naive

package
v1.0.14 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Mar 15, 2023 License: MIT Imports: 3 Imported by: 0

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type BernoulliNBClassifier

type BernoulliNBClassifier struct {
	base.BaseEstimator
	// contains filtered or unexported fields
}

A Bernoulli Naive Bayes Classifier. Naive Bayes classifiers assumes that features probabilities are independent. In order to classify an instance, it is calculated the probability that it was generated by each known class, that is, for each class C, the following probability is calculated.

p(C|F1, F2, F3... Fn)

Being F1, F2... Fn the instance features. Using the bayes theorem this can be written as:

\frac{p(C) \times p(F1, F2... Fn|C)}{p(F1, F2... Fn)}

In the Bernoulli Naive Bayes features are considered independent booleans, this means that the likelihood of a document given a class C is given by:

p(F1, F2... Fn) = \prod_{i=1}^{n}{[F_i \times p(f_i|C)) + (1-F_i)(1 - p(f_i|C)))]}

where

  • F_i equals to 1 if feature is present in vector and zero otherwise
  • p(f_i|C) the probability of class C generating the feature f_i

For more information:

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

func NewBernoulliNBClassifier

func NewBernoulliNBClassifier() *BernoulliNBClassifier

Create a new Bernoulli Naive Bayes Classifier. The argument 'classes' is the number of possible labels in the classification task.

func (*BernoulliNBClassifier) Fit

Fill data matrix with Bernoulli Naive Bayes model. All values necessary for calculating prior probability and p(f_i)

func (*BernoulliNBClassifier) GetMetadata

func (*BernoulliNBClassifier) Load

func (nb *BernoulliNBClassifier) Load(filePath string) error

func (*BernoulliNBClassifier) LoadWithPrefix

func (nb *BernoulliNBClassifier) LoadWithPrefix(reader *base.ClassifierDeserializer, prefix string) error

func (*BernoulliNBClassifier) Predict

Predict is just a wrapper for the PredictOne function.

IMPORTANT: Predict panics if Fit was not called or if the document vector and train matrix have a different number of columns.

func (*BernoulliNBClassifier) PredictOne

func (nb *BernoulliNBClassifier) PredictOne(vector [][]byte) string

Use trained model to predict test vector's class. The following operation is used in order to score each class:

classScore = log(p(c)) + \sum_{f}{log(p(f|c))}

PredictOne returns the string that represents the predicted class.

IMPORTANT: PredictOne panics if Fit was not called or if the document vector and train matrix have a different number of columns.

func (*BernoulliNBClassifier) Save

func (nb *BernoulliNBClassifier) Save(filePath string) error

func (*BernoulliNBClassifier) SaveWithPrefix

func (nb *BernoulliNBClassifier) SaveWithPrefix(writer *base.ClassifierSerializer, prefix string) error

func (*BernoulliNBClassifier) String

func (nb *BernoulliNBClassifier) String() string

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL