Documentation ¶
Overview ¶
Package machinelearningiface provides an interface to enable mocking the Amazon Machine Learning service client for testing your code.
It is important to note that this interface will have breaking changes when the service model is updated and adds new API operations, paginators, and waiters.
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type ClientAPI ¶ added in v0.9.0
type ClientAPI interface { AddTagsRequest(*machinelearning.AddTagsInput) machinelearning.AddTagsRequest CreateBatchPredictionRequest(*machinelearning.CreateBatchPredictionInput) machinelearning.CreateBatchPredictionRequest CreateDataSourceFromRDSRequest(*machinelearning.CreateDataSourceFromRDSInput) machinelearning.CreateDataSourceFromRDSRequest CreateDataSourceFromRedshiftRequest(*machinelearning.CreateDataSourceFromRedshiftInput) machinelearning.CreateDataSourceFromRedshiftRequest CreateDataSourceFromS3Request(*machinelearning.CreateDataSourceFromS3Input) machinelearning.CreateDataSourceFromS3Request CreateEvaluationRequest(*machinelearning.CreateEvaluationInput) machinelearning.CreateEvaluationRequest CreateMLModelRequest(*machinelearning.CreateMLModelInput) machinelearning.CreateMLModelRequest CreateRealtimeEndpointRequest(*machinelearning.CreateRealtimeEndpointInput) machinelearning.CreateRealtimeEndpointRequest DeleteBatchPredictionRequest(*machinelearning.DeleteBatchPredictionInput) machinelearning.DeleteBatchPredictionRequest DeleteDataSourceRequest(*machinelearning.DeleteDataSourceInput) machinelearning.DeleteDataSourceRequest DeleteEvaluationRequest(*machinelearning.DeleteEvaluationInput) machinelearning.DeleteEvaluationRequest DeleteMLModelRequest(*machinelearning.DeleteMLModelInput) machinelearning.DeleteMLModelRequest DeleteRealtimeEndpointRequest(*machinelearning.DeleteRealtimeEndpointInput) machinelearning.DeleteRealtimeEndpointRequest DeleteTagsRequest(*machinelearning.DeleteTagsInput) machinelearning.DeleteTagsRequest DescribeBatchPredictionsRequest(*machinelearning.DescribeBatchPredictionsInput) machinelearning.DescribeBatchPredictionsRequest DescribeDataSourcesRequest(*machinelearning.DescribeDataSourcesInput) machinelearning.DescribeDataSourcesRequest DescribeEvaluationsRequest(*machinelearning.DescribeEvaluationsInput) machinelearning.DescribeEvaluationsRequest DescribeMLModelsRequest(*machinelearning.DescribeMLModelsInput) machinelearning.DescribeMLModelsRequest DescribeTagsRequest(*machinelearning.DescribeTagsInput) machinelearning.DescribeTagsRequest GetBatchPredictionRequest(*machinelearning.GetBatchPredictionInput) machinelearning.GetBatchPredictionRequest GetDataSourceRequest(*machinelearning.GetDataSourceInput) machinelearning.GetDataSourceRequest GetEvaluationRequest(*machinelearning.GetEvaluationInput) machinelearning.GetEvaluationRequest GetMLModelRequest(*machinelearning.GetMLModelInput) machinelearning.GetMLModelRequest PredictRequest(*machinelearning.PredictInput) machinelearning.PredictRequest UpdateBatchPredictionRequest(*machinelearning.UpdateBatchPredictionInput) machinelearning.UpdateBatchPredictionRequest UpdateDataSourceRequest(*machinelearning.UpdateDataSourceInput) machinelearning.UpdateDataSourceRequest UpdateEvaluationRequest(*machinelearning.UpdateEvaluationInput) machinelearning.UpdateEvaluationRequest UpdateMLModelRequest(*machinelearning.UpdateMLModelInput) machinelearning.UpdateMLModelRequest WaitUntilBatchPredictionAvailable(context.Context, *machinelearning.DescribeBatchPredictionsInput, ...aws.WaiterOption) error WaitUntilDataSourceAvailable(context.Context, *machinelearning.DescribeDataSourcesInput, ...aws.WaiterOption) error WaitUntilEvaluationAvailable(context.Context, *machinelearning.DescribeEvaluationsInput, ...aws.WaiterOption) error WaitUntilMLModelAvailable(context.Context, *machinelearning.DescribeMLModelsInput, ...aws.WaiterOption) error }
ClientAPI provides an interface to enable mocking the machinelearning.Client methods. This make unit testing your code that calls out to the SDK's service client's calls easier.
The best way to use this interface is so the SDK's service client's calls can be stubbed out for unit testing your code with the SDK without needing to inject custom request handlers into the SDK's request pipeline.
// myFunc uses an SDK service client to make a request to // Amazon Machine Learning. func myFunc(svc machinelearningiface.ClientAPI) bool { // Make svc.AddTags request } func main() { cfg, err := external.LoadDefaultAWSConfig() if err != nil { panic("failed to load config, " + err.Error()) } svc := machinelearning.New(cfg) myFunc(svc) }
In your _test.go file:
// Define a mock struct to be used in your unit tests of myFunc. type mockClientClient struct { machinelearningiface.ClientPI } func (m *mockClientClient) AddTags(input *machinelearning.AddTagsInput) (*machinelearning.AddTagsOutput, error) { // mock response/functionality } func TestMyFunc(t *testing.T) { // Setup Test mockSvc := &mockClientClient{} myfunc(mockSvc) // Verify myFunc's functionality }
It is important to note that this interface will have breaking changes when the service model is updated and adds new API operations, paginators, and waiters. Its suggested to use the pattern above for testing, or using tooling to generate mocks to satisfy the interfaces.