Documentation ¶
Index ¶
- Constants
- Variables
- func DAODrainList() []common.Address
- type ChainConfig
- func (c *ChainConfig) AxiaRules(blockNum, blockTimestamp *big.Int) Rules
- func (c *ChainConfig) CheckCompatible(newcfg *ChainConfig, height uint64, timestamp uint64) *ConfigCompatError
- func (c *ChainConfig) CheckConfigForkOrder() error
- func (c *ChainConfig) IsApricotPhase1(blockTimestamp *big.Int) bool
- func (c *ChainConfig) IsApricotPhase2(blockTimestamp *big.Int) bool
- func (c *ChainConfig) IsApricotPhase3(blockTimestamp *big.Int) bool
- func (c *ChainConfig) IsApricotPhase4(blockTimestamp *big.Int) bool
- func (c *ChainConfig) IsApricotPhase5(blockTimestamp *big.Int) bool
- func (c *ChainConfig) IsByzantium(num *big.Int) bool
- func (c *ChainConfig) IsConstantinople(num *big.Int) bool
- func (c *ChainConfig) IsDAOFork(num *big.Int) bool
- func (c *ChainConfig) IsEIP150(num *big.Int) bool
- func (c *ChainConfig) IsEIP155(num *big.Int) bool
- func (c *ChainConfig) IsEIP158(num *big.Int) bool
- func (c *ChainConfig) IsHomestead(num *big.Int) bool
- func (c *ChainConfig) IsIstanbul(num *big.Int) bool
- func (c *ChainConfig) IsMuirGlacier(num *big.Int) bool
- func (c *ChainConfig) IsPetersburg(num *big.Int) bool
- func (c *ChainConfig) String() string
- type ConfigCompatError
- type Rules
Constants ¶
const ( // MinGasPrice is the number of nAXC required per gas unit for a // transaction to be valid, measured in wei LaunchMinGasPrice int64 = 470_000_000_000 ApricotPhase1MinGasPrice int64 = 225_000_000_000 AxiaAtomicTxFee = units.MilliAxc ApricotPhase1GasLimit uint64 = 8_000_000 ApricotPhase3ExtraDataSize uint64 = 80 ApricotPhase3MinBaseFee int64 = 75_000_000_000 ApricotPhase3MaxBaseFee int64 = 225_000_000_000 ApricotPhase3InitialBaseFee int64 = 225_000_000_000 ApricotPhase3TargetGas uint64 = 10_000_000 ApricotPhase4MinBaseFee int64 = 25_000_000_000 ApricotPhase4MaxBaseFee int64 = 1_000_000_000_000 ApricotPhase4BaseFeeChangeDenominator uint64 = 12 ApricotPhase5TargetGas uint64 = 15_000_000 ApricotPhase5BaseFeeChangeDenominator uint64 = 36 // The base cost to charge per atomic transaction. Added in Apricot Phase 5. AtomicTxBaseCost uint64 = 10_000 )
Minimum Gas Price
const ( Wei = 1 GWei = 1e9 Ether = 1e18 )
These are the multipliers for ether denominations. Example: To get the wei value of an amount in 'gwei', use
new(big.Int).Mul(value, big.NewInt(params.GWei))
const ( // BloomBitsBlocks is the number of blocks a single bloom bit section vector // contains on the server side. BloomBitsBlocks uint64 = 4096 // BloomBitsBlocksClient is the number of blocks a single bloom bit section vector // contains on the light client side BloomBitsBlocksClient uint64 = 32768 // BloomConfirms is the number of confirmation blocks before a bloom section is // considered probably final and its rotated bits are calculated. BloomConfirms = 256 // CHTFrequency is the block frequency for creating CHTs CHTFrequency = 32768 // BloomTrieFrequency is the block frequency for creating BloomTrie on both // server/client sides. BloomTrieFrequency = 32768 // HelperTrieConfirmations is the number of confirmations before a client is expected // to have the given HelperTrie available. HelperTrieConfirmations = 2048 // HelperTrieProcessConfirmations is the number of confirmations before a HelperTrie // is generated HelperTrieProcessConfirmations = 256 // CheckpointFrequency is the block frequency for creating checkpoint CheckpointFrequency = 32768 // CheckpointProcessConfirmations is the number before a checkpoint is generated CheckpointProcessConfirmations = 256 // FullImmutabilityThreshold is the number of blocks after which a chain segment is // considered immutable (i.e. soft finality). It is used by the downloader as a // hard limit against deep ancestors, by the blockchain against deep reorgs, by // the freezer as the cutoff threshold and by clique as the snapshot trust limit. FullImmutabilityThreshold = 90000 // LightImmutabilityThreshold is the number of blocks after which a header chain // segment is considered immutable for light client(i.e. soft finality). It is used by // the downloader as a hard limit against deep ancestors, by the blockchain against deep // reorgs, by the light pruner as the pruning validity guarantee. LightImmutabilityThreshold = 30000 )
const ( GasLimitBoundDivisor uint64 = 1024 // The bound divisor of the gas limit, used in update calculations. MinGasLimit uint64 = 5000 // Minimum the gas limit may ever be. MaxGasLimit uint64 = 0x7fffffffffffffff // Maximum the gas limit (2^63-1). GenesisGasLimit uint64 = 4712388 // Gas limit of the Genesis block. // Note: MaximumExtraDataSize has been reduced to 32 in Geth, but is kept the same in Coreth for // backwards compatibility. MaximumExtraDataSize uint64 = 64 // Maximum size extra data may be after Genesis. ExpByteGas uint64 = 10 // Times ceil(log256(exponent)) for the EXP instruction. SloadGas uint64 = 50 // Multiplied by the number of 32-byte words that are copied (round up) for any *COPY operation and added. CallValueTransferGas uint64 = 9000 // Paid for CALL when the value transfer is non-zero. CallNewAccountGas uint64 = 25000 // Paid for CALL when the destination address didn't exist prior. TxGas uint64 = 21000 // Per transaction not creating a contract. NOTE: Not payable on data of calls between transactions. TxGasContractCreation uint64 = 53000 // Per transaction that creates a contract. NOTE: Not payable on data of calls between transactions. TxDataZeroGas uint64 = 4 // Per byte of data attached to a transaction that equals zero. NOTE: Not payable on data of calls between transactions. QuadCoeffDiv uint64 = 512 // Divisor for the quadratic particle of the memory cost equation. LogDataGas uint64 = 8 // Per byte in a LOG* operation's data. CallStipend uint64 = 2300 // Free gas given at beginning of call. Keccak256Gas uint64 = 30 // Once per KECCAK256 operation. Keccak256WordGas uint64 = 6 // Once per word of the KECCAK256 operation's data. SstoreSetGas uint64 = 20000 // Once per SSTORE operation. SstoreResetGas uint64 = 5000 // Once per SSTORE operation if the zeroness changes from zero. SstoreClearGas uint64 = 5000 // Once per SSTORE operation if the zeroness doesn't change. SstoreRefundGas uint64 = 15000 // Once per SSTORE operation if the zeroness changes to zero. NetSstoreNoopGas uint64 = 200 // Once per SSTORE operation if the value doesn't change. NetSstoreInitGas uint64 = 20000 // Once per SSTORE operation from clean zero. NetSstoreCleanGas uint64 = 5000 // Once per SSTORE operation from clean non-zero. NetSstoreDirtyGas uint64 = 200 // Once per SSTORE operation from dirty. NetSstoreClearRefund uint64 = 15000 // Once per SSTORE operation for clearing an originally existing storage slot NetSstoreResetRefund uint64 = 4800 // Once per SSTORE operation for resetting to the original non-zero value NetSstoreResetClearRefund uint64 = 19800 // Once per SSTORE operation for resetting to the original zero value SstoreSentryGasEIP2200 uint64 = 2300 // Minimum gas required to be present for an SSTORE call, not consumed SstoreSetGasEIP2200 uint64 = 20000 // Once per SSTORE operation from clean zero to non-zero SstoreResetGasEIP2200 uint64 = 5000 // Once per SSTORE operation from clean non-zero to something else SstoreClearsScheduleRefundEIP2200 uint64 = 15000 // Once per SSTORE operation for clearing an originally existing storage slot ColdAccountAccessCostEIP2929 = uint64(2600) // COLD_ACCOUNT_ACCESS_COST ColdSloadCostEIP2929 = uint64(2100) // COLD_SLOAD_COST WarmStorageReadCostEIP2929 = uint64(100) // WARM_STORAGE_READ_COST // In EIP-2200: SstoreResetGas was 5000. // In EIP-2929: SstoreResetGas was changed to '5000 - COLD_SLOAD_COST'. // In EIP-3529: SSTORE_CLEARS_SCHEDULE is defined as SSTORE_RESET_GAS + ACCESS_LIST_STORAGE_KEY_COST // Which becomes: 5000 - 2100 + 1900 = 4800 SstoreClearsScheduleRefundEIP3529 uint64 = SstoreResetGasEIP2200 - ColdSloadCostEIP2929 + TxAccessListStorageKeyGas JumpdestGas uint64 = 1 // Once per JUMPDEST operation. EpochDuration uint64 = 30000 // Duration between proof-of-work epochs. CreateDataGas uint64 = 200 // CallCreateDepth uint64 = 1024 // Maximum depth of call/create stack. ExpGas uint64 = 10 // Once per EXP instruction LogGas uint64 = 375 // Per LOG* operation. CopyGas uint64 = 3 // StackLimit uint64 = 1024 // Maximum size of VM stack allowed. TierStepGas uint64 = 0 // Once per operation, for a selection of them. LogTopicGas uint64 = 375 // Multiplied by the * of the LOG*, per LOG transaction. e.g. LOG0 incurs 0 * c_txLogTopicGas, LOG4 incurs 4 * c_txLogTopicGas. CreateGas uint64 = 32000 // Once per CREATE operation & contract-creation transaction. Create2Gas uint64 = 32000 // Once per CREATE2 operation SelfdestructRefundGas uint64 = 24000 // Refunded following a selfdestruct operation. MemoryGas uint64 = 3 // Times the address of the (highest referenced byte in memory + 1). NOTE: referencing happens on read, write and in instructions such as RETURN and CALL. TxDataNonZeroGasFrontier uint64 = 68 // Per byte of data attached to a transaction that is not equal to zero. NOTE: Not payable on data of calls between transactions. TxDataNonZeroGasEIP2028 uint64 = 16 // Per byte of non zero data attached to a transaction after EIP 2028 (part in Istanbul) TxAccessListAddressGas uint64 = 2400 // Per address specified in EIP 2930 access list TxAccessListStorageKeyGas uint64 = 1900 // Per storage key specified in EIP 2930 access list // These have been changed during the course of the chain CallGasFrontier uint64 = 40 // Once per CALL operation & message call transaction. CallGasEIP150 uint64 = 700 // Static portion of gas for CALL-derivates after EIP 150 (Tangerine) BalanceGasFrontier uint64 = 20 // The cost of a BALANCE operation BalanceGasEIP150 uint64 = 400 // The cost of a BALANCE operation after Tangerine BalanceGasEIP1884 uint64 = 700 // The cost of a BALANCE operation after EIP 1884 (part of Istanbul) ExtcodeSizeGasFrontier uint64 = 20 // Cost of EXTCODESIZE before EIP 150 (Tangerine) ExtcodeSizeGasEIP150 uint64 = 700 // Cost of EXTCODESIZE after EIP 150 (Tangerine) SloadGasFrontier uint64 = 50 SloadGasEIP150 uint64 = 200 SloadGasEIP1884 uint64 = 800 // Cost of SLOAD after EIP 1884 (part of Istanbul) SloadGasEIP2200 uint64 = 800 // Cost of SLOAD after EIP 2200 (part of Istanbul) ExtcodeHashGasConstantinople uint64 = 400 // Cost of EXTCODEHASH (introduced in Constantinople) ExtcodeHashGasEIP1884 uint64 = 700 // Cost of EXTCODEHASH after EIP 1884 (part in Istanbul) SelfdestructGasEIP150 uint64 = 5000 // Cost of SELFDESTRUCT post EIP 150 (Tangerine) // EXP has a dynamic portion depending on the size of the exponent ExpByteFrontier uint64 = 10 // was set to 10 in Frontier ExpByteEIP158 uint64 = 50 // was raised to 50 during Eip158 (Spurious Dragon) // Extcodecopy has a dynamic AND a static cost. This represents only the // static portion of the gas. It was changed during EIP 150 (Tangerine) ExtcodeCopyBaseFrontier uint64 = 20 ExtcodeCopyBaseEIP150 uint64 = 700 // CreateBySelfdestructGas is used when the refunded account is one that does // not exist. This logic is similar to call. // Introduced in Tangerine Whistle (Eip 150) CreateBySelfdestructGas uint64 = 25000 MaxCodeSize = 24576 // Maximum bytecode to permit for a contract EcrecoverGas uint64 = 3000 // Elliptic curve sender recovery gas price Sha256BaseGas uint64 = 60 // Base price for a SHA256 operation Sha256PerWordGas uint64 = 12 // Per-word price for a SHA256 operation Ripemd160BaseGas uint64 = 600 // Base price for a RIPEMD160 operation Ripemd160PerWordGas uint64 = 120 // Per-word price for a RIPEMD160 operation IdentityBaseGas uint64 = 15 // Base price for a data copy operation IdentityPerWordGas uint64 = 3 // Per-work price for a data copy operation Bn256AddGasByzantium uint64 = 500 // Byzantium gas needed for an elliptic curve addition Bn256AddGasIstanbul uint64 = 150 // Gas needed for an elliptic curve addition Bn256ScalarMulGasByzantium uint64 = 40000 // Byzantium gas needed for an elliptic curve scalar multiplication Bn256ScalarMulGasIstanbul uint64 = 6000 // Gas needed for an elliptic curve scalar multiplication Bn256PairingBaseGasByzantium uint64 = 100000 // Byzantium base price for an elliptic curve pairing check Bn256PairingBaseGasIstanbul uint64 = 45000 // Base price for an elliptic curve pairing check Bn256PairingPerPointGasByzantium uint64 = 80000 // Byzantium per-point price for an elliptic curve pairing check Bn256PairingPerPointGasIstanbul uint64 = 34000 // Per-point price for an elliptic curve pairing check Bls12381G1AddGas uint64 = 600 // Price for BLS12-381 elliptic curve G1 point addition Bls12381G1MulGas uint64 = 12000 // Price for BLS12-381 elliptic curve G1 point scalar multiplication Bls12381G2AddGas uint64 = 4500 // Price for BLS12-381 elliptic curve G2 point addition Bls12381G2MulGas uint64 = 55000 // Price for BLS12-381 elliptic curve G2 point scalar multiplication Bls12381PairingBaseGas uint64 = 115000 // Base gas price for BLS12-381 elliptic curve pairing check Bls12381PairingPerPairGas uint64 = 23000 // Per-point pair gas price for BLS12-381 elliptic curve pairing check Bls12381MapG1Gas uint64 = 5500 // Gas price for BLS12-381 mapping field element to G1 operation Bls12381MapG2Gas uint64 = 110000 // Gas price for BLS12-381 mapping field element to G2 operation // Axia Stateful Precompile Params // Gas price for native asset balance lookup. Based on the cost of an SLOAD operation since native // asset balances are kept in state storage. AssetBalanceApricot uint64 = 2100 // Gas price for native asset call. This gas price reflects the additional work done for the native // asset transfer itself, which is a write to state storage. The cost of creating a new account and // normal value transfer is assessed separately from this cost. AssetCallApricot uint64 = 20000 )
const ( VersionMajor = 1 // Major version component of the current release VersionMinor = 10 // Minor version component of the current release VersionPatch = 16 // Patch version component of the current release VersionMeta = "stable" // Version metadata to append to the version string )
Variables ¶
var ( // AxiaMainnetChainID ... AxiaMainnetChainID = big.NewInt(43114) // AxiaFujiChainID ... AxiaFujiChainID = big.NewInt(43113) // AxiaLocalChainID ... AxiaLocalChainID = big.NewInt(43112) )
Axia ChainIDs
var ( // AxiaMainnetChainConfig is the configuration for Axia Main Network AxiaMainnetChainConfig = &ChainConfig{ ChainID: AxiaMainnetChainID, HomesteadBlock: big.NewInt(0), DAOForkBlock: big.NewInt(0), DAOForkSupport: true, EIP150Block: big.NewInt(0), EIP150Hash: common.HexToHash("0x2086799aeebeae135c246c65021c82b4e15a2c451340993aacfd2751886514f0"), EIP155Block: big.NewInt(0), EIP158Block: big.NewInt(0), ByzantiumBlock: big.NewInt(0), ConstantinopleBlock: big.NewInt(0), PetersburgBlock: big.NewInt(0), IstanbulBlock: big.NewInt(0), MuirGlacierBlock: big.NewInt(0), ApricotPhase1BlockTimestamp: big.NewInt(time.Date(2021, time.March, 31, 14, 0, 0, 0, time.UTC).Unix()), ApricotPhase2BlockTimestamp: big.NewInt(time.Date(2021, time.May, 10, 11, 0, 0, 0, time.UTC).Unix()), ApricotPhase3BlockTimestamp: big.NewInt(time.Date(2021, time.August, 24, 14, 0, 0, 0, time.UTC).Unix()), ApricotPhase4BlockTimestamp: big.NewInt(time.Date(2021, time.September, 22, 21, 0, 0, 0, time.UTC).Unix()), ApricotPhase5BlockTimestamp: big.NewInt(time.Date(2021, time.December, 2, 18, 0, 0, 0, time.UTC).Unix()), } // AxiaFujiChainConfig is the configuration for the Fuji Test Network AxiaFujiChainConfig = &ChainConfig{ ChainID: AxiaFujiChainID, HomesteadBlock: big.NewInt(0), DAOForkBlock: big.NewInt(0), DAOForkSupport: true, EIP150Block: big.NewInt(0), EIP150Hash: common.HexToHash("0x2086799aeebeae135c246c65021c82b4e15a2c451340993aacfd2751886514f0"), EIP155Block: big.NewInt(0), EIP158Block: big.NewInt(0), ByzantiumBlock: big.NewInt(0), ConstantinopleBlock: big.NewInt(0), PetersburgBlock: big.NewInt(0), IstanbulBlock: big.NewInt(0), MuirGlacierBlock: big.NewInt(0), ApricotPhase1BlockTimestamp: big.NewInt(time.Date(2021, time.March, 26, 14, 0, 0, 0, time.UTC).Unix()), ApricotPhase2BlockTimestamp: big.NewInt(time.Date(2021, time.May, 5, 14, 0, 0, 0, time.UTC).Unix()), ApricotPhase3BlockTimestamp: big.NewInt(time.Date(2021, time.August, 16, 19, 0, 0, 0, time.UTC).Unix()), ApricotPhase4BlockTimestamp: big.NewInt(time.Date(2021, time.September, 16, 21, 0, 0, 0, time.UTC).Unix()), ApricotPhase5BlockTimestamp: big.NewInt(time.Date(2021, time.November, 24, 15, 0, 0, 0, time.UTC).Unix()), } // AxiaLocalChainConfig is the configuration for the Axia Local Network AxiaLocalChainConfig = &ChainConfig{ ChainID: AxiaLocalChainID, HomesteadBlock: big.NewInt(0), DAOForkBlock: big.NewInt(0), DAOForkSupport: true, EIP150Block: big.NewInt(0), EIP150Hash: common.HexToHash("0x2086799aeebeae135c246c65021c82b4e15a2c451340993aacfd2751886514f0"), EIP155Block: big.NewInt(0), EIP158Block: big.NewInt(0), ByzantiumBlock: big.NewInt(0), ConstantinopleBlock: big.NewInt(0), PetersburgBlock: big.NewInt(0), IstanbulBlock: big.NewInt(0), MuirGlacierBlock: big.NewInt(0), ApricotPhase1BlockTimestamp: big.NewInt(0), ApricotPhase2BlockTimestamp: big.NewInt(0), ApricotPhase3BlockTimestamp: big.NewInt(0), ApricotPhase4BlockTimestamp: big.NewInt(0), ApricotPhase5BlockTimestamp: big.NewInt(0), } TestChainConfig = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0)} TestLaunchConfig = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, nil, nil, nil, nil} TestApricotPhase1Config = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, nil, nil, nil} TestApricotPhase2Config = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, nil, nil} TestApricotPhase3Config = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil, nil} TestApricotPhase4Config = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), nil} TestApricotPhase5Config = &ChainConfig{big.NewInt(1), big.NewInt(0), nil, false, big.NewInt(0), common.Hash{}, big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0), big.NewInt(0)} TestRules = TestChainConfig.AxiaRules(new(big.Int), new(big.Int)) )
var ( DifficultyBoundDivisor = big.NewInt(2048) // The bound divisor of the difficulty, used in the update calculations. GenesisDifficulty = big.NewInt(131072) // Difficulty of the Genesis block. MinimumDifficulty = big.NewInt(131072) // The minimum that the difficulty may ever be. DurationLimit = big.NewInt(13) // The decision boundary on the blocktime duration used to determine whether difficulty should go up or not. )
var ( // The atomic gas limit specifies the maximum amount of gas that can be consumed by the atomic // transactions included in a block and is enforced as of ApricotPhase5. Prior to ApricotPhase5, // a block included a single atomic transaction. As of ApricotPhase5, each block can include a set // of atomic transactions where the cumulative atomic gas consumed is capped by the atomic gas limit, // similar to the block gas limit. // // This value must always remain <= MaxUint64. AtomicGasLimit *big.Int = big.NewInt(100_000) )
var Bls12381MultiExpDiscountTable = [128]uint64{} /* 128 elements not displayed */
Gas discount table for BLS12-381 G1 and G2 multi exponentiation operations
var DAOForkBlockExtra = common.FromHex("0x64616f2d686172642d666f726b")
DAOForkBlockExtra is the block header extra-data field to set for the DAO fork point and a number of consecutive blocks to allow fast/light syncers to correctly pick the side they want ("dao-hard-fork").
var DAOForkExtraRange = big.NewInt(10)
DAOForkExtraRange is the number of consecutive blocks from the DAO fork point to override the extra-data in to prevent no-fork attacks.
var DAORefundContract = common.HexToAddress("0xbf4ed7b27f1d666546e30d74d50d173d20bca754")
DAORefundContract is the address of the refund contract to send DAO balances to.
var Version = func() string { return fmt.Sprintf("%d.%d.%d", VersionMajor, VersionMinor, VersionPatch) }()
Version holds the textual version string.
var VersionWithMeta = func() string { v := Version if VersionMeta != "" { v += "-" + VersionMeta } return v }()
VersionWithMeta holds the textual version string including the metadata.
Functions ¶
func DAODrainList ¶
DAODrainList is the list of accounts whose full balances will be moved into a refund contract at the beginning of the dao-fork block.
Types ¶
type ChainConfig ¶
type ChainConfig struct { ChainID *big.Int `json:"chainId"` // chainId identifies the current chain and is used for replay protection HomesteadBlock *big.Int `json:"homesteadBlock,omitempty"` // Homestead switch block (nil = no fork, 0 = already homestead) DAOForkBlock *big.Int `json:"daoForkBlock,omitempty"` // TheDAO hard-fork switch block (nil = no fork) DAOForkSupport bool `json:"daoForkSupport,omitempty"` // Whether the nodes supports or opposes the DAO hard-fork // EIP150 implements the Gas price changes (https://github.com/ethereum/EIPs/issues/150) EIP150Block *big.Int `json:"eip150Block,omitempty"` // EIP150 HF block (nil = no fork) EIP150Hash common.Hash `json:"eip150Hash,omitempty"` // EIP150 HF hash (needed for header only clients as only gas pricing changed) EIP155Block *big.Int `json:"eip155Block,omitempty"` // EIP155 HF block EIP158Block *big.Int `json:"eip158Block,omitempty"` // EIP158 HF block ByzantiumBlock *big.Int `json:"byzantiumBlock,omitempty"` // Byzantium switch block (nil = no fork, 0 = already on byzantium) ConstantinopleBlock *big.Int `json:"constantinopleBlock,omitempty"` // Constantinople switch block (nil = no fork, 0 = already activated) PetersburgBlock *big.Int `json:"petersburgBlock,omitempty"` // Petersburg switch block (nil = same as Constantinople) IstanbulBlock *big.Int `json:"istanbulBlock,omitempty"` // Istanbul switch block (nil = no fork, 0 = already on istanbul) MuirGlacierBlock *big.Int `json:"muirGlacierBlock,omitempty"` // Eip-2384 (bomb delay) switch block (nil = no fork, 0 = already activated) // Axia Network Upgrades ApricotPhase1BlockTimestamp *big.Int `json:"apricotPhase1BlockTimestamp,omitempty"` // Apricot Phase 1 Block Timestamp (nil = no fork, 0 = already activated) // Apricot Phase 2 Block Timestamp (nil = no fork, 0 = already activated) // Apricot Phase 2 includes a modified version of the Berlin Hard Fork from Ethereum ApricotPhase2BlockTimestamp *big.Int `json:"apricotPhase2BlockTimestamp,omitempty"` // Apricot Phase 3 introduces dynamic fees and a modified version of the London Hard Fork from Ethereum (nil = no fork, 0 = already activated) ApricotPhase3BlockTimestamp *big.Int `json:"apricotPhase3BlockTimestamp,omitempty"` // Apricot Phase 4 introduces the notion of a block fee to the dynamic fee algorithm (nil = no fork, 0 = already activated) ApricotPhase4BlockTimestamp *big.Int `json:"apricotPhase4BlockTimestamp,omitempty"` // Apricot Phase 5 introduces a batch of atomic transactions with a maximum atomic gas limit per block. (nil = no fork, 0 = already activated) ApricotPhase5BlockTimestamp *big.Int `json:"apricotPhase5BlockTimestamp,omitempty"` }
ChainConfig is the core config which determines the blockchain settings.
ChainConfig is stored in the database on a per block basis. This means that any network, identified by its genesis block, can have its own set of configuration options.
func (*ChainConfig) AxiaRules ¶ added in v0.1.6
func (c *ChainConfig) AxiaRules(blockNum, blockTimestamp *big.Int) Rules
AxiaRules returns the Axia modified rules to support Axia network upgrades
func (*ChainConfig) CheckCompatible ¶
func (c *ChainConfig) CheckCompatible(newcfg *ChainConfig, height uint64, timestamp uint64) *ConfigCompatError
CheckCompatible checks whether scheduled fork transitions have been imported with a mismatching chain configuration.
func (*ChainConfig) CheckConfigForkOrder ¶
func (c *ChainConfig) CheckConfigForkOrder() error
CheckConfigForkOrder checks that we don't "skip" any forks, geth isn't pluggable enough to guarantee that forks can be implemented in a different order than on official networks
func (*ChainConfig) IsApricotPhase1 ¶
func (c *ChainConfig) IsApricotPhase1(blockTimestamp *big.Int) bool
IsApricotPhase1 returns whether [blockTimestamp] represents a block with a timestamp after the Apricot Phase 1 upgrade time.
func (*ChainConfig) IsApricotPhase2 ¶
func (c *ChainConfig) IsApricotPhase2(blockTimestamp *big.Int) bool
IsApricotPhase2 returns whether [blockTimestamp] represents a block with a timestamp after the Apricot Phase 2 upgrade time.
func (*ChainConfig) IsApricotPhase3 ¶
func (c *ChainConfig) IsApricotPhase3(blockTimestamp *big.Int) bool
IsApricotPhase3 returns whether [blockTimestamp] represents a block with a timestamp after the Apricot Phase 3 upgrade time.
func (*ChainConfig) IsApricotPhase4 ¶
func (c *ChainConfig) IsApricotPhase4(blockTimestamp *big.Int) bool
IsApricotPhase4 returns whether [blockTimestamp] represents a block with a timestamp after the Apricot Phase 4 upgrade time.
func (*ChainConfig) IsApricotPhase5 ¶
func (c *ChainConfig) IsApricotPhase5(blockTimestamp *big.Int) bool
IsApricotPhase5 returns whether [blockTimestamp] represents a block with a timestamp after the Apricot Phase 5 upgrade time.
func (*ChainConfig) IsByzantium ¶
func (c *ChainConfig) IsByzantium(num *big.Int) bool
IsByzantium returns whether num is either equal to the Byzantium fork block or greater.
func (*ChainConfig) IsConstantinople ¶
func (c *ChainConfig) IsConstantinople(num *big.Int) bool
IsConstantinople returns whether num is either equal to the Constantinople fork block or greater.
func (*ChainConfig) IsDAOFork ¶
func (c *ChainConfig) IsDAOFork(num *big.Int) bool
IsDAOFork returns whether num is either equal to the DAO fork block or greater.
func (*ChainConfig) IsEIP150 ¶
func (c *ChainConfig) IsEIP150(num *big.Int) bool
IsEIP150 returns whether num is either equal to the EIP150 fork block or greater.
func (*ChainConfig) IsEIP155 ¶
func (c *ChainConfig) IsEIP155(num *big.Int) bool
IsEIP155 returns whether num is either equal to the EIP155 fork block or greater.
func (*ChainConfig) IsEIP158 ¶
func (c *ChainConfig) IsEIP158(num *big.Int) bool
IsEIP158 returns whether num is either equal to the EIP158 fork block or greater.
func (*ChainConfig) IsHomestead ¶
func (c *ChainConfig) IsHomestead(num *big.Int) bool
IsHomestead returns whether num is either equal to the homestead block or greater.
func (*ChainConfig) IsIstanbul ¶
func (c *ChainConfig) IsIstanbul(num *big.Int) bool
IsIstanbul returns whether num is either equal to the Istanbul fork block or greater.
func (*ChainConfig) IsMuirGlacier ¶
func (c *ChainConfig) IsMuirGlacier(num *big.Int) bool
IsMuirGlacier returns whether num is either equal to the Muir Glacier (EIP-2384) fork block or greater.
func (*ChainConfig) IsPetersburg ¶
func (c *ChainConfig) IsPetersburg(num *big.Int) bool
IsPetersburg returns whether num is either - equal to or greater than the PetersburgBlock fork block, - OR is nil, and Constantinople is active
func (*ChainConfig) String ¶
func (c *ChainConfig) String() string
String implements the fmt.Stringer interface.
type ConfigCompatError ¶
type ConfigCompatError struct { What string // block numbers of the stored and new configurations StoredConfig, NewConfig *big.Int // the block number to which the local chain must be rewound to correct the error RewindTo uint64 }
ConfigCompatError is raised if the locally-stored blockchain is initialised with a ChainConfig that would alter the past.
func (*ConfigCompatError) Error ¶
func (err *ConfigCompatError) Error() string
type Rules ¶
type Rules struct { ChainID *big.Int IsHomestead, IsEIP150, IsEIP155, IsEIP158 bool IsByzantium, IsConstantinople, IsPetersburg, IsIstanbul bool // Rules for Axia releases IsApricotPhase1, IsApricotPhase2, IsApricotPhase3, IsApricotPhase4, IsApricotPhase5 bool }
Rules wraps ChainConfig and is merely syntactic sugar or can be used for functions that do not have or require information about the block.
Rules is a one time interface meaning that it shouldn't be used in between transition phases.