knn

package
v1.0.61 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Mar 15, 2023 License: MIT Imports: 11 Imported by: 0

Documentation

Overview

Package knn implements a K Nearest Neighbors object, capable of both classification and regression. It accepts data in the form of a slice of float64s, which are then reshaped into a X by Y matrix.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type KNNClassifier

type KNNClassifier struct {
	base.BaseEstimator
	TrainingData       base.FixedDataGrid
	DistanceFunc       string
	Algorithm          string
	NearestNeighbours  int
	AllowOptimisations bool
	Weighted           bool
}

A KNNClassifier consists of a data matrix, associated labels in the same order as the matrix, searching algorithm, and a distance function. The accepted distance functions at this time are 'euclidean', 'manhattan', and 'cosine'. The accepted searching algorithm here are 'linear', and 'kdtree'. Optimisations only occur when things are identically group into identical AttributeGroups, which don't include the class variable, in the same order. Using weighted KNN when Weighted set to be true (default: false).

func NewKnnClassifier

func NewKnnClassifier(distfunc, algorithm string, neighbours int) *KNNClassifier

NewKnnClassifier returns a new classifier

func ReloadKNNClassifier

func ReloadKNNClassifier(filePath string) (*KNNClassifier, error)

ReloadKNNClassifier reloads a KNNClassifier when it's the only thing in an output file.

func (*KNNClassifier) Fit

func (KNN *KNNClassifier) Fit(trainingData base.FixedDataGrid) error

Fit stores the training data for later

func (*KNNClassifier) GetMetadata

func (KNN *KNNClassifier) GetMetadata() base.ClassifierMetadataV1

GetMetadata returns required serialization information for this classifier

func (*KNNClassifier) Load

func (KNN *KNNClassifier) Load(filePath string) error

Load reloads a given KNN classifier when it's the only thing in the output file.

func (*KNNClassifier) LoadWithPrefix

func (KNN *KNNClassifier) LoadWithPrefix(reader *base.ClassifierDeserializer, prefix string) error

LoadWithPrefix reloads a given KNN classifier when it's part of another file.

func (*KNNClassifier) Predict

func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) (base.FixedDataGrid, error)

Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.

func (*KNNClassifier) Save

func (KNN *KNNClassifier) Save(filePath string) error

Save outputs a given KNN classifier.

func (*KNNClassifier) SaveWithPrefix

func (KNN *KNNClassifier) SaveWithPrefix(writer *base.ClassifierSerializer, prefix string) error

SaveWithPrefix outputs KNN as part of another file.

func (*KNNClassifier) String

func (KNN *KNNClassifier) String() string

type KNNRegressor

type KNNRegressor struct {
	base.BaseEstimator
	Values       []float64
	DistanceFunc string
}

A KNNRegressor consists of a data matrix, associated result variables in the same order as the matrix, and a name.

func NewKnnRegressor

func NewKnnRegressor(distfunc string) *KNNRegressor

NewKnnRegressor mints a new classifier.

func (*KNNRegressor) Fit

func (KNN *KNNRegressor) Fit(values []float64, numbers []float64, rows int, cols int)

func (*KNNRegressor) Predict

func (KNN *KNNRegressor) Predict(vector *mat.Dense, K int) float64

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL