Reader, enabledFeatures api.CoreFeatures) (*FunctionType, uint64, error)
DecodeBlockType decodes the type index from a positive 33-bit signed integer. Negative numbers indicate up to one WebAssembly 1.0 (20191205) compatible result type. Positive numbers are decoded when `enabledFeatures` include CoreFeatureMultiValue and include an index in the Module.TypeSection.
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-blocktype See https://github.com/WebAssembly/spec/blob/wg-2.0.draft1/proposals/multi-value/Overview.md
func (*FunctionType) CacheNumInUint64 ¶
func (f *FunctionType) CacheNumInUint64()
func (*FunctionType) EqualsSignature ¶
func (f *FunctionType) EqualsSignature(params []ValueType, results []ValueType) bool
EqualsSignature returns true if the function type has the same parameters and results.
func (*FunctionType) String ¶
func (f *FunctionType) String() string
String implements fmt.Stringer.
type FunctionTypeID ¶
type FunctionTypeID uint32
FunctionTypeID is a uniquely assigned integer for a function type. This is wazero specific runtime object and specific to a store, and used at runtime to do type-checks on indirect function calls.
type Global ¶
type Global struct { Type GlobalType Init ConstantExpression }
type GlobalInstance ¶
type GlobalInstance struct { Type GlobalType // Val holds a 64-bit representation of the actual value. // If me is non-nil, the value will not be updated and the current value is stored in the module engine. Val uint64 // ValHi is only used for vector type globals, and holds the higher bits of the vector. // If me is non-nil, the value will not be updated and the current value is stored in the module engine. ValHi uint64 // Me is the module engine that owns this global instance. // The .Val and .ValHi fields are only valid when me is nil. // If me is non-nil, the value is stored in the module engine. Me ModuleEngine Index Index }
GlobalInstance represents a global instance in a store. See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#global-instances%E2%91%A0
func (*GlobalInstance) String ¶
func (g *GlobalInstance) String() string
String implements api.Global.
func (*GlobalInstance) Value ¶
func (g *GlobalInstance) Value() (uint64, uint64)
type GlobalType ¶
type HostFunc ¶
type HostFunc struct { // ExportName is the only value returned by api.FunctionDefinition. ExportName string // Name is equivalent to the same method on api.FunctionDefinition. Name string // ParamTypes is equivalent to the same method on api.FunctionDefinition. ParamTypes []ValueType // ParamNames is equivalent to the same method on api.FunctionDefinition. ParamNames []string // ResultTypes is equivalent to the same method on api.FunctionDefinition. ResultTypes []ValueType // ResultNames is equivalent to the same method on api.FunctionDefinition. ResultNames []string // Code is the equivalent function in the SectionIDCode. Code Code }
HostFunc is a function with an inlined type, used for NewHostModule. Any corresponding FunctionType will be reused or added to the Module.
func (*HostFunc) WithGoModuleFunc ¶
func (f *HostFunc) WithGoModuleFunc(fn api.GoModuleFunc) *HostFunc
WithGoModuleFunc returns a copy of the function, replacing its Code.GoFunc.
type HostFuncExporter ¶
type HostFuncExporter interface {
ExportHostFunc(*HostFunc)
}
type Import ¶
type Import struct { Type ExternType // Module is the possibly empty primary namespace of this import Module string // Module is the possibly empty secondary namespace of this import Name string // DescFunc is the index in Module.TypeSection when Type equals ExternTypeFunc DescFunc Index // DescTable is the inlined Table when Type equals ExternTypeTable DescTable Table // DescMem is the inlined Memory when Type equals ExternTypeMemory DescMem *Memory // DescGlobal is the inlined GlobalType when Type equals ExternTypeGlobal DescGlobal GlobalType // IndexPerType has the index of this import per ExternType. IndexPerType Index }
Import is the binary representation of an import indicated by Type See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-import
type Index ¶
type Index = uint32
Index is the offset in an index, not necessarily an absolute position in a Module section. This is because indexs are often preceded by a corresponding type in the Module.ImportSection.
For example, the function index starts with any ExternTypeFunc in the Module.ImportSection followed by the Module.FunctionSection
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-index
const ( // ElementInitNullReference represents the null reference in ElementSegment's Init. // In Wasm spec, an init item represents either Function's Index or null reference, // and in wazero, we limit the maximum number of functions available in a module to // MaximumFunctionIndex. Therefore, it is safe to use 1 << 31 to represent the null // reference in Element segments. ElementInitNullReference Index = 1 << 31 // ElementInitImportedGlobalFunctionReference represents an init item which is resolved via an imported global constexpr. // The actual function reference stored at Global is only known at instantiation-time, so we set this flag // to items of ElementSegment.Init at binary decoding, and unwrap this flag at instantiation to resolve the value. // // This might collide the init element resolved via ref.func instruction which is resolved with the func index at decoding, // but in practice, that is not allowed in wazero thanks to our limit MaximumFunctionIndex. Thus, it is safe to set this flag // in init element to indicate as such. ElementInitImportedGlobalFunctionReference Index = 1 << 30 )
type IndirectNameMap ¶
type IndirectNameMap []NameMapAssoc
IndirectNameMap associates an index with an association of names.
Note: IndirectNameMap is unique by NameMapAssoc.Index, but NameMapAssoc.NameMap needn't be unique. Note: When encoding in the Binary format, this must be ordered by NameMapAssoc.Index https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-indirectnamemap
type Memory ¶
type Memory struct {
Min, Cap, Max uint32
// IsMaxEncoded true if the Max is encoded in the original binary.
IsMaxEncoded bool
}
Memory describes the limits of pages (64KB) in a memory.
type MemoryDefinition ¶
type MemoryDefinition struct { internalapi.WazeroOnlyType // contains filtered or unexported fields }
MemoryDefinition implements api.MemoryDefinition
func (*MemoryDefinition) ExportNames ¶
func (f *MemoryDefinition) ExportNames() []string
ExportNames implements the same method as documented on api.MemoryDefinition.
func (*MemoryDefinition) Import ¶
func (f *MemoryDefinition) Import() (moduleName, name string, isImport bool)
Import implements the same method as documented on api.MemoryDefinition.
func (*MemoryDefinition) Index ¶
func (f *MemoryDefinition) Index() uint32
Index implements the same method as documented on api.MemoryDefinition.
func (*MemoryDefinition) Max ¶
func (f *MemoryDefinition) Max() (max uint32, encoded bool)
Max implements the same method as documented on api.MemoryDefinition.
func (*MemoryDefinition) Min ¶
func (f *MemoryDefinition) Min() uint32
Min implements the same method as documented on api.MemoryDefinition.
func (*MemoryDefinition) ModuleName ¶
func (f *MemoryDefinition) ModuleName() string
ModuleName implements the same method as documented on api.MemoryDefinition.
type MemoryInstance ¶
type MemoryInstance struct { internalapi.WazeroOnlyType Buffer []byte Min, Cap, Max uint32 // contains filtered or unexported fields }
MemoryInstance represents a memory instance in a store, and implements api.Memory.
Note: In WebAssembly 1.0 (20191205), there may be up to one Memory per store, which means the precise memory is always wasm.Store Memories index zero: `store.Memories[0]` See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-instances%E2%91%A0.
func NewMemoryInstance ¶
func NewMemoryInstance(memSec *Memory) *MemoryInstance
NewMemoryInstance creates a new instance based on the parameters in the SectionIDMemory.
func (*MemoryInstance) Definition ¶
func (m *MemoryInstance) Definition() api.MemoryDefinition
Definition implements the same method as documented on api.Memory.
func (*MemoryInstance) Grow ¶
func (m *MemoryInstance) Grow(delta uint32) (result uint32, ok bool)
Grow implements the same method as documented on api.Memory.
func (*MemoryInstance) PageSize ¶
func (m *MemoryInstance) PageSize() (result uint32)
PageSize returns the current memory buffer size in pages.
func (*MemoryInstance) Read ¶
func (m *MemoryInstance) Read(offset, byteCount uint32) ([]byte, bool)
Read implements the same method as documented on api.Memory.
func (*MemoryInstance) ReadByte ¶
func (m *MemoryInstance) ReadByte(offset uint32) (byte, bool)
ReadByte implements the same method as documented on api.Memory.
func (*MemoryInstance) ReadFloat32Le ¶
func (m *MemoryInstance) ReadFloat32Le(offset uint32) (float32, bool)
ReadFloat32Le implements the same method as documented on api.Memory.
func (*MemoryInstance) ReadFloat64Le ¶
func (m *MemoryInstance) ReadFloat64Le(offset uint32) (float64, bool)
ReadFloat64Le implements the same method as documented on api.Memory.
func (*MemoryInstance) ReadUint16Le ¶
func (m *MemoryInstance) ReadUint16Le(offset uint32) (uint16, bool)
ReadUint16Le implements the same method as documented on api.Memory.
func (*MemoryInstance) ReadUint32Le ¶
func (m *MemoryInstance) ReadUint32Le(offset uint32) (uint32, bool)
ReadUint32Le implements the same method as documented on api.Memory.
func (*MemoryInstance) ReadUint64Le ¶
func (m *MemoryInstance) ReadUint64Le(offset uint32) (uint64, bool)
ReadUint64Le implements the same method as documented on api.Memory.
func (*MemoryInstance) Size ¶
func (m *MemoryInstance) Size() uint32
Size implements the same method as documented on api.Memory.
func (*MemoryInstance) Write ¶
func (m *MemoryInstance) Write(offset uint32, val []byte) bool
Write implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteByte ¶
func (m *MemoryInstance) WriteByte(offset uint32, v byte) bool
WriteByte implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteFloat32Le ¶
func (m *MemoryInstance) WriteFloat32Le(offset uint32, v float32) bool
WriteFloat32Le implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteFloat64Le ¶
func (m *MemoryInstance) WriteFloat64Le(offset uint32, v float64) bool
WriteFloat64Le implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteString ¶
func (m *MemoryInstance) WriteString(offset uint32, val string) bool
WriteString implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteUint16Le ¶
func (m *MemoryInstance) WriteUint16Le(offset uint32, v uint16) bool
WriteUint16Le implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteUint32Le ¶
func (m *MemoryInstance) WriteUint32Le(offset, v uint32) bool
WriteUint32Le implements the same method as documented on api.Memory.
func (*MemoryInstance) WriteUint64Le ¶
func (m *MemoryInstance) WriteUint64Le(offset uint32, v uint64) bool
WriteUint64Le implements the same method as documented on api.Memory.
type Module ¶
type Module struct { // TypeSection contains the unique FunctionType of functions imported or defined in this module. // // Note: Currently, there is no type ambiguity in the index as WebAssembly 1.0 only defines function type. // In the future, other types may be introduced to support CoreFeatures such as module linking. // // Note: In the Binary Format, this is SectionIDType. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#types%E2%91%A0%E2%91%A0 TypeSection []FunctionType // ImportSection contains imported functions, tables, memories or globals required for instantiation // (Store.Instantiate). // // Note: there are no unique constraints relating to the two-level namespace of Import.Module and Import.Name. // // Note: In the Binary Format, this is SectionIDImport. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#import-section%E2%91%A0 ImportSection []Import // ImportFunctionCount ImportGlobalCount ImportMemoryCount, and ImportTableCount are // the cached import count per ExternType set during decoding. ImportFunctionCount, ImportGlobalCount, ImportMemoryCount, ImportTableCount Index // ImportPerModule maps a module name to the list of Import to be imported from the module. // This is used to do fast import resolution during instantiation. ImportPerModule map[string][]*Import // FunctionSection contains the index in TypeSection of each function defined in this module. // // Note: The function Index space begins with imported functions and ends with those defined in this module. // For example, if there are two imported functions and one defined in this module, the function Index 3 is defined // in this module at FunctionSection[0]. // // Note: FunctionSection is index correlated with the CodeSection. If given the same position, e.g. 2, a function // type is at TypeSection[FunctionSection[2]], while its locals and body are at CodeSection[2]. // // Note: In the Binary Format, this is SectionIDFunction. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#function-section%E2%91%A0 FunctionSection []Index // TableSection contains each table defined in this module. // // Note: The table Index space begins with imported tables and ends with those defined in this module. // For example, if there are two imported tables and one defined in this module, the table Index 3 is defined in // this module at TableSection[0]. // // Note: Version 1.0 (20191205) of the WebAssembly spec allows at most one table definition per module, so the // length of the TableSection can be zero or one, and can only be one if there is no imported table. // // Note: In the Binary Format, this is SectionIDTable. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#table-section%E2%91%A0 TableSection []Table // MemorySection contains each memory defined in this module. // // Note: The memory Index space begins with imported memories and ends with those defined in this module. // For example, if there are two imported memories and one defined in this module, the memory Index 3 is defined in // this module at TableSection[0]. // // Note: Version 1.0 (20191205) of the WebAssembly spec allows at most one memory definition per module, so the // length of the MemorySection can be zero or one, and can only be one if there is no imported memory. // // Note: In the Binary Format, this is SectionIDMemory. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-section%E2%91%A0 MemorySection *Memory // GlobalSection contains each global defined in this module. // // Global indexes are offset by any imported globals because the global index begins with imports, followed by // ones defined in this module. For example, if there are two imported globals and three defined in this module, the // global at index 3 is defined in this module at GlobalSection[0]. // // Note: In the Binary Format, this is SectionIDGlobal. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#global-section%E2%91%A0 GlobalSection []Global // ExportSection contains each export defined in this module. // // Note: In the Binary Format, this is SectionIDExport. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#exports%E2%91%A0 ExportSection []Export // Exports maps a name to Export, and is convenient for fast look up of exported instances at runtime. // Each item of this map points to an element of ExportSection. Exports map[string]*Export // StartSection is the index of a function to call before returning from Store.Instantiate. // // Note: The index here is not the position in the FunctionSection, rather in the function index, which // begins with imported functions. // // Note: In the Binary Format, this is SectionIDStart. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#start-section%E2%91%A0 StartSection *Index // Note: In the Binary Format, this is SectionIDElement. ElementSection []ElementSegment // CodeSection is index-correlated with FunctionSection and contains each // function's locals and body. // // When present, the HostFunctionSection of the same index must be nil. // // Note: In the Binary Format, this is SectionIDCode. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#code-section%E2%91%A0 CodeSection []Code // Note: In the Binary Format, this is SectionIDData. DataSection []DataSegment // NameSection is set when the SectionIDCustom "name" was successfully decoded from the binary format. // // Note: This is the only SectionIDCustom defined in the WebAssembly 1.0 (20191205) Binary Format. // Others are skipped as they are not used in wazero. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#name-section%E2%91%A0 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#custom-section%E2%91%A0 NameSection *NameSection // CustomSections are set when the SectionIDCustom other than "name" were successfully decoded from the binary format. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#custom-section%E2%91%A0 CustomSections []*CustomSection // DataCountSection is the optional section and holds the number of data segments in the data section. // // Note: This may exist in WebAssembly 2.0 or WebAssembly 1.0 with CoreFeatureBulkMemoryOperations. // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/binary/modules.html#data-count-section // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/appendix/changes.html#bulk-memory-and-table-instructions DataCountSection *uint32 // ID is the sha256 value of the source wasm plus the configurations which affect the runtime representation of // Wasm binary. This is only used for caching. ID ModuleID // IsHostModule true if this is the host module, false otherwise. IsHostModule bool // FunctionDefinitionSection is a wazero-specific section. FunctionDefinitionSection []FunctionDefinition // MemoryDefinitionSection is a wazero-specific section. MemoryDefinitionSection []MemoryDefinition // DWARFLines is used to emit DWARF based stack trace. This is created from the multiple custom sections // as described in https://yurydelendik.github.io/webassembly-dwarf/, though it is not specified in the Wasm // specification: https://github.com/WebAssembly/debugging/issues/1 DWARFLines *wasmdebug.DWARFLines // contains filtered or unexported fields }
Module is a WebAssembly binary representation. See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#modules%E2%91%A8
Differences from the specification: * NameSection is the only key ("name") decoded from the SectionIDCustom. * ExportSection is represented as a map for lookup convenience. * Code.GoFunc is contains any go `func`. It may be present when Code.Body is not.
func NewHostModule ¶
func NewHostModule( moduleName string, exportNames []string, nameToHostFunc map[string]*HostFunc, enabledFeatures api.CoreFeatures, ) (m *Module, err error)
NewHostModule is defined internally for use in WASI tests and to keep the code size in the root directory small.
func (*Module) AllDeclarations ¶
func (m *Module) AllDeclarations() (functions []Index, globals []GlobalType, memory *Memory, tables []Table, err error)
AllDeclarations returns all declarations for functions, globals, memories and tables in a module including imported ones.
func (*Module) AssignModuleID ¶
func (m *Module) AssignModuleID(wasm []byte, listeners []experimental.FunctionListener, withEnsureTermination bool)
AssignModuleID calculates a sha256 checksum on `wasm` and other args, and set Module.ID to the result. See the doc on Module.ID on what it's used for.
func (*Module) BuildMemoryDefinitions ¶
func (m *Module) BuildMemoryDefinitions()
BuildMemoryDefinitions generates memory metadata that can be parsed from the module. This must be called after all validation.
Note: This is exported for wazero.Runtime `CompileModule`.
func (*Module) ExportedFunctions ¶
func (m *Module) ExportedFunctions() map[string]api.FunctionDefinition
ExportedFunctions returns the definitions of each exported function.
func (*Module) ExportedMemories ¶
func (m *Module) ExportedMemories() map[string]api.MemoryDefinition
ExportedMemories implements the same method as documented on wazero.CompiledModule.
func (*Module) FunctionDefinition ¶
func (m *Module) FunctionDefinition(index Index) *FunctionDefinition
FunctionDefinition returns the FunctionDefinition for the given `index`.
func (*Module) ImportedFunctions ¶
func (m *Module) ImportedFunctions() (ret []api.FunctionDefinition)
ImportedFunctions returns the definitions of each imported function.
Note: Unlike ExportedFunctions, there is no unique constraint on imports.
func (*Module) ImportedMemories ¶
func (m *Module) ImportedMemories() (ret []api.MemoryDefinition)
ImportedMemories implements the same method as documented on wazero.CompiledModule.
func (*Module) SectionElementCount ¶
SectionElementCount returns the count of elements in a given section ID
For example... * SectionIDType returns the count of FunctionType * SectionIDCustom returns the count of CustomSections plus one if NameSection is present * SectionIDHostFunction returns the count of HostFunctionSection * SectionIDExport returns the count of unique export names
type ModuleEngine ¶
type ModuleEngine interface { // DoneInstantiation is called at the end of the instantiation of the module. DoneInstantiation() // NewFunction returns an api.Function for the given function pointed by the given Index. NewFunction(index Index) api.Function // ResolveImportedFunction is used to add imported functions needed to make this ModuleEngine fully functional. // - `index` is the function Index of this imported function. // - `indexInImportedModule` is the function Index of the imported function in the imported module. // - `importedModuleEngine` is the ModuleEngine for the imported ModuleInstance. ResolveImportedFunction(index, indexInImportedModule Index, importedModuleEngine ModuleEngine) // ResolveImportedMemory is called when this module imports a memory from another module. ResolveImportedMemory(importedModuleEngine ModuleEngine) // LookupFunction returns the FunctionModule and the Index of the function in the returned ModuleInstance at the given offset in the table. LookupFunction(t *TableInstance, typeId FunctionTypeID, tableOffset Index) (*ModuleInstance, Index) // GetGlobalValue returns the value of the global variable at the given Index. // Only called when OwnsGlobals() returns true, and must not be called for imported globals GetGlobalValue(idx Index) (lo, hi uint64) // OwnsGlobals returns true if this ModuleEngine owns the global variables. If true, wasm.GlobalInstance's Val,ValHi should // not be accessed directly. OwnsGlobals() bool // FunctionInstanceReference returns Reference for the given Index for a FunctionInstance. The returned values are used by // the initialization via ElementSegment. FunctionInstanceReference(funcIndex Index) Reference }
ModuleEngine implements function calls for a given module.
type ModuleInstance ¶
type ModuleInstance struct { internalapi.WazeroOnlyType ModuleName string Exports map[string]*Export Globals []*GlobalInstance MemoryInstance *MemoryInstance Tables []*TableInstance // Engine implements function calls for this module. Engine ModuleEngine // TypeIDs is index-correlated with types and holds typeIDs which is uniquely assigned to a type by store. // This is necessary to achieve fast runtime type checking for indirect function calls at runtime. TypeIDs []FunctionTypeID // DataInstances holds data segments bytes of the module. // This is only used by bulk memory operations. // // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/runtime.html#data-instances DataInstances []DataInstance // ElementInstances holds the element instance, and each holds the references to either functions // or external objects (unimplemented). ElementInstances []ElementInstance // Sys is exposed for use in special imports such as WASI, assemblyscript // and gojs. // // # Notes // // - This is a part of ModuleInstance so that scope and Close is coherent. // - This is not exposed outside this repository (as a host function // parameter) because we haven't thought through capabilities based // security implications. Sys *internalsys.Context // Closed is used both to guard moduleEngine.CloseWithExitCode and to store the exit code. // // The update value is closedType + exitCode << 32. This ensures an exit code of zero isn't mistaken for never closed. // // Note: Exclusively reading and updating this with atomics guarantees cross-goroutine observations. // See /RATIONALE.md Closed atomic.Uint64 // CodeCloser is non-nil when the code should be closed after this module. CodeCloser api.Closer // Source is a pointer to the Module from which this ModuleInstance derives. Source *Module // CloseNotifier is an experimental hook called once on close. CloseNotifier close.Notifier // contains filtered or unexported fields }
ModuleInstance represents instantiated wasm module. The difference from the spec is that in wazero, a ModuleInstance holds pointers to the instances, rather than "addresses" (i.e. index to Store.Functions, Globals, etc) for convenience.
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#syntax-moduleinst
This implements api.Module.
func (*ModuleInstance) Close ¶
func (m *ModuleInstance) Close(ctx context.Context) (err error)
Close implements the same method as documented on api.Module.
func (*ModuleInstance) CloseModuleOnCanceledOrTimeout ¶
func (m *ModuleInstance) CloseModuleOnCanceledOrTimeout(ctx context.Context) context.CancelFunc
CloseModuleOnCanceledOrTimeout take a context `ctx`, which might be a Cancel or Timeout context, and spawns the Goroutine to check the context is canceled ot deadline exceeded. If it reaches one of the conditions, it sets the appropriate exit code.
Callers of this function must invoke the returned context.CancelFunc to release the spawned Goroutine.
func (*ModuleInstance) CloseWithCtxErr ¶
func (m *ModuleInstance) CloseWithCtxErr(ctx context.Context)
CloseWithCtxErr closes the module with an exit code based on the type of error reported by the context.
If the context's error is unknown or nil, the module does not close.
func (*ModuleInstance) CloseWithExitCode ¶
func (m *ModuleInstance) CloseWithExitCode(ctx context.Context, exitCode uint32) (err error)
CloseWithExitCode implements the same method as documented on api.Module.
func (*ModuleInstance) ExportedFunction ¶
func (m *ModuleInstance) ExportedFunction(name string) api.Function
ExportedFunction implements the same method as documented on api.Module.
func (*ModuleInstance) ExportedFunctionDefinitions ¶
func (m *ModuleInstance) ExportedFunctionDefinitions() map[string]api.FunctionDefinition
ExportedFunctionDefinitions implements the same method as documented on api.Module.
func (*ModuleInstance) ExportedGlobal ¶
func (m *ModuleInstance) ExportedGlobal(name string) api.Global
ExportedGlobal implements the same method as documented on api.Module.
func (*ModuleInstance) ExportedMemory ¶
func (m *ModuleInstance) ExportedMemory(name string) api.Memory
ExportedMemory implements the same method as documented on api.Module.
func (*ModuleInstance) ExportedMemoryDefinitions ¶
func (m *ModuleInstance) ExportedMemoryDefinitions() map[string]api.MemoryDefinition
ExportedMemoryDefinitions implements the same method as documented on api.Module.
func (*ModuleInstance) FailIfClosed ¶
func (m *ModuleInstance) FailIfClosed() (err error)
FailIfClosed returns a sys.ExitError if CloseWithExitCode was called.
func (*ModuleInstance) GetFunctionTypeID ¶
func (m *ModuleInstance) GetFunctionTypeID(t *FunctionType) FunctionTypeID
GetFunctionTypeID is used by emscripten.
func (*ModuleInstance) Global ¶
func (m *ModuleInstance) Global(idx int) api.Global
Global implements experimental.InternalModule.
func (*ModuleInstance) GlobalVal ¶
func (m *ModuleInstance) GlobalVal(idx Index) uint64
GlobalVal is an internal hack to get the lower 64 bits of a global.
func (*ModuleInstance) IsClosed ¶
func (m *ModuleInstance) IsClosed() bool
IsClosed implements the same method as documented on api.Module.
func (*ModuleInstance) LookupFunction ¶
func (m *ModuleInstance) LookupFunction(t *TableInstance, typeId FunctionTypeID, tableOffset Index) api.Function
LookupFunction looks up the table by the given index, and returns the api.Function implementation if found, otherwise this panics according to the same semantics as call_indirect instruction. Currently, this is only used by emscripten which needs to do call_indirect-like operation in the host function.
func (*ModuleInstance) Memory ¶
func (m *ModuleInstance) Memory() api.Memory
Memory implements the same method as documented on api.Module.
func (*ModuleInstance) Name ¶
func (m *ModuleInstance) Name() string
Name implements the same method as documented on api.Module
func (*ModuleInstance) NumGlobal ¶
func (m *ModuleInstance) NumGlobal() int
NumGlobal implements experimental.InternalModule.
func (*ModuleInstance) String ¶
func (m *ModuleInstance) String() string
String implements the same method as documented on api.Module
type NameMap ¶
type NameMap []NameAssoc
NameMap associates an index with any associated names.
Note: Often the index bridges multiple sections. For example, the function index starts with any ExternTypeFunc in the Module.ImportSection followed by the Module.FunctionSection
Note: NameMap is unique by NameAssoc.Index, but NameAssoc.Name needn't be unique. Note: When encoding in the Binary format, this must be ordered by NameAssoc.Index See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-namemap
type NameMapAssoc ¶
type NameSection ¶
type NameSection struct { // ModuleName is the symbolic identifier for a module. e.g. math // // Note: This can be empty for any reason including configuration. ModuleName string // FunctionNames is an association of a function index to its symbolic identifier. e.g. add // // * the key (idx) is in the function index, where module defined functions are preceded by imported ones. // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#functions%E2%91%A7 // // For example, assuming the below text format is the second import, you would expect FunctionNames[1] = "mul" // (import "Math" "Mul" (func $mul (param $x f32) (param $y f32) (result f32))) // // Note: FunctionNames are only used for debugging. At runtime, functions are called based on raw numeric index. // Note: This can be nil for any reason including configuration. FunctionNames NameMap // LocalNames contains symbolic names for function parameters or locals that have one. // // Note: In the Text Format, function local names can inherit parameter // names from their type. Here are some examples: // * (module (import (func (param $x i32) (param i32))) (func (type 0))) = [{0, {x,0}}] // * (module (import (func (param i32) (param $y i32))) (func (type 0) (local $z i32))) = [0, [{y,1},{z,2}]] // * (module (func (param $x i32) (local $y i32) (local $z i32))) = [{x,0},{y,1},{z,2}] // // Note: LocalNames are only used for debugging. At runtime, locals are called based on raw numeric index. // Note: This can be nil for any reason including configuration. LocalNames IndirectNameMap // ResultNames is a wazero-specific mechanism to store result names. ResultNames IndirectNameMap }
NameSection represent the known custom name subsections defined in the WebAssembly Binary Format
Note: This can be nil if no names were decoded for any reason including configuration. See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#name-section%E2%91%A0
type Opcode ¶
type Opcode = byte
Opcode is the binary Opcode of an instruction. See also InstructionName
const ( // OpcodeUnreachable causes an unconditional trap. OpcodeUnreachable Opcode = 0x00 // OpcodeNop does nothing OpcodeNop Opcode = 0x01 // OpcodeBlock brackets a sequence of instructions. A branch instruction on an if label breaks out to after its // OpcodeEnd. OpcodeBlock Opcode = 0x02 // OpcodeLoop brackets a sequence of instructions. A branch instruction on a loop label will jump back to the // beginning of its block. OpcodeLoop Opcode = 0x03 // OpcodeIf brackets a sequence of instructions. When the top of the stack evaluates to 1, the block is executed. // Zero jumps to the optional OpcodeElse. A branch instruction on an if label breaks out to after its OpcodeEnd. OpcodeIf Opcode = 0x04 // OpcodeElse brackets a sequence of instructions enclosed by an OpcodeIf. A branch instruction on a then label // breaks out to after the OpcodeEnd on the enclosing OpcodeIf. OpcodeElse Opcode = 0x05 // OpcodeEnd terminates a control instruction OpcodeBlock, OpcodeLoop or OpcodeIf. OpcodeEnd Opcode = 0x0b // OpcodeBr is a stack-polymorphic opcode that performs an unconditional branch. How the stack is modified depends // on whether the "br" is enclosed by a loop, and if CoreFeatureMultiValue is enabled. // // Here are the rules in pseudocode about how the stack is modified based on the "br" operand L (label): // if L is loop: append(L.originalStackWithoutInputs, N-values popped from the stack) where N == L.inputs // else: append(L.originalStackWithoutInputs, N-values popped from the stack) where N == L.results // // In WebAssembly 1.0 (20191205), N can be zero or one. When CoreFeatureMultiValue is enabled, N can be more than one, // depending on the type use of the label L. // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#-hrefsyntax-instr-controlmathsfbrl OpcodeBr Opcode = 0x0c OpcodeBrIf Opcode = 0x0d OpcodeBrTable Opcode = 0x0e OpcodeReturn Opcode = 0x0f OpcodeCall Opcode = 0x10 OpcodeCallIndirect Opcode = 0x11 OpcodeDrop Opcode = 0x1a OpcodeSelect Opcode = 0x1b OpcodeTypedSelect Opcode = 0x1c OpcodeLocalGet Opcode = 0x20 OpcodeLocalSet Opcode = 0x21 OpcodeLocalTee Opcode = 0x22 OpcodeGlobalGet Opcode = 0x23 OpcodeGlobalSet Opcode = 0x24 OpcodeTableGet Opcode = 0x25 OpcodeTableSet Opcode = 0x26 OpcodeI32Load Opcode = 0x28 OpcodeI64Load Opcode = 0x29 OpcodeF32Load Opcode = 0x2a OpcodeF64Load Opcode = 0x2b OpcodeI32Load8S Opcode = 0x2c OpcodeI32Load8U Opcode = 0x2d OpcodeI32Load16S Opcode = 0x2e OpcodeI32Load16U Opcode = 0x2f OpcodeI64Load8S Opcode = 0x30 OpcodeI64Load8U Opcode = 0x31 OpcodeI64Load16S Opcode = 0x32 OpcodeI64Load16U Opcode = 0x33 OpcodeI64Load32S Opcode = 0x34 OpcodeI64Load32U Opcode = 0x35 OpcodeI32Store Opcode = 0x36 OpcodeI64Store Opcode = 0x37 OpcodeF32Store Opcode = 0x38 OpcodeF64Store Opcode = 0x39 OpcodeI32Store8 Opcode = 0x3a OpcodeI32Store16 Opcode = 0x3b OpcodeI64Store8 Opcode = 0x3c OpcodeI64Store16 Opcode = 0x3d OpcodeI64Store32 Opcode = 0x3e OpcodeMemorySize Opcode = 0x3f OpcodeMemoryGrow Opcode = 0x40 OpcodeI32Const Opcode = 0x41 OpcodeI64Const Opcode = 0x42 OpcodeF32Const Opcode = 0x43 OpcodeF64Const Opcode = 0x44 OpcodeI32Eqz Opcode = 0x45 OpcodeI32Eq Opcode = 0x46 OpcodeI32Ne Opcode = 0x47 OpcodeI32LtS Opcode = 0x48 OpcodeI32LtU Opcode = 0x49 OpcodeI32GtS Opcode = 0x4a OpcodeI32GtU Opcode = 0x4b OpcodeI32LeS Opcode = 0x4c OpcodeI32LeU Opcode = 0x4d OpcodeI32GeS Opcode = 0x4e OpcodeI32GeU Opcode = 0x4f OpcodeI64Eqz Opcode = 0x50 OpcodeI64Eq Opcode = 0x51 OpcodeI64Ne Opcode = 0x52 OpcodeI64LtS Opcode = 0x53 OpcodeI64LtU Opcode = 0x54 OpcodeI64GtS Opcode = 0x55 OpcodeI64GtU Opcode = 0x56 OpcodeI64LeS Opcode = 0x57 OpcodeI64LeU Opcode = 0x58 OpcodeI64GeS Opcode = 0x59 OpcodeI64GeU Opcode = 0x5a OpcodeF32Eq Opcode = 0x5b OpcodeF32Ne Opcode = 0x5c OpcodeF32Lt Opcode = 0x5d OpcodeF32Gt Opcode = 0x5e OpcodeF32Le Opcode = 0x5f OpcodeF32Ge Opcode = 0x60 OpcodeF64Eq Opcode = 0x61 OpcodeF64Ne Opcode = 0x62 OpcodeF64Lt Opcode = 0x63 OpcodeF64Gt Opcode = 0x64 OpcodeF64Le Opcode = 0x65 OpcodeF64Ge Opcode = 0x66 OpcodeI32Clz Opcode = 0x67 OpcodeI32Ctz Opcode = 0x68 OpcodeI32Popcnt Opcode = 0x69 OpcodeI32Add Opcode = 0x6a OpcodeI32Sub Opcode = 0x6b OpcodeI32Mul Opcode = 0x6c OpcodeI32DivS Opcode = 0x6d OpcodeI32DivU Opcode = 0x6e OpcodeI32RemS Opcode = 0x6f OpcodeI32RemU Opcode = 0x70 OpcodeI32And Opcode = 0x71 OpcodeI32Or Opcode = 0x72 OpcodeI32Xor Opcode = 0x73 OpcodeI32Shl Opcode = 0x74 OpcodeI32ShrS Opcode = 0x75 OpcodeI32ShrU Opcode = 0x76 OpcodeI32Rotl Opcode = 0x77 OpcodeI32Rotr Opcode = 0x78 OpcodeI64Clz Opcode = 0x79 OpcodeI64Ctz Opcode = 0x7a OpcodeI64Popcnt Opcode = 0x7b OpcodeI64Add Opcode = 0x7c OpcodeI64Sub Opcode = 0x7d OpcodeI64Mul Opcode = 0x7e OpcodeI64DivS Opcode = 0x7f OpcodeI64DivU Opcode = 0x80 OpcodeI64RemS Opcode = 0x81 OpcodeI64RemU Opcode = 0x82 OpcodeI64And Opcode = 0x83 OpcodeI64Or Opcode = 0x84 OpcodeI64Xor Opcode = 0x85 OpcodeI64Shl Opcode = 0x86 OpcodeI64ShrS Opcode = 0x87 OpcodeI64ShrU Opcode = 0x88 OpcodeI64Rotl Opcode = 0x89 OpcodeI64Rotr Opcode = 0x8a OpcodeF32Abs Opcode = 0x8b OpcodeF32Neg Opcode = 0x8c OpcodeF32Ceil Opcode = 0x8d OpcodeF32Floor Opcode = 0x8e OpcodeF32Trunc Opcode = 0x8f OpcodeF32Nearest Opcode = 0x90 OpcodeF32Sqrt Opcode = 0x91 OpcodeF32Add Opcode = 0x92 OpcodeF32Sub Opcode = 0x93 OpcodeF32Mul Opcode = 0x94 OpcodeF32Div Opcode = 0x95 OpcodeF32Min Opcode = 0x96 OpcodeF32Max Opcode = 0x97 OpcodeF32Copysign Opcode = 0x98 OpcodeF64Abs Opcode = 0x99 OpcodeF64Neg Opcode = 0x9a OpcodeF64Ceil Opcode = 0x9b OpcodeF64Floor Opcode = 0x9c OpcodeF64Trunc Opcode = 0x9d OpcodeF64Nearest Opcode = 0x9e OpcodeF64Sqrt Opcode = 0x9f OpcodeF64Add Opcode = 0xa0 OpcodeF64Sub Opcode = 0xa1 OpcodeF64Mul Opcode = 0xa2 OpcodeF64Div Opcode = 0xa3 OpcodeF64Min Opcode = 0xa4 OpcodeF64Max Opcode = 0xa5 OpcodeF64Copysign Opcode = 0xa6 OpcodeI32WrapI64 Opcode = 0xa7 OpcodeI32TruncF32S Opcode = 0xa8 OpcodeI32TruncF32U Opcode = 0xa9 OpcodeI32TruncF64S Opcode = 0xaa OpcodeI32TruncF64U Opcode = 0xab OpcodeI64ExtendI32S Opcode = 0xac OpcodeI64ExtendI32U Opcode = 0xad OpcodeI64TruncF32S Opcode = 0xae OpcodeI64TruncF32U Opcode = 0xaf OpcodeI64TruncF64S Opcode = 0xb0 OpcodeI64TruncF64U Opcode = 0xb1 OpcodeF32ConvertI32S Opcode = 0xb2 OpcodeF32ConvertI32U Opcode = 0xb3 OpcodeF32ConvertI64S Opcode = 0xb4 OpcodeF32ConvertI64U Opcode = 0xb5 OpcodeF32DemoteF64 Opcode = 0xb6 OpcodeF64ConvertI32S Opcode = 0xb7 OpcodeF64ConvertI32U Opcode = 0xb8 OpcodeF64ConvertI64S Opcode = 0xb9 OpcodeF64ConvertI64U Opcode = 0xba OpcodeF64PromoteF32 Opcode = 0xbb OpcodeI32ReinterpretF32 Opcode = 0xbc OpcodeI64ReinterpretF64 Opcode = 0xbd OpcodeF32ReinterpretI32 Opcode = 0xbe OpcodeF64ReinterpretI64 Opcode = 0xbf // OpcodeRefNull pushes a null reference value whose type is specified by immediate to this opcode. // This is defined in the reference-types proposal, but necessary for CoreFeatureBulkMemoryOperations as well. // // Currently only supported in the constant expression in element segments. OpcodeRefNull = 0xd0 // OpcodeRefIsNull pops a reference value, and pushes 1 if it is null, 0 otherwise. // This is defined in the reference-types proposal, but necessary for CoreFeatureBulkMemoryOperations as well. // // Currently not supported. OpcodeRefIsNull = 0xd1 // OpcodeRefFunc pushes a funcref value whose index equals the immediate to this opcode. // This is defined in the reference-types proposal, but necessary for CoreFeatureBulkMemoryOperations as well. // // Currently, this is only supported in the constant expression in element segments. OpcodeRefFunc = 0xd2 // OpcodeI32Extend8S extends a signed 8-bit integer to a 32-bit integer. // Note: This is dependent on the flag CoreFeatureSignExtensionOps OpcodeI32Extend8S Opcode = 0xc0 // OpcodeI32Extend16S extends a signed 16-bit integer to a 32-bit integer. // Note: This is dependent on the flag CoreFeatureSignExtensionOps OpcodeI32Extend16S Opcode = 0xc1 // OpcodeI64Extend8S extends a signed 8-bit integer to a 64-bit integer. // Note: This is dependent on the flag CoreFeatureSignExtensionOps OpcodeI64Extend8S Opcode = 0xc2 // OpcodeI64Extend16S extends a signed 16-bit integer to a 64-bit integer. // Note: This is dependent on the flag CoreFeatureSignExtensionOps OpcodeI64Extend16S Opcode = 0xc3 // OpcodeI64Extend32S extends a signed 32-bit integer to a 64-bit integer. // Note: This is dependent on the flag CoreFeatureSignExtensionOps OpcodeI64Extend32S Opcode = 0xc4 // OpcodeMiscPrefix is the prefix of various multi-byte opcodes. // Introduced in CoreFeatureNonTrappingFloatToIntConversion, but used in other // features, such as CoreFeatureBulkMemoryOperations. OpcodeMiscPrefix Opcode = 0xfc // OpcodeVecPrefix is the prefix of all vector isntructions introduced in // CoreFeatureSIMD. OpcodeVecPrefix Opcode = 0xfd // OpcodeAtomicPrefix is the prefix of all atomic instructions introduced in // CoreFeatureThreads. OpcodeAtomicPrefix Opcode = 0xfe )
type OpcodeAtomic ¶
type OpcodeAtomic = byte
OpcodeAtomic represents an opcode of atomic instructions which has multi-byte encoding and is prefixed by OpcodeAtomicPrefix.
These opcodes are toggled with CoreFeaturesThreads.
const ( // OpcodeAtomicMemoryNotify represents the instruction memory.atomic.notify. OpcodeAtomicMemoryNotify OpcodeAtomic = 0x00 // OpcodeAtomicMemoryWait32 represents the instruction memory.atomic.wait32. OpcodeAtomicMemoryWait32 OpcodeAtomic = 0x01 // OpcodeAtomicMemoryWait64 represents the instruction memory.atomic.wait64. OpcodeAtomicMemoryWait64 OpcodeAtomic = 0x02 // OpcodeAtomicFence represents the instruction atomic.fence. OpcodeAtomicFence OpcodeAtomic = 0x03 // OpcodeAtomicI32Load represents the instruction i32.atomic.load. OpcodeAtomicI32Load OpcodeAtomic = 0x10 // OpcodeAtomicI64Load represents the instruction i64.atomic.load. OpcodeAtomicI64Load OpcodeAtomic = 0x11 // OpcodeAtomicI32Load8U represents the instruction i32.atomic.load8_u. OpcodeAtomicI32Load8U OpcodeAtomic = 0x12 // OpcodeAtomicI32Load16U represents the instruction i32.atomic.load16_u. OpcodeAtomicI32Load16U OpcodeAtomic = 0x13 // OpcodeAtomicI64Load8U represents the instruction i64.atomic.load8_u. OpcodeAtomicI64Load8U OpcodeAtomic = 0x14 // OpcodeAtomicI64Load16U represents the instruction i64.atomic.load16_u. OpcodeAtomicI64Load16U OpcodeAtomic = 0x15 // OpcodeAtomicI64Load32U represents the instruction i64.atomic.load32_u. OpcodeAtomicI64Load32U OpcodeAtomic = 0x16 // OpcodeAtomicI32Store represents the instruction i32.atomic.store. OpcodeAtomicI32Store OpcodeAtomic = 0x17 // OpcodeAtomicI64Store represents the instruction i64.atomic.store. OpcodeAtomicI64Store OpcodeAtomic = 0x18 // OpcodeAtomicI32Store8 represents the instruction i32.atomic.store8. OpcodeAtomicI32Store8 OpcodeAtomic = 0x19 // OpcodeAtomicI32Store16 represents the instruction i32.atomic.store16. OpcodeAtomicI32Store16 OpcodeAtomic = 0x1a // OpcodeAtomicI64Store8 represents the instruction i64.atomic.store8. OpcodeAtomicI64Store8 OpcodeAtomic = 0x1b // OpcodeAtomicI64Store16 represents the instruction i64.atomic.store16. OpcodeAtomicI64Store16 OpcodeAtomic = 0x1c // OpcodeAtomicI64Store32 represents the instruction i64.atomic.store32. OpcodeAtomicI64Store32 OpcodeAtomic = 0x1d // OpcodeAtomicI32RmwAdd represents the instruction i32.atomic.rmw.add. OpcodeAtomicI32RmwAdd OpcodeAtomic = 0x1e // OpcodeAtomicI64RmwAdd represents the instruction i64.atomic.rmw.add. OpcodeAtomicI64RmwAdd OpcodeAtomic = 0x1f // OpcodeAtomicI32Rmw8AddU represents the instruction i32.atomic.rmw8.add_u. OpcodeAtomicI32Rmw8AddU OpcodeAtomic = 0x20 // OpcodeAtomicI32Rmw16AddU represents the instruction i32.atomic.rmw16.add_u. OpcodeAtomicI32Rmw16AddU OpcodeAtomic = 0x21 // OpcodeAtomicI64Rmw8AddU represents the instruction i64.atomic.rmw8.add_u. OpcodeAtomicI64Rmw8AddU OpcodeAtomic = 0x22 // OpcodeAtomicI64Rmw16AddU represents the instruction i64.atomic.rmw16.add_u. OpcodeAtomicI64Rmw16AddU OpcodeAtomic = 0x23 // OpcodeAtomicI64Rmw32AddU represents the instruction i64.atomic.rmw32.add_u. OpcodeAtomicI64Rmw32AddU OpcodeAtomic = 0x24 // OpcodeAtomicI32RmwSub represents the instruction i32.atomic.rmw.sub. OpcodeAtomicI32RmwSub OpcodeAtomic = 0x25 // OpcodeAtomicI64RmwSub represents the instruction i64.atomic.rmw.sub. OpcodeAtomicI64RmwSub OpcodeAtomic = 0x26 // OpcodeAtomicI32Rmw8SubU represents the instruction i32.atomic.rmw8.sub_u. OpcodeAtomicI32Rmw8SubU OpcodeAtomic = 0x27 // OpcodeAtomicI32Rmw16SubU represents the instruction i32.atomic.rmw16.sub_u. OpcodeAtomicI32Rmw16SubU OpcodeAtomic = 0x28 // OpcodeAtomicI64Rmw8SubU represents the instruction i64.atomic.rmw8.sub_u. OpcodeAtomicI64Rmw8SubU OpcodeAtomic = 0x29 // OpcodeAtomicI64Rmw16SubU represents the instruction i64.atomic.rmw16.sub_u. OpcodeAtomicI64Rmw16SubU OpcodeAtomic = 0x2a // OpcodeAtomicI64Rmw32SubU represents the instruction i64.atomic.rmw32.sub_u. OpcodeAtomicI64Rmw32SubU OpcodeAtomic = 0x2b // OpcodeAtomicI32RmwAnd represents the instruction i32.atomic.rmw.and. OpcodeAtomicI32RmwAnd OpcodeAtomic = 0x2c // OpcodeAtomicI64RmwAnd represents the instruction i64.atomic.rmw.and. OpcodeAtomicI64RmwAnd OpcodeAtomic = 0x2d // OpcodeAtomicI32Rmw8AndU represents the instruction i32.atomic.rmw8.and_u. OpcodeAtomicI32Rmw8AndU OpcodeAtomic = 0x2e // OpcodeAtomicI32Rmw16AndU represents the instruction i32.atomic.rmw16.and_u. OpcodeAtomicI32Rmw16AndU OpcodeAtomic = 0x2f // OpcodeAtomicI64Rmw8AndU represents the instruction i64.atomic.rmw8.and_u. OpcodeAtomicI64Rmw8AndU OpcodeAtomic = 0x30 // OpcodeAtomicI64Rmw16AndU represents the instruction i64.atomic.rmw16.and_u. OpcodeAtomicI64Rmw16AndU OpcodeAtomic = 0x31 // OpcodeAtomicI64Rmw32AndU represents the instruction i64.atomic.rmw32.and_u. OpcodeAtomicI64Rmw32AndU OpcodeAtomic = 0x32 // OpcodeAtomicI32RmwOr represents the instruction i32.atomic.rmw.or. OpcodeAtomicI32RmwOr OpcodeAtomic = 0x33 // OpcodeAtomicI64RmwOr represents the instruction i64.atomic.rmw.or. OpcodeAtomicI64RmwOr OpcodeAtomic = 0x34 // OpcodeAtomicI32Rmw8OrU represents the instruction i32.atomic.rmw8.or_u. OpcodeAtomicI32Rmw8OrU OpcodeAtomic = 0x35 // OpcodeAtomicI32Rmw16OrU represents the instruction i32.atomic.rmw16.or_u. OpcodeAtomicI32Rmw16OrU OpcodeAtomic = 0x36 // OpcodeAtomicI64Rmw8OrU represents the instruction i64.atomic.rmw8.or_u. OpcodeAtomicI64Rmw8OrU OpcodeAtomic = 0x37 // OpcodeAtomicI64Rmw16OrU represents the instruction i64.atomic.rmw16.or_u. OpcodeAtomicI64Rmw16OrU OpcodeAtomic = 0x38 // OpcodeAtomicI64Rmw32OrU represents the instruction i64.atomic.rmw32.or_u. OpcodeAtomicI64Rmw32OrU OpcodeAtomic = 0x39 // OpcodeAtomicI32RmwXor represents the instruction i32.atomic.rmw.xor. OpcodeAtomicI32RmwXor OpcodeAtomic = 0x3a // OpcodeAtomicI64RmwXor represents the instruction i64.atomic.rmw.xor. OpcodeAtomicI64RmwXor OpcodeAtomic = 0x3b // OpcodeAtomicI32Rmw8XorU represents the instruction i32.atomic.rmw8.xor_u. OpcodeAtomicI32Rmw8XorU OpcodeAtomic = 0x3c // OpcodeAtomicI32Rmw16XorU represents the instruction i32.atomic.rmw16.xor_u. OpcodeAtomicI32Rmw16XorU OpcodeAtomic = 0x3d // OpcodeAtomicI64Rmw8XorU represents the instruction i64.atomic.rmw8.xor_u. OpcodeAtomicI64Rmw8XorU OpcodeAtomic = 0x3e // OpcodeAtomicI64Rmw16XorU represents the instruction i64.atomic.rmw16.xor_u. OpcodeAtomicI64Rmw16XorU OpcodeAtomic = 0x3f // OpcodeAtomicI64Rmw32XorU represents the instruction i64.atomic.rmw32.xor_u. OpcodeAtomicI64Rmw32XorU OpcodeAtomic = 0x40 // OpcodeAtomicI32RmwXchg represents the instruction i32.atomic.rmw.xchg. OpcodeAtomicI32RmwXchg OpcodeAtomic = 0x41 // OpcodeAtomicI64RmwXchg represents the instruction i64.atomic.rmw.xchg. OpcodeAtomicI64RmwXchg OpcodeAtomic = 0x42 // OpcodeAtomicI32Rmw8XchgU represents the instruction i32.atomic.rmw8.xchg_u. OpcodeAtomicI32Rmw8XchgU OpcodeAtomic = 0x43 // OpcodeAtomicI32Rmw16XchgU represents the instruction i32.atomic.rmw16.xchg_u. OpcodeAtomicI32Rmw16XchgU OpcodeAtomic = 0x44 // OpcodeAtomicI64Rmw8XchgU represents the instruction i64.atomic.rmw8.xchg_u. OpcodeAtomicI64Rmw8XchgU OpcodeAtomic = 0x45 // OpcodeAtomicI64Rmw16XchgU represents the instruction i64.atomic.rmw16.xchg_u. OpcodeAtomicI64Rmw16XchgU OpcodeAtomic = 0x46 // OpcodeAtomicI64Rmw32XchgU represents the instruction i64.atomic.rmw32.xchg_u. OpcodeAtomicI64Rmw32XchgU OpcodeAtomic = 0x47 // OpcodeAtomicI32RmwCmpxchg represents the instruction i32.atomic.rmw.cmpxchg. OpcodeAtomicI32RmwCmpxchg OpcodeAtomic = 0x48 // OpcodeAtomicI64RmwCmpxchg represents the instruction i64.atomic.rmw.cmpxchg. OpcodeAtomicI64RmwCmpxchg OpcodeAtomic = 0x49 // OpcodeAtomicI32Rmw8CmpxchgU represents the instruction i32.atomic.rmw8.cmpxchg_u. OpcodeAtomicI32Rmw8CmpxchgU OpcodeAtomic = 0x4a // OpcodeAtomicI32Rmw16CmpxchgU represents the instruction i32.atomic.rmw16.cmpxchg_u. OpcodeAtomicI32Rmw16CmpxchgU OpcodeAtomic = 0x4b // OpcodeAtomicI64Rmw8CmpxchgU represents the instruction i64.atomic.rmw8.cmpxchg_u. OpcodeAtomicI64Rmw8CmpxchgU OpcodeAtomic = 0x4c // OpcodeAtomicI64Rmw16CmpxchgU represents the instruction i64.atomic.rmw16.cmpxchg_u. OpcodeAtomicI64Rmw16CmpxchgU OpcodeAtomic = 0x4d // OpcodeAtomicI64Rmw32CmpxchgU represents the instruction i64.atomic.rmw32.cmpxchg_u. OpcodeAtomicI64Rmw32CmpxchgU OpcodeAtomic = 0x4e )
type OpcodeMisc ¶
type OpcodeMisc = byte
OpcodeMisc represents opcodes of the miscellaneous operations. Such an operations has multi-byte encoding which is prefixed by OpcodeMiscPrefix.
const ( OpcodeMiscI32TruncSatF32S OpcodeMisc = 0x00 OpcodeMiscI32TruncSatF32U OpcodeMisc = 0x01 OpcodeMiscI32TruncSatF64S OpcodeMisc = 0x02 OpcodeMiscI32TruncSatF64U OpcodeMisc = 0x03 OpcodeMiscI64TruncSatF32S OpcodeMisc = 0x04 OpcodeMiscI64TruncSatF32U OpcodeMisc = 0x05 OpcodeMiscI64TruncSatF64S OpcodeMisc = 0x06 OpcodeMiscI64TruncSatF64U OpcodeMisc = 0x07 OpcodeMiscMemoryInit OpcodeMisc = 0x08 OpcodeMiscDataDrop OpcodeMisc = 0x09 OpcodeMiscMemoryCopy OpcodeMisc = 0x0a OpcodeMiscMemoryFill OpcodeMisc = 0x0b OpcodeMiscTableInit OpcodeMisc = 0x0c OpcodeMiscElemDrop OpcodeMisc = 0x0d OpcodeMiscTableCopy OpcodeMisc = 0x0e OpcodeMiscTableGrow OpcodeMisc = 0x0f OpcodeMiscTableSize OpcodeMisc = 0x10 OpcodeMiscTableFill OpcodeMisc = 0x11 )
type OpcodeVec ¶
type OpcodeVec = byte
OpcodeVec represents an opcode of a vector instructions which has multi-byte encoding and is prefixed by OpcodeMiscPrefix.
These opcodes are toggled with CoreFeatureSIMD.
const ( OpcodeVecV128Load OpcodeVec = 0x00 OpcodeVecV128Load8x8s OpcodeVec = 0x01 OpcodeVecV128Load8x8u OpcodeVec = 0x02 OpcodeVecV128Load16x4s OpcodeVec = 0x03 OpcodeVecV128Load16x4u OpcodeVec = 0x04 OpcodeVecV128Load32x2s OpcodeVec = 0x05 OpcodeVecV128Load32x2u OpcodeVec = 0x06 OpcodeVecV128Load8Splat OpcodeVec = 0x07 OpcodeVecV128Load16Splat OpcodeVec = 0x08 OpcodeVecV128Load32Splat OpcodeVec = 0x09 OpcodeVecV128Load64Splat OpcodeVec = 0x0a OpcodeVecV128Load32zero OpcodeVec = 0x5c OpcodeVecV128Load64zero OpcodeVec = 0x5d OpcodeVecV128Store OpcodeVec = 0x0b OpcodeVecV128Load8Lane OpcodeVec = 0x54 OpcodeVecV128Load16Lane OpcodeVec = 0x55 OpcodeVecV128Load32Lane OpcodeVec = 0x56 OpcodeVecV128Load64Lane OpcodeVec = 0x57 OpcodeVecV128Store8Lane OpcodeVec = 0x58 OpcodeVecV128Store16Lane OpcodeVec = 0x59 OpcodeVecV128Store32Lane OpcodeVec = 0x5a OpcodeVecV128Store64Lane OpcodeVec = 0x5b // OpcodeVecV128Const is the vector const instruction. OpcodeVecV128Const OpcodeVec = 0x0c // OpcodeVecV128i8x16Shuffle is the vector shuffle instruction. OpcodeVecV128i8x16Shuffle OpcodeVec = 0x0d OpcodeVecI8x16ExtractLaneS OpcodeVec = 0x15 OpcodeVecI8x16ExtractLaneU OpcodeVec = 0x16 OpcodeVecI8x16ReplaceLane OpcodeVec = 0x17 OpcodeVecI16x8ExtractLaneS OpcodeVec = 0x18 OpcodeVecI16x8ExtractLaneU OpcodeVec = 0x19 OpcodeVecI16x8ReplaceLane OpcodeVec = 0x1a OpcodeVecI32x4ExtractLane OpcodeVec = 0x1b OpcodeVecI32x4ReplaceLane OpcodeVec = 0x1c OpcodeVecI64x2ExtractLane OpcodeVec = 0x1d OpcodeVecI64x2ReplaceLane OpcodeVec = 0x1e OpcodeVecF32x4ExtractLane OpcodeVec = 0x1f OpcodeVecF32x4ReplaceLane OpcodeVec = 0x20 OpcodeVecF64x2ExtractLane OpcodeVec = 0x21 OpcodeVecF64x2ReplaceLane OpcodeVec = 0x22 OpcodeVecI8x16Swizzle OpcodeVec = 0x0e OpcodeVecI8x16Splat OpcodeVec = 0x0f OpcodeVecI16x8Splat OpcodeVec = 0x10 OpcodeVecI32x4Splat OpcodeVec = 0x11 OpcodeVecI64x2Splat OpcodeVec = 0x12 OpcodeVecF32x4Splat OpcodeVec = 0x13 OpcodeVecF64x2Splat OpcodeVec = 0x14 OpcodeVecI8x16Eq OpcodeVec = 0x23 OpcodeVecI8x16Ne OpcodeVec = 0x24 OpcodeVecI8x16LtS OpcodeVec = 0x25 OpcodeVecI8x16LtU OpcodeVec = 0x26 OpcodeVecI8x16GtS OpcodeVec = 0x27 OpcodeVecI8x16GtU OpcodeVec = 0x28 OpcodeVecI8x16LeS OpcodeVec = 0x29 OpcodeVecI8x16LeU OpcodeVec = 0x2a OpcodeVecI8x16GeS OpcodeVec = 0x2b OpcodeVecI8x16GeU OpcodeVec = 0x2c OpcodeVecI16x8Eq OpcodeVec = 0x2d OpcodeVecI16x8Ne OpcodeVec = 0x2e OpcodeVecI16x8LtS OpcodeVec = 0x2f OpcodeVecI16x8LtU OpcodeVec = 0x30 OpcodeVecI16x8GtS OpcodeVec = 0x31 OpcodeVecI16x8GtU OpcodeVec = 0x32 OpcodeVecI16x8LeS OpcodeVec = 0x33 OpcodeVecI16x8LeU OpcodeVec = 0x34 OpcodeVecI16x8GeS OpcodeVec = 0x35 OpcodeVecI16x8GeU OpcodeVec = 0x36 OpcodeVecI32x4Eq OpcodeVec = 0x37 OpcodeVecI32x4Ne OpcodeVec = 0x38 OpcodeVecI32x4LtS OpcodeVec = 0x39 OpcodeVecI32x4LtU OpcodeVec = 0x3a OpcodeVecI32x4GtS OpcodeVec = 0x3b OpcodeVecI32x4GtU OpcodeVec = 0x3c OpcodeVecI32x4LeS OpcodeVec = 0x3d OpcodeVecI32x4LeU OpcodeVec = 0x3e OpcodeVecI32x4GeS OpcodeVec = 0x3f OpcodeVecI32x4GeU OpcodeVec = 0x40 OpcodeVecI64x2Eq OpcodeVec = 0xd6 OpcodeVecI64x2Ne OpcodeVec = 0xd7 OpcodeVecI64x2LtS OpcodeVec = 0xd8 OpcodeVecI64x2GtS OpcodeVec = 0xd9 OpcodeVecI64x2LeS OpcodeVec = 0xda OpcodeVecI64x2GeS OpcodeVec = 0xdb OpcodeVecF32x4Eq OpcodeVec = 0x41 OpcodeVecF32x4Ne OpcodeVec = 0x42 OpcodeVecF32x4Lt OpcodeVec = 0x43 OpcodeVecF32x4Gt OpcodeVec = 0x44 OpcodeVecF32x4Le OpcodeVec = 0x45 OpcodeVecF32x4Ge OpcodeVec = 0x46 OpcodeVecF64x2Eq OpcodeVec = 0x47 OpcodeVecF64x2Ne OpcodeVec = 0x48 OpcodeVecF64x2Lt OpcodeVec = 0x49 OpcodeVecF64x2Gt OpcodeVec = 0x4a OpcodeVecF64x2Le OpcodeVec = 0x4b OpcodeVecF64x2Ge OpcodeVec = 0x4c OpcodeVecV128Not OpcodeVec = 0x4d OpcodeVecV128And OpcodeVec = 0x4e OpcodeVecV128AndNot OpcodeVec = 0x4f OpcodeVecV128Or OpcodeVec = 0x50 OpcodeVecV128Xor OpcodeVec = 0x51 OpcodeVecV128Bitselect OpcodeVec = 0x52 OpcodeVecV128AnyTrue OpcodeVec = 0x53 OpcodeVecI8x16Abs OpcodeVec = 0x60 OpcodeVecI8x16Neg OpcodeVec = 0x61 OpcodeVecI8x16Popcnt OpcodeVec = 0x62 OpcodeVecI8x16AllTrue OpcodeVec = 0x63 OpcodeVecI8x16BitMask OpcodeVec = 0x64 OpcodeVecI8x16NarrowI16x8S OpcodeVec = 0x65 OpcodeVecI8x16NarrowI16x8U OpcodeVec = 0x66 OpcodeVecI8x16Shl OpcodeVec = 0x6b OpcodeVecI8x16ShrS OpcodeVec = 0x6c OpcodeVecI8x16ShrU OpcodeVec = 0x6d OpcodeVecI8x16Add OpcodeVec = 0x6e OpcodeVecI8x16AddSatS OpcodeVec = 0x6f OpcodeVecI8x16AddSatU OpcodeVec = 0x70 OpcodeVecI8x16Sub OpcodeVec = 0x71 OpcodeVecI8x16SubSatS OpcodeVec = 0x72 OpcodeVecI8x16SubSatU OpcodeVec = 0x73 OpcodeVecI8x16MinS OpcodeVec = 0x76 OpcodeVecI8x16MinU OpcodeVec = 0x77 OpcodeVecI8x16MaxS OpcodeVec = 0x78 OpcodeVecI8x16MaxU OpcodeVec = 0x79 OpcodeVecI8x16AvgrU OpcodeVec = 0x7b OpcodeVecI16x8ExtaddPairwiseI8x16S OpcodeVec = 0x7c OpcodeVecI16x8ExtaddPairwiseI8x16U OpcodeVec = 0x7d OpcodeVecI16x8Abs OpcodeVec = 0x80 OpcodeVecI16x8Neg OpcodeVec = 0x81 OpcodeVecI16x8Q15mulrSatS OpcodeVec = 0x82 OpcodeVecI16x8AllTrue OpcodeVec = 0x83 OpcodeVecI16x8BitMask OpcodeVec = 0x84 OpcodeVecI16x8NarrowI32x4S OpcodeVec = 0x85 OpcodeVecI16x8NarrowI32x4U OpcodeVec = 0x86 OpcodeVecI16x8ExtendLowI8x16S OpcodeVec = 0x87 OpcodeVecI16x8ExtendHighI8x16S OpcodeVec = 0x88 OpcodeVecI16x8ExtendLowI8x16U OpcodeVec = 0x89 OpcodeVecI16x8ExtendHighI8x16U OpcodeVec = 0x8a OpcodeVecI16x8Shl OpcodeVec = 0x8b OpcodeVecI16x8ShrS OpcodeVec = 0x8c OpcodeVecI16x8ShrU OpcodeVec = 0x8d OpcodeVecI16x8Add OpcodeVec = 0x8e OpcodeVecI16x8AddSatS OpcodeVec = 0x8f OpcodeVecI16x8AddSatU OpcodeVec = 0x90 OpcodeVecI16x8Sub OpcodeVec = 0x91 OpcodeVecI16x8SubSatS OpcodeVec = 0x92 OpcodeVecI16x8SubSatU OpcodeVec = 0x93 OpcodeVecI16x8Mul OpcodeVec = 0x95 OpcodeVecI16x8MinS OpcodeVec = 0x96 OpcodeVecI16x8MinU OpcodeVec = 0x97 OpcodeVecI16x8MaxS OpcodeVec = 0x98 OpcodeVecI16x8MaxU OpcodeVec = 0x99 OpcodeVecI16x8AvgrU OpcodeVec = 0x9b OpcodeVecI16x8ExtMulLowI8x16S OpcodeVec = 0x9c OpcodeVecI16x8ExtMulHighI8x16S OpcodeVec = 0x9d OpcodeVecI16x8ExtMulLowI8x16U OpcodeVec = 0x9e OpcodeVecI16x8ExtMulHighI8x16U OpcodeVec = 0x9f OpcodeVecI32x4ExtaddPairwiseI16x8S OpcodeVec = 0x7e OpcodeVecI32x4ExtaddPairwiseI16x8U OpcodeVec = 0x7f OpcodeVecI32x4Abs OpcodeVec = 0xa0 OpcodeVecI32x4Neg OpcodeVec = 0xa1 OpcodeVecI32x4AllTrue OpcodeVec = 0xa3 OpcodeVecI32x4BitMask OpcodeVec = 0xa4 OpcodeVecI32x4ExtendLowI16x8S OpcodeVec = 0xa7 OpcodeVecI32x4ExtendHighI16x8S OpcodeVec = 0xa8 OpcodeVecI32x4ExtendLowI16x8U OpcodeVec = 0xa9 OpcodeVecI32x4ExtendHighI16x8U OpcodeVec = 0xaa OpcodeVecI32x4Shl OpcodeVec = 0xab OpcodeVecI32x4ShrS OpcodeVec = 0xac OpcodeVecI32x4ShrU OpcodeVec = 0xad OpcodeVecI32x4Add OpcodeVec = 0xae OpcodeVecI32x4Sub OpcodeVec = 0xb1 OpcodeVecI32x4Mul OpcodeVec = 0xb5 OpcodeVecI32x4MinS OpcodeVec = 0xb6 OpcodeVecI32x4MinU OpcodeVec = 0xb7 OpcodeVecI32x4MaxS OpcodeVec = 0xb8 OpcodeVecI32x4MaxU OpcodeVec = 0xb9 OpcodeVecI32x4DotI16x8S OpcodeVec = 0xba OpcodeVecI32x4ExtMulLowI16x8S OpcodeVec = 0xbc OpcodeVecI32x4ExtMulHighI16x8S OpcodeVec = 0xbd OpcodeVecI32x4ExtMulLowI16x8U OpcodeVec = 0xbe OpcodeVecI32x4ExtMulHighI16x8U OpcodeVec = 0xbf OpcodeVecI64x2Abs OpcodeVec = 0xc0 OpcodeVecI64x2Neg OpcodeVec = 0xc1 OpcodeVecI64x2AllTrue OpcodeVec = 0xc3 OpcodeVecI64x2BitMask OpcodeVec = 0xc4 OpcodeVecI64x2ExtendLowI32x4S OpcodeVec = 0xc7 OpcodeVecI64x2ExtendHighI32x4S OpcodeVec = 0xc8 OpcodeVecI64x2ExtendLowI32x4U OpcodeVec = 0xc9 OpcodeVecI64x2ExtendHighI32x4U OpcodeVec = 0xca OpcodeVecI64x2Shl OpcodeVec = 0xcb OpcodeVecI64x2ShrS OpcodeVec = 0xcc OpcodeVecI64x2ShrU OpcodeVec = 0xcd OpcodeVecI64x2Add OpcodeVec = 0xce OpcodeVecI64x2Sub OpcodeVec = 0xd1 OpcodeVecI64x2Mul OpcodeVec = 0xd5 OpcodeVecI64x2ExtMulLowI32x4S OpcodeVec = 0xdc OpcodeVecI64x2ExtMulHighI32x4S OpcodeVec = 0xdd OpcodeVecI64x2ExtMulLowI32x4U OpcodeVec = 0xde OpcodeVecI64x2ExtMulHighI32x4U OpcodeVec = 0xdf OpcodeVecF32x4Ceil OpcodeVec = 0x67 OpcodeVecF32x4Floor OpcodeVec = 0x68 OpcodeVecF32x4Trunc OpcodeVec = 0x69 OpcodeVecF32x4Nearest OpcodeVec = 0x6a OpcodeVecF32x4Abs OpcodeVec = 0xe0 OpcodeVecF32x4Neg OpcodeVec = 0xe1 OpcodeVecF32x4Sqrt OpcodeVec = 0xe3 OpcodeVecF32x4Add OpcodeVec = 0xe4 OpcodeVecF32x4Sub OpcodeVec = 0xe5 OpcodeVecF32x4Mul OpcodeVec = 0xe6 OpcodeVecF32x4Div OpcodeVec = 0xe7 OpcodeVecF32x4Min OpcodeVec = 0xe8 OpcodeVecF32x4Max OpcodeVec = 0xe9 OpcodeVecF32x4Pmin OpcodeVec = 0xea OpcodeVecF32x4Pmax OpcodeVec = 0xeb OpcodeVecF64x2Ceil OpcodeVec = 0x74 OpcodeVecF64x2Floor OpcodeVec = 0x75 OpcodeVecF64x2Trunc OpcodeVec = 0x7a OpcodeVecF64x2Nearest OpcodeVec = 0x94 OpcodeVecF64x2Abs OpcodeVec = 0xec OpcodeVecF64x2Neg OpcodeVec = 0xed OpcodeVecF64x2Sqrt OpcodeVec = 0xef OpcodeVecF64x2Add OpcodeVec = 0xf0 OpcodeVecF64x2Sub OpcodeVec = 0xf1 OpcodeVecF64x2Mul OpcodeVec = 0xf2 OpcodeVecF64x2Div OpcodeVec = 0xf3 OpcodeVecF64x2Min OpcodeVec = 0xf4 OpcodeVecF64x2Max OpcodeVec = 0xf5 OpcodeVecF64x2Pmin OpcodeVec = 0xf6 OpcodeVecF64x2Pmax OpcodeVec = 0xf7 OpcodeVecI32x4TruncSatF32x4S OpcodeVec = 0xf8 OpcodeVecI32x4TruncSatF32x4U OpcodeVec = 0xf9 OpcodeVecF32x4ConvertI32x4S OpcodeVec = 0xfa OpcodeVecF32x4ConvertI32x4U OpcodeVec = 0xfb OpcodeVecI32x4TruncSatF64x2SZero OpcodeVec = 0xfc OpcodeVecI32x4TruncSatF64x2UZero OpcodeVec = 0xfd OpcodeVecF64x2ConvertLowI32x4S OpcodeVec = 0xfe OpcodeVecF64x2ConvertLowI32x4U OpcodeVec = 0xff OpcodeVecF32x4DemoteF64x2Zero OpcodeVec = 0x5e OpcodeVecF64x2PromoteLowF32x4Zero OpcodeVec = 0x5f )
type RefType ¶
type RefType = byte
RefType is either RefTypeFuncref or RefTypeExternref as of WebAssembly core 2.0.
type Reference ¶
type Reference = uintptr
Reference is the runtime representation of RefType which is either RefTypeFuncref or RefTypeExternref.
type SectionID ¶
type SectionID = byte
SectionID identifies the sections of a Module in the WebAssembly 1.0 (20191205) Binary Format.
Note: these are defined in the wasm package, instead of the binary package, as a key per section is needed regardless of format, and deferring to the binary type avoids confusion.
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#sections%E2%91%A0
const ( // SectionIDCustom includes the standard defined NameSection and possibly others not defined in the standard. SectionIDCustom SectionID = iota // don't add anything not in https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#sections%E2%91%A0 SectionIDType SectionIDImport SectionIDFunction SectionIDTable SectionIDMemory SectionIDGlobal SectionIDExport SectionIDStart SectionIDElement SectionIDCode SectionIDData // SectionIDDataCount may exist in WebAssembly 2.0 or WebAssembly 1.0 with CoreFeatureBulkMemoryOperations enabled. // // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/binary/modules.html#data-count-section // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/appendix/changes.html#bulk-memory-and-table-instructions SectionIDDataCount )
type Store ¶
type Store struct { // EnabledFeatures are read-only to allow optimizations. EnabledFeatures api.CoreFeatures // Engine is a global context for a Store which is in responsible for compilation and execution of Wasm modules. Engine Engine // contains filtered or unexported fields }
Store is the runtime representation of "instantiated" Wasm module and objects. Multiple modules can be instantiated within a single store, and each instance, (e.g. function instance) can be referenced by other module instances in a Store via Module.ImportSection.
Every type whose name ends with "Instance" suffix belongs to exactly one store.
Note that store is not thread (concurrency) safe, meaning that using single Store via multiple goroutines might result in race conditions. In that case, the invocation and access to any methods and field of Store must be guarded by mutex.
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#store%E2%91%A0
func (*Store) CloseWithExitCode ¶
CloseWithExitCode implements the same method as documented on wazero.Runtime.
func (*Store) GetFunctionTypeID ¶
func (s *Store) GetFunctionTypeID(t *FunctionType) (FunctionTypeID, error)
func (*Store) GetFunctionTypeIDs ¶
func (s *Store) GetFunctionTypeIDs(ts []FunctionType) ([]FunctionTypeID, error)
func (*Store) Instantiate ¶
func (s *Store) Instantiate( ctx context.Context, module *Module, name string, sys *internalsys.Context, typeIDs []FunctionTypeID, ) (*ModuleInstance, error)
Instantiate uses name instead of the Module.NameSection ModuleName as it allows instantiating the same module under different names safely and concurrently.
* ctx: the default context used for function calls. * name: the name of the module. * sys: the system context, which will be closed (SysContext.Close) on ModuleInstance.Close.
Note: Module.Validate must be called prior to instantiation.
type TableInstance ¶
type TableInstance struct { // References holds references whose type is either RefTypeFuncref or RefTypeExternref (unsupported). // // Currently, only function references are supported. References []Reference // Min is the minimum (function) elements in this table and cannot grow to accommodate ElementSegment. Min uint32 // Max if present is the maximum (function) elements in this table, or nil if unbounded. Max *uint32 // Type is either RefTypeFuncref or RefTypeExternRef. Type RefType }
TableInstance represents a table of (RefTypeFuncref) elements in a module.
See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#table-instances%E2%91%A0