types

package
v1.120.4 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 8, 2023 License: Apache-2.0 Imports: 4 Imported by: 13

Documentation

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type ActionSource added in v0.31.0

type ActionSource struct {

	// The URI of the source.
	//
	// This member is required.
	SourceUri *string

	// The ID of the source.
	SourceId *string

	// The type of the source.
	SourceType *string
	// contains filtered or unexported fields
}

A structure describing the source of an action.

type ActionStatus added in v0.31.0

type ActionStatus string
const (
	ActionStatusUnknown    ActionStatus = "Unknown"
	ActionStatusInProgress ActionStatus = "InProgress"
	ActionStatusCompleted  ActionStatus = "Completed"
	ActionStatusFailed     ActionStatus = "Failed"
	ActionStatusStopping   ActionStatus = "Stopping"
	ActionStatusStopped    ActionStatus = "Stopped"
)

Enum values for ActionStatus

func (ActionStatus) Values added in v0.31.0

func (ActionStatus) Values() []ActionStatus

Values returns all known values for ActionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ActionSummary added in v0.31.0

type ActionSummary struct {

	// The Amazon Resource Name (ARN) of the action.
	ActionArn *string

	// The name of the action.
	ActionName *string

	// The type of the action.
	ActionType *string

	// When the action was created.
	CreationTime *time.Time

	// When the action was last modified.
	LastModifiedTime *time.Time

	// The source of the action.
	Source *ActionSource

	// The status of the action.
	Status ActionStatus
	// contains filtered or unexported fields
}

Lists the properties of an action. An action represents an action or activity. Some examples are a workflow step and a model deployment. Generally, an action involves at least one input artifact or output artifact.

type AdditionalInferenceSpecificationDefinition added in v1.20.0

type AdditionalInferenceSpecificationDefinition struct {

	// The Amazon ECR registry path of the Docker image that contains the inference
	// code.
	//
	// This member is required.
	Containers []ModelPackageContainerDefinition

	// A unique name to identify the additional inference specification. The name must
	// be unique within the list of your additional inference specifications for a
	// particular model package.
	//
	// This member is required.
	Name *string

	// A description of the additional Inference specification
	Description *string

	// The supported MIME types for the input data.
	SupportedContentTypes []string

	// A list of the instance types that are used to generate inferences in real-time.
	SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType

	// The supported MIME types for the output data.
	SupportedResponseMIMETypes []string

	// A list of the instance types on which a transformation job can be run or on
	// which an endpoint can be deployed.
	SupportedTransformInstanceTypes []TransformInstanceType
	// contains filtered or unexported fields
}

A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

type AdditionalS3DataSource added in v1.110.0

type AdditionalS3DataSource struct {

	// The data type of the additional data source that you specify for use in
	// inference or training.
	//
	// This member is required.
	S3DataType AdditionalS3DataSourceDataType

	// The uniform resource identifier (URI) used to identify an additional data
	// source used in inference or training.
	//
	// This member is required.
	S3Uri *string

	// The type of compression used for an additional data source used in inference or
	// training. Specify None if your additional data source is not compressed.
	CompressionType CompressionType
	// contains filtered or unexported fields
}

A data source used for training or inference that is in addition to the input dataset or model data.

type AdditionalS3DataSourceDataType added in v1.110.0

type AdditionalS3DataSourceDataType string
const (
	AdditionalS3DataSourceDataTypeS3object AdditionalS3DataSourceDataType = "S3Object"
)

Enum values for AdditionalS3DataSourceDataType

func (AdditionalS3DataSourceDataType) Values added in v1.110.0

Values returns all known values for AdditionalS3DataSourceDataType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AgentVersion added in v0.31.0

type AgentVersion struct {

	// The number of Edge Manager agents.
	//
	// This member is required.
	AgentCount *int64

	// Version of the agent.
	//
	// This member is required.
	Version *string
	// contains filtered or unexported fields
}

Edge Manager agent version.

type AggregationTransformationValue added in v1.89.0

type AggregationTransformationValue string
const (
	AggregationTransformationValueSum   AggregationTransformationValue = "sum"
	AggregationTransformationValueAvg   AggregationTransformationValue = "avg"
	AggregationTransformationValueFirst AggregationTransformationValue = "first"
	AggregationTransformationValueMin   AggregationTransformationValue = "min"
	AggregationTransformationValueMax   AggregationTransformationValue = "max"
)

Enum values for AggregationTransformationValue

func (AggregationTransformationValue) Values added in v1.89.0

Values returns all known values for AggregationTransformationValue. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Alarm added in v0.31.0

type Alarm struct {

	// The name of a CloudWatch alarm in your account.
	AlarmName *string
	// contains filtered or unexported fields
}

An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.

type AlgorithmSortBy

type AlgorithmSortBy string
const (
	AlgorithmSortByName         AlgorithmSortBy = "Name"
	AlgorithmSortByCreationTime AlgorithmSortBy = "CreationTime"
)

Enum values for AlgorithmSortBy

func (AlgorithmSortBy) Values added in v0.29.0

func (AlgorithmSortBy) Values() []AlgorithmSortBy

Values returns all known values for AlgorithmSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AlgorithmSpecification

type AlgorithmSpecification struct {

	// The training input mode that the algorithm supports. For more information about
	// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
	// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
	// directly from Amazon S3 to the container. File mode If an algorithm supports
	// File mode, SageMaker downloads the training data from S3 to the provisioned ML
	// storage volume, and mounts the directory to the Docker volume for the training
	// container. You must provision the ML storage volume with sufficient capacity to
	// accommodate the data downloaded from S3. In addition to the training data, the
	// ML storage volume also stores the output model. The algorithm container uses the
	// ML storage volume to also store intermediate information, if any. For
	// distributed algorithms, training data is distributed uniformly. Your training
	// duration is predictable if the input data objects sizes are approximately the
	// same. SageMaker does not split the files any further for model training. If the
	// object sizes are skewed, training won't be optimal as the data distribution is
	// also skewed when one host in a training cluster is overloaded, thus becoming a
	// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
	// SageMaker streams data directly from S3 to the container with no code changes,
	// and provides file system access to the data. Users can author their training
	// script to interact with these files as if they were stored on disk. FastFile
	// mode works best when the data is read sequentially. Augmented manifest files
	// aren't supported. The startup time is lower when there are fewer files in the S3
	// bucket provided.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The name of the algorithm resource to use for the training job. This must be an
	// algorithm resource that you created or subscribe to on Amazon Web Services
	// Marketplace. You must specify either the algorithm name to the AlgorithmName
	// parameter or the image URI of the algorithm container to the TrainingImage
	// parameter. Note that the AlgorithmName parameter is mutually exclusive with the
	// TrainingImage parameter. If you specify a value for the AlgorithmName
	// parameter, you can't specify a value for TrainingImage , and vice versa. If you
	// specify values for both parameters, the training job might break; if you don't
	// specify any value for both parameters, the training job might raise a null
	// error.
	AlgorithmName *string

	// The arguments for a container used to run a training job. See How Amazon
	// SageMaker Runs Your Training Image (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html)
	// for additional information.
	ContainerArguments []string

	// The entrypoint script for a Docker container (https://docs.docker.com/engine/reference/builder/)
	// used to run a training job. This script takes precedence over the default train
	// processing instructions. See How Amazon SageMaker Runs Your Training Image (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html)
	// for more information.
	ContainerEntrypoint []string

	// To generate and save time-series metrics during training, set to true . The
	// default is false and time-series metrics aren't generated except in the
	// following cases:
	//   - You use one of the SageMaker built-in algorithms
	//   - You use one of the following Prebuilt SageMaker Docker Images (https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html)
	//   :
	//   - Tensorflow (version >= 1.15)
	//   - MXNet (version >= 1.6)
	//   - PyTorch (version >= 1.3)
	//   - You specify at least one MetricDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html)
	EnableSageMakerMetricsTimeSeries *bool

	// A list of metric definition objects. Each object specifies the metric name and
	// regular expressions used to parse algorithm logs. SageMaker publishes each
	// metric to Amazon CloudWatch.
	MetricDefinitions []MetricDefinition

	// The registry path of the Docker image that contains the training algorithm. For
	// information about docker registry paths for SageMaker built-in algorithms, see
	// Docker Registry Paths and Example Code (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
	// in the Amazon SageMaker developer guide. SageMaker supports both
	// registry/repository[:tag] and registry/repository[@digest] image path formats.
	// For more information about using your custom training container, see Using Your
	// Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// . You must specify either the algorithm name to the AlgorithmName parameter or
	// the image URI of the algorithm container to the TrainingImage parameter. For
	// more information, see the note in the AlgorithmName parameter description.
	TrainingImage *string

	// The configuration to use an image from a private Docker registry for a training
	// job.
	TrainingImageConfig *TrainingImageConfig
	// contains filtered or unexported fields
}

Specifies the training algorithm to use in a CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html) request. For more information about algorithms provided by SageMaker, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html) . For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html) .

type AlgorithmStatus

type AlgorithmStatus string
const (
	AlgorithmStatusPending    AlgorithmStatus = "Pending"
	AlgorithmStatusInProgress AlgorithmStatus = "InProgress"
	AlgorithmStatusCompleted  AlgorithmStatus = "Completed"
	AlgorithmStatusFailed     AlgorithmStatus = "Failed"
	AlgorithmStatusDeleting   AlgorithmStatus = "Deleting"
)

Enum values for AlgorithmStatus

func (AlgorithmStatus) Values added in v0.29.0

func (AlgorithmStatus) Values() []AlgorithmStatus

Values returns all known values for AlgorithmStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AlgorithmStatusDetails

type AlgorithmStatusDetails struct {

	// The status of the scan of the algorithm's Docker image container.
	ImageScanStatuses []AlgorithmStatusItem

	// The status of algorithm validation.
	ValidationStatuses []AlgorithmStatusItem
	// contains filtered or unexported fields
}

Specifies the validation and image scan statuses of the algorithm.

type AlgorithmStatusItem

type AlgorithmStatusItem struct {

	// The name of the algorithm for which the overall status is being reported.
	//
	// This member is required.
	Name *string

	// The current status.
	//
	// This member is required.
	Status DetailedAlgorithmStatus

	// if the overall status is Failed , the reason for the failure.
	FailureReason *string
	// contains filtered or unexported fields
}

Represents the overall status of an algorithm.

type AlgorithmSummary

type AlgorithmSummary struct {

	// The Amazon Resource Name (ARN) of the algorithm.
	//
	// This member is required.
	AlgorithmArn *string

	// The name of the algorithm that is described by the summary.
	//
	// This member is required.
	AlgorithmName *string

	// The overall status of the algorithm.
	//
	// This member is required.
	AlgorithmStatus AlgorithmStatus

	// A timestamp that shows when the algorithm was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A brief description of the algorithm.
	AlgorithmDescription *string
	// contains filtered or unexported fields
}

Provides summary information about an algorithm.

type AlgorithmValidationProfile

type AlgorithmValidationProfile struct {

	// The name of the profile for the algorithm. The name must have 1 to 63
	// characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
	//
	// This member is required.
	ProfileName *string

	// The TrainingJobDefinition object that describes the training job that SageMaker
	// runs to validate your algorithm.
	//
	// This member is required.
	TrainingJobDefinition *TrainingJobDefinition

	// The TransformJobDefinition object that describes the transform job that
	// SageMaker runs to validate your algorithm.
	TransformJobDefinition *TransformJobDefinition
	// contains filtered or unexported fields
}

Defines a training job and a batch transform job that SageMaker runs to validate your algorithm. The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

type AlgorithmValidationSpecification

type AlgorithmValidationSpecification struct {

	// An array of AlgorithmValidationProfile objects, each of which specifies a
	// training job and batch transform job that SageMaker runs to validate your
	// algorithm.
	//
	// This member is required.
	ValidationProfiles []AlgorithmValidationProfile

	// The IAM roles that SageMaker uses to run the training jobs.
	//
	// This member is required.
	ValidationRole *string
	// contains filtered or unexported fields
}

Specifies configurations for one or more training jobs that SageMaker runs to test the algorithm.

type AnnotationConsolidationConfig

type AnnotationConsolidationConfig struct {

	// The Amazon Resource Name (ARN) of a Lambda function implements the logic for
	// annotation consolidation (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
	// and to process output data. This parameter is required for all labeling jobs.
	// For built-in task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
	// , use one of the following Amazon SageMaker Ground Truth Lambda function ARNs
	// for AnnotationConsolidationLambdaArn . For custom labeling workflows, see
	// Post-annotation Lambda (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda)
	// . Bounding box - Finds the most similar boxes from different workers based on
	// the Jaccard index of the boxes.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
	// Image classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of an image based on annotations from individual
	// workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
	// Multi-label image classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of an image based on
	// annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
	// Semantic segmentation - Treats each pixel in an image as a multi-class
	// classification and treats pixel annotations from workers as "votes" for the
	// correct label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
	// Text classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of text based on annotations from individual workers.
	//
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
	// Multi-label text classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of text based on annotations
	// from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
	// Named entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
	// Video Classification - Use this task type when you need workers to classify
	// videos using predefined labels that you specify. Workers are shown videos and
	// are asked to choose one label for each video.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
	// Video Frame Object Detection - Use this task type to have workers identify and
	// locate objects in a sequence of video frames (images extracted from a video)
	// using bounding boxes. For example, you can use this task to ask workers to
	// identify and localize various objects in a series of video frames, such as cars,
	// bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
	// Video Frame Object Tracking - Use this task type to have workers track the
	// movement of objects in a sequence of video frames (images extracted from a
	// video) using bounding boxes. For example, you can use this task to ask workers
	// to track the movement of objects, such as cars, bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
	// 3D Point Cloud Object Detection - Use this task type when you want workers to
	// classify objects in a 3D point cloud by drawing 3D cuboids around objects. For
	// example, you can use this task type to ask workers to identify different types
	// of objects in a point cloud, such as cars, bikes, and pedestrians.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
	// 3D Point Cloud Object Tracking - Use this task type when you want workers to
	// draw 3D cuboids around objects that appear in a sequence of 3D point cloud
	// frames. For example, you can use this task type to ask workers to track the
	// movement of vehicles across multiple point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
	// 3D Point Cloud Semantic Segmentation - Use this task type when you want workers
	// to create a point-level semantic segmentation masks by painting objects in a 3D
	// point cloud using different colors where each color is assigned to one of the
	// classes you specify.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
	// Use the following ARNs for Label Verification and Adjustment Jobs Use label
	// verification and adjustment jobs to review and adjust labels. To learn more, see
	// Verify and Adjust Labels  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html)
	// . Semantic Segmentation Adjustment - Treats each pixel in an image as a
	// multi-class classification and treats pixel adjusted annotations from workers as
	// "votes" for the correct label.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
	// Semantic Segmentation Verification - Uses a variant of the Expectation
	// Maximization approach to estimate the true class of verification judgment for
	// semantic segmentation labels based on annotations from individual workers.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
	// Bounding Box Adjustment - Finds the most similar boxes from different workers
	// based on the Jaccard index of the adjusted annotations.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
	// Bounding Box Verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgement for bounding box
	// labels based on annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
	// Video Frame Object Detection Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// classify and localize objects in a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
	// Video Frame Object Tracking Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// track object movement across a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
	// 3D Point Cloud Object Detection Adjustment - Use this task type when you want
	// workers to adjust 3D cuboids around objects in a 3D point cloud.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
	// 3D Point Cloud Object Tracking Adjustment - Use this task type when you want
	// workers to adjust 3D cuboids around objects that appear in a sequence of 3D
	// point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
	// 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you
	// want workers to adjust a point-level semantic segmentation masks using a paint
	// tool.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//
	// This member is required.
	AnnotationConsolidationLambdaArn *string
	// contains filtered or unexported fields
}

Configures how labels are consolidated across human workers and processes output data.

type AppDetails

type AppDetails struct {

	// The name of the app.
	AppName *string

	// The type of app.
	AppType AppType

	// The creation time.
	CreationTime *time.Time

	// The domain ID.
	DomainId *string

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	ResourceSpec *ResourceSpec

	// The name of the space.
	SpaceName *string

	// The status.
	Status AppStatus

	// The user profile name.
	UserProfileName *string
	// contains filtered or unexported fields
}

Details about an Amazon SageMaker app.

type AppImageConfigDetails added in v0.29.0

type AppImageConfigDetails struct {

	// The Amazon Resource Name (ARN) of the AppImageConfig.
	AppImageConfigArn *string

	// The name of the AppImageConfig. Must be unique to your account.
	AppImageConfigName *string

	// When the AppImageConfig was created.
	CreationTime *time.Time

	// The configuration for the file system and the runtime, such as the environment
	// variables and entry point.
	JupyterLabAppImageConfig *JupyterLabAppImageConfig

	// The configuration for the file system and kernels in the SageMaker image.
	KernelGatewayImageConfig *KernelGatewayImageConfig

	// When the AppImageConfig was last modified.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

The configuration for running a SageMaker image as a KernelGateway app.

type AppImageConfigSortKey added in v0.29.0

type AppImageConfigSortKey string
const (
	AppImageConfigSortKeyCreationTime     AppImageConfigSortKey = "CreationTime"
	AppImageConfigSortKeyLastModifiedTime AppImageConfigSortKey = "LastModifiedTime"
	AppImageConfigSortKeyName             AppImageConfigSortKey = "Name"
)

Enum values for AppImageConfigSortKey

func (AppImageConfigSortKey) Values added in v0.29.0

Values returns all known values for AppImageConfigSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AppInstanceType

type AppInstanceType string
const (
	AppInstanceTypeSystem                  AppInstanceType = "system"
	AppInstanceTypeMlT3Micro               AppInstanceType = "ml.t3.micro"
	AppInstanceTypeMlT3Small               AppInstanceType = "ml.t3.small"
	AppInstanceTypeMlT3Medium              AppInstanceType = "ml.t3.medium"
	AppInstanceTypeMlT3Large               AppInstanceType = "ml.t3.large"
	AppInstanceTypeMlT3Xlarge              AppInstanceType = "ml.t3.xlarge"
	AppInstanceTypeMlT32xlarge             AppInstanceType = "ml.t3.2xlarge"
	AppInstanceTypeMlM5Large               AppInstanceType = "ml.m5.large"
	AppInstanceTypeMlM5Xlarge              AppInstanceType = "ml.m5.xlarge"
	AppInstanceTypeMlM52xlarge             AppInstanceType = "ml.m5.2xlarge"
	AppInstanceTypeMlM54xlarge             AppInstanceType = "ml.m5.4xlarge"
	AppInstanceTypeMlM58xlarge             AppInstanceType = "ml.m5.8xlarge"
	AppInstanceTypeMlM512xlarge            AppInstanceType = "ml.m5.12xlarge"
	AppInstanceTypeMlM516xlarge            AppInstanceType = "ml.m5.16xlarge"
	AppInstanceTypeMlM524xlarge            AppInstanceType = "ml.m5.24xlarge"
	AppInstanceTypeMlM5dLarge              AppInstanceType = "ml.m5d.large"
	AppInstanceTypeMlM5dXlarge             AppInstanceType = "ml.m5d.xlarge"
	AppInstanceTypeMlM5d2xlarge            AppInstanceType = "ml.m5d.2xlarge"
	AppInstanceTypeMlM5d4xlarge            AppInstanceType = "ml.m5d.4xlarge"
	AppInstanceTypeMlM5d8xlarge            AppInstanceType = "ml.m5d.8xlarge"
	AppInstanceTypeMlM5d12xlarge           AppInstanceType = "ml.m5d.12xlarge"
	AppInstanceTypeMlM5d16xlarge           AppInstanceType = "ml.m5d.16xlarge"
	AppInstanceTypeMlM5d24xlarge           AppInstanceType = "ml.m5d.24xlarge"
	AppInstanceTypeMlC5Large               AppInstanceType = "ml.c5.large"
	AppInstanceTypeMlC5Xlarge              AppInstanceType = "ml.c5.xlarge"
	AppInstanceTypeMlC52xlarge             AppInstanceType = "ml.c5.2xlarge"
	AppInstanceTypeMlC54xlarge             AppInstanceType = "ml.c5.4xlarge"
	AppInstanceTypeMlC59xlarge             AppInstanceType = "ml.c5.9xlarge"
	AppInstanceTypeMlC512xlarge            AppInstanceType = "ml.c5.12xlarge"
	AppInstanceTypeMlC518xlarge            AppInstanceType = "ml.c5.18xlarge"
	AppInstanceTypeMlC524xlarge            AppInstanceType = "ml.c5.24xlarge"
	AppInstanceTypeMlP32xlarge             AppInstanceType = "ml.p3.2xlarge"
	AppInstanceTypeMlP38xlarge             AppInstanceType = "ml.p3.8xlarge"
	AppInstanceTypeMlP316xlarge            AppInstanceType = "ml.p3.16xlarge"
	AppInstanceTypeMlP3dn24xlarge          AppInstanceType = "ml.p3dn.24xlarge"
	AppInstanceTypeMlG4dnXlarge            AppInstanceType = "ml.g4dn.xlarge"
	AppInstanceTypeMlG4dn2xlarge           AppInstanceType = "ml.g4dn.2xlarge"
	AppInstanceTypeMlG4dn4xlarge           AppInstanceType = "ml.g4dn.4xlarge"
	AppInstanceTypeMlG4dn8xlarge           AppInstanceType = "ml.g4dn.8xlarge"
	AppInstanceTypeMlG4dn12xlarge          AppInstanceType = "ml.g4dn.12xlarge"
	AppInstanceTypeMlG4dn16xlarge          AppInstanceType = "ml.g4dn.16xlarge"
	AppInstanceTypeMlR5Large               AppInstanceType = "ml.r5.large"
	AppInstanceTypeMlR5Xlarge              AppInstanceType = "ml.r5.xlarge"
	AppInstanceTypeMlR52xlarge             AppInstanceType = "ml.r5.2xlarge"
	AppInstanceTypeMlR54xlarge             AppInstanceType = "ml.r5.4xlarge"
	AppInstanceTypeMlR58xlarge             AppInstanceType = "ml.r5.8xlarge"
	AppInstanceTypeMlR512xlarge            AppInstanceType = "ml.r5.12xlarge"
	AppInstanceTypeMlR516xlarge            AppInstanceType = "ml.r5.16xlarge"
	AppInstanceTypeMlR524xlarge            AppInstanceType = "ml.r5.24xlarge"
	AppInstanceTypeMlG5Xlarge              AppInstanceType = "ml.g5.xlarge"
	AppInstanceTypeMlG52xlarge             AppInstanceType = "ml.g5.2xlarge"
	AppInstanceTypeMlG54xlarge             AppInstanceType = "ml.g5.4xlarge"
	AppInstanceTypeMlG58xlarge             AppInstanceType = "ml.g5.8xlarge"
	AppInstanceTypeMlG516xlarge            AppInstanceType = "ml.g5.16xlarge"
	AppInstanceTypeMlG512xlarge            AppInstanceType = "ml.g5.12xlarge"
	AppInstanceTypeMlG524xlarge            AppInstanceType = "ml.g5.24xlarge"
	AppInstanceTypeMlG548xlarge            AppInstanceType = "ml.g5.48xlarge"
	AppInstanceTypeMlGeospatialInteractive AppInstanceType = "ml.geospatial.interactive"
	AppInstanceTypeMlP4d24xlarge           AppInstanceType = "ml.p4d.24xlarge"
	AppInstanceTypeMlP4de24xlarge          AppInstanceType = "ml.p4de.24xlarge"
	AppInstanceTypeMlTrn12xlarge           AppInstanceType = "ml.trn1.2xlarge"
	AppInstanceTypeMlTrn132xlarge          AppInstanceType = "ml.trn1.32xlarge"
	AppInstanceTypeMlTrn1n32xlarge         AppInstanceType = "ml.trn1n.32xlarge"
)

Enum values for AppInstanceType

func (AppInstanceType) Values added in v0.29.0

func (AppInstanceType) Values() []AppInstanceType

Values returns all known values for AppInstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AppNetworkAccessType added in v0.29.0

type AppNetworkAccessType string
const (
	AppNetworkAccessTypePublicInternetOnly AppNetworkAccessType = "PublicInternetOnly"
	AppNetworkAccessTypeVpcOnly            AppNetworkAccessType = "VpcOnly"
)

Enum values for AppNetworkAccessType

func (AppNetworkAccessType) Values added in v0.29.0

Values returns all known values for AppNetworkAccessType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AppSecurityGroupManagement added in v1.18.0

type AppSecurityGroupManagement string
const (
	AppSecurityGroupManagementService  AppSecurityGroupManagement = "Service"
	AppSecurityGroupManagementCustomer AppSecurityGroupManagement = "Customer"
)

Enum values for AppSecurityGroupManagement

func (AppSecurityGroupManagement) Values added in v1.18.0

Values returns all known values for AppSecurityGroupManagement. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AppSortKey

type AppSortKey string
const (
	AppSortKeyCreationTime AppSortKey = "CreationTime"
)

Enum values for AppSortKey

func (AppSortKey) Values added in v0.29.0

func (AppSortKey) Values() []AppSortKey

Values returns all known values for AppSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AppSpecification

type AppSpecification struct {

	// The container image to be run by the processing job.
	//
	// This member is required.
	ImageUri *string

	// The arguments for a container used to run a processing job.
	ContainerArguments []string

	// The entrypoint for a container used to run a processing job.
	ContainerEntrypoint []string
	// contains filtered or unexported fields
}

Configuration to run a processing job in a specified container image.

type AppStatus

type AppStatus string
const (
	AppStatusDeleted   AppStatus = "Deleted"
	AppStatusDeleting  AppStatus = "Deleting"
	AppStatusFailed    AppStatus = "Failed"
	AppStatusInService AppStatus = "InService"
	AppStatusPending   AppStatus = "Pending"
)

Enum values for AppStatus

func (AppStatus) Values added in v0.29.0

func (AppStatus) Values() []AppStatus

Values returns all known values for AppStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AppType

type AppType string
const (
	AppTypeJupyterServer    AppType = "JupyterServer"
	AppTypeKernelGateway    AppType = "KernelGateway"
	AppTypeTensorBoard      AppType = "TensorBoard"
	AppTypeRStudioServerPro AppType = "RStudioServerPro"
	AppTypeRSessionGateway  AppType = "RSessionGateway"
	AppTypeJupyterLab       AppType = "JupyterLab"
	AppTypeCodeEditor       AppType = "CodeEditor"
)

Enum values for AppType

func (AppType) Values added in v0.29.0

func (AppType) Values() []AppType

Values returns all known values for AppType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ArtifactSource added in v0.31.0

type ArtifactSource struct {

	// The URI of the source.
	//
	// This member is required.
	SourceUri *string

	// A list of source types.
	SourceTypes []ArtifactSourceType
	// contains filtered or unexported fields
}

A structure describing the source of an artifact.

type ArtifactSourceIdType added in v0.31.0

type ArtifactSourceIdType string
const (
	ArtifactSourceIdTypeMd5Hash   ArtifactSourceIdType = "MD5Hash"
	ArtifactSourceIdTypeS3Etag    ArtifactSourceIdType = "S3ETag"
	ArtifactSourceIdTypeS3Version ArtifactSourceIdType = "S3Version"
	ArtifactSourceIdTypeCustom    ArtifactSourceIdType = "Custom"
)

Enum values for ArtifactSourceIdType

func (ArtifactSourceIdType) Values added in v0.31.0

Values returns all known values for ArtifactSourceIdType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ArtifactSourceType added in v0.31.0

type ArtifactSourceType struct {

	// The type of ID.
	//
	// This member is required.
	SourceIdType ArtifactSourceIdType

	// The ID.
	//
	// This member is required.
	Value *string
	// contains filtered or unexported fields
}

The ID and ID type of an artifact source.

type ArtifactSummary added in v0.31.0

type ArtifactSummary struct {

	// The Amazon Resource Name (ARN) of the artifact.
	ArtifactArn *string

	// The name of the artifact.
	ArtifactName *string

	// The type of the artifact.
	ArtifactType *string

	// When the artifact was created.
	CreationTime *time.Time

	// When the artifact was last modified.
	LastModifiedTime *time.Time

	// The source of the artifact.
	Source *ArtifactSource
	// contains filtered or unexported fields
}

Lists a summary of the properties of an artifact. An artifact represents a URI addressable object or data. Some examples are a dataset and a model.

type AssemblyType

type AssemblyType string
const (
	AssemblyTypeNone AssemblyType = "None"
	AssemblyTypeLine AssemblyType = "Line"
)

Enum values for AssemblyType

func (AssemblyType) Values added in v0.29.0

func (AssemblyType) Values() []AssemblyType

Values returns all known values for AssemblyType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AssociationEdgeType added in v0.31.0

type AssociationEdgeType string
const (
	AssociationEdgeTypeContributedTo  AssociationEdgeType = "ContributedTo"
	AssociationEdgeTypeAssociatedWith AssociationEdgeType = "AssociatedWith"
	AssociationEdgeTypeDerivedFrom    AssociationEdgeType = "DerivedFrom"
	AssociationEdgeTypeProduced       AssociationEdgeType = "Produced"
)

Enum values for AssociationEdgeType

func (AssociationEdgeType) Values added in v0.31.0

Values returns all known values for AssociationEdgeType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AssociationSummary added in v0.31.0

type AssociationSummary struct {

	// The type of the association.
	AssociationType AssociationEdgeType

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// When the association was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the destination.
	DestinationArn *string

	// The name of the destination.
	DestinationName *string

	// The destination type.
	DestinationType *string

	// The ARN of the source.
	SourceArn *string

	// The name of the source.
	SourceName *string

	// The source type.
	SourceType *string
	// contains filtered or unexported fields
}

Lists a summary of the properties of an association. An association is an entity that links other lineage or experiment entities. An example would be an association between a training job and a model.

type AsyncInferenceClientConfig added in v1.12.0

type AsyncInferenceClientConfig struct {

	// The maximum number of concurrent requests sent by the SageMaker client to the
	// model container. If no value is provided, SageMaker chooses an optimal value.
	MaxConcurrentInvocationsPerInstance *int32
	// contains filtered or unexported fields
}

Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

type AsyncInferenceConfig added in v1.12.0

type AsyncInferenceConfig struct {

	// Specifies the configuration for asynchronous inference invocation outputs.
	//
	// This member is required.
	OutputConfig *AsyncInferenceOutputConfig

	// Configures the behavior of the client used by SageMaker to interact with the
	// model container during asynchronous inference.
	ClientConfig *AsyncInferenceClientConfig
	// contains filtered or unexported fields
}

Specifies configuration for how an endpoint performs asynchronous inference.

type AsyncInferenceNotificationConfig added in v1.12.0

type AsyncInferenceNotificationConfig struct {

	// Amazon SNS topic to post a notification to when inference fails. If no topic is
	// provided, no notification is sent on failure.
	ErrorTopic *string

	// The Amazon SNS topics where you want the inference response to be included. The
	// inference response is included only if the response size is less than or equal
	// to 128 KB.
	IncludeInferenceResponseIn []AsyncNotificationTopicTypes

	// Amazon SNS topic to post a notification to when inference completes
	// successfully. If no topic is provided, no notification is sent on success.
	SuccessTopic *string
	// contains filtered or unexported fields
}

Specifies the configuration for notifications of inference results for asynchronous inference.

type AsyncInferenceOutputConfig added in v1.12.0

type AsyncInferenceOutputConfig struct {

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
	KmsKeyId *string

	// Specifies the configuration for notifications of inference results for
	// asynchronous inference.
	NotificationConfig *AsyncInferenceNotificationConfig

	// The Amazon S3 location to upload failure inference responses to.
	S3FailurePath *string

	// The Amazon S3 location to upload inference responses to.
	S3OutputPath *string
	// contains filtered or unexported fields
}

Specifies the configuration for asynchronous inference invocation outputs.

type AsyncNotificationTopicTypes added in v1.73.0

type AsyncNotificationTopicTypes string
const (
	AsyncNotificationTopicTypesSuccessNotificationTopic AsyncNotificationTopicTypes = "SUCCESS_NOTIFICATION_TOPIC"
	AsyncNotificationTopicTypesErrorNotificationTopic   AsyncNotificationTopicTypes = "ERROR_NOTIFICATION_TOPIC"
)

Enum values for AsyncNotificationTopicTypes

func (AsyncNotificationTopicTypes) Values added in v1.73.0

Values returns all known values for AsyncNotificationTopicTypes. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AthenaDatasetDefinition added in v0.31.0

type AthenaDatasetDefinition struct {

	// The name of the data catalog used in Athena query execution.
	//
	// This member is required.
	Catalog *string

	// The name of the database used in the Athena query execution.
	//
	// This member is required.
	Database *string

	// The data storage format for Athena query results.
	//
	// This member is required.
	OutputFormat AthenaResultFormat

	// The location in Amazon S3 where Athena query results are stored.
	//
	// This member is required.
	OutputS3Uri *string

	// The SQL query statements, to be executed.
	//
	// This member is required.
	QueryString *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data generated from an Athena query
	// execution.
	KmsKeyId *string

	// The compression used for Athena query results.
	OutputCompression AthenaResultCompressionType

	// The name of the workgroup in which the Athena query is being started.
	WorkGroup *string
	// contains filtered or unexported fields
}

Configuration for Athena Dataset Definition input.

type AthenaResultCompressionType added in v0.31.0

type AthenaResultCompressionType string
const (
	AthenaResultCompressionTypeGzip   AthenaResultCompressionType = "GZIP"
	AthenaResultCompressionTypeSnappy AthenaResultCompressionType = "SNAPPY"
	AthenaResultCompressionTypeZlib   AthenaResultCompressionType = "ZLIB"
)

Enum values for AthenaResultCompressionType

func (AthenaResultCompressionType) Values added in v0.31.0

Values returns all known values for AthenaResultCompressionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AthenaResultFormat added in v0.31.0

type AthenaResultFormat string
const (
	AthenaResultFormatParquet  AthenaResultFormat = "PARQUET"
	AthenaResultFormatOrc      AthenaResultFormat = "ORC"
	AthenaResultFormatAvro     AthenaResultFormat = "AVRO"
	AthenaResultFormatJson     AthenaResultFormat = "JSON"
	AthenaResultFormatTextfile AthenaResultFormat = "TEXTFILE"
)

Enum values for AthenaResultFormat

func (AthenaResultFormat) Values added in v0.31.0

Values returns all known values for AthenaResultFormat. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AuthMode

type AuthMode string
const (
	AuthModeSso AuthMode = "SSO"
	AuthModeIam AuthMode = "IAM"
)

Enum values for AuthMode

func (AuthMode) Values added in v0.29.0

func (AuthMode) Values() []AuthMode

Values returns all known values for AuthMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLAlgorithm added in v1.68.0

type AutoMLAlgorithm string
const (
	AutoMLAlgorithmXgboost       AutoMLAlgorithm = "xgboost"
	AutoMLAlgorithmLinearLearner AutoMLAlgorithm = "linear-learner"
	AutoMLAlgorithmMlp           AutoMLAlgorithm = "mlp"
	AutoMLAlgorithmLightgbm      AutoMLAlgorithm = "lightgbm"
	AutoMLAlgorithmCatboost      AutoMLAlgorithm = "catboost"
	AutoMLAlgorithmRandomforest  AutoMLAlgorithm = "randomforest"
	AutoMLAlgorithmExtraTrees    AutoMLAlgorithm = "extra-trees"
	AutoMLAlgorithmNnTorch       AutoMLAlgorithm = "nn-torch"
	AutoMLAlgorithmFastai        AutoMLAlgorithm = "fastai"
)

Enum values for AutoMLAlgorithm

func (AutoMLAlgorithm) Values added in v1.68.0

func (AutoMLAlgorithm) Values() []AutoMLAlgorithm

Values returns all known values for AutoMLAlgorithm. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLAlgorithmConfig added in v1.68.0

type AutoMLAlgorithmConfig struct {

	// The selection of algorithms run on a dataset to train the model candidates of
	// an Autopilot job. Selected algorithms must belong to the list corresponding to
	// the training mode set in AutoMLJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode)
	// ( ENSEMBLING or HYPERPARAMETER_TUNING ). Choose a minimum of 1 algorithm.
	//   - In ENSEMBLING mode:
	//   - "catboost"
	//   - "extra-trees"
	//   - "fastai"
	//   - "lightgbm"
	//   - "linear-learner"
	//   - "nn-torch"
	//   - "randomforest"
	//   - "xgboost"
	//   - In HYPERPARAMETER_TUNING mode:
	//   - "linear-learner"
	//   - "mlp"
	//   - "xgboost"
	//
	// This member is required.
	AutoMLAlgorithms []AutoMLAlgorithm
	// contains filtered or unexported fields
}

The collection of algorithms run on a dataset for training the model candidates of an Autopilot job.

type AutoMLCandidate

type AutoMLCandidate struct {

	// The name of the candidate.
	//
	// This member is required.
	CandidateName *string

	// The candidate's status.
	//
	// This member is required.
	CandidateStatus CandidateStatus

	// Information about the candidate's steps.
	//
	// This member is required.
	CandidateSteps []AutoMLCandidateStep

	// The creation time.
	//
	// This member is required.
	CreationTime *time.Time

	// The last modified time.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The objective's status.
	//
	// This member is required.
	ObjectiveStatus ObjectiveStatus

	// The properties of an AutoML candidate job.
	CandidateProperties *CandidateProperties

	// The end time.
	EndTime *time.Time

	// The failure reason.
	FailureReason *string

	// The best candidate result from an AutoML training job.
	FinalAutoMLJobObjectiveMetric *FinalAutoMLJobObjectiveMetric

	// The mapping of all supported processing unit (CPU, GPU, etc...) to inference
	// container definitions for the candidate. This field is populated for the AutoML
	// jobs V2 (for example, for jobs created by calling CreateAutoMLJobV2 ) related to
	// image or text classification problem types only.
	InferenceContainerDefinitions map[string][]AutoMLContainerDefinition

	// Information about the recommended inference container definitions.
	InferenceContainers []AutoMLContainerDefinition
	// contains filtered or unexported fields
}

Information about a candidate produced by an AutoML training job, including its status, steps, and other properties.

type AutoMLCandidateGenerationConfig added in v1.31.0

type AutoMLCandidateGenerationConfig struct {

	// Stores the configuration information for the selection of algorithms used to
	// train the model candidates. The list of available algorithms to choose from
	// depends on the training mode set in AutoMLJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html)
	// .
	//   - AlgorithmsConfig should not be set in AUTO training mode.
	//   - When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be
	//   set and one only. If the list of algorithms provided as values for
	//   AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set
	//   of algorithms for the given training mode.
	//   - When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses
	//   the full set of algorithms for the given training mode.
	// For the list of all algorithms per training mode, see  AutoMLAlgorithmConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// . For more information on each algorithm, see the Algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// section in Autopilot developer guide.
	AlgorithmsConfig []AutoMLAlgorithmConfig

	// A URL to the Amazon S3 data source containing selected features from the input
	// data source to run an Autopilot job. You can input FeatureAttributeNames
	// (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1",
	// "col2", ...] } . You can also specify the data type of the feature (optional) in
	// the format shown below: { "FeatureDataTypes":{"col1":"numeric",
	// "col2":"categorical" ... } } These column keys may not include the target
	// column. In ensembling mode, Autopilot only supports the following data types:
	// numeric , categorical , text , and datetime . In HPO mode, Autopilot can support
	// numeric , categorical , text , datetime , and sequence . If only
	// FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a
	// subset of the column names in the input data. If both FeatureDataTypes and
	// FeatureAttributeNames are provided, then the column keys should be a subset of
	// the column names provided in FeatureAttributeNames . The key name
	// FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are
	// case sensitive and should be a list of strings containing unique values that are
	// a subset of the column names in the input data. The list of columns provided
	// must not include the target column.
	FeatureSpecificationS3Uri *string
	// contains filtered or unexported fields
}

Stores the configuration information for how a candidate is generated (optional).

type AutoMLCandidateStep

type AutoMLCandidateStep struct {

	// The ARN for the candidate's step.
	//
	// This member is required.
	CandidateStepArn *string

	// The name for the candidate's step.
	//
	// This member is required.
	CandidateStepName *string

	// Whether the candidate is at the transform, training, or processing step.
	//
	// This member is required.
	CandidateStepType CandidateStepType
	// contains filtered or unexported fields
}

Information about the steps for a candidate and what step it is working on.

type AutoMLChannel

type AutoMLChannel struct {

	// The data source for an AutoML channel.
	//
	// This member is required.
	DataSource *AutoMLDataSource

	// The name of the target variable in supervised learning, usually represented by
	// 'y'.
	//
	// This member is required.
	TargetAttributeName *string

	// The channel type (optional) is an enum string. The default value is training .
	// Channels for training and validation must share the same ContentType and
	// TargetAttributeName . For information on specifying training and validation
	// channel types, see How to specify training and validation datasets (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation)
	// .
	ChannelType AutoMLChannelType

	// You can use Gzip or None . The default value is None .
	CompressionType CompressionType

	// The content type of the data from the input source. You can use
	// text/csv;header=present or x-application/vnd.amazon+parquet . The default value
	// is text/csv;header=present .
	ContentType *string

	// If specified, this column name indicates which column of the dataset should be
	// treated as sample weights for use by the objective metric during the training,
	// evaluation, and the selection of the best model. This column is not considered
	// as a predictive feature. For more information on Autopilot metrics, see Metrics
	// and validation (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html)
	// . Sample weights should be numeric, non-negative, with larger values indicating
	// which rows are more important than others. Data points that have invalid or no
	// weight value are excluded. Support for sample weights is available in Ensembling (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// mode only.
	SampleWeightAttributeName *string
	// contains filtered or unexported fields
}

A channel is a named input source that training algorithms can consume. The validation dataset size is limited to less than 2 GB. The training dataset size must be less than 100 GB. For more information, see Channel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html) . A validation dataset must contain the same headers as the training dataset.

type AutoMLChannelType added in v1.29.0

type AutoMLChannelType string
const (
	AutoMLChannelTypeTraining   AutoMLChannelType = "training"
	AutoMLChannelTypeValidation AutoMLChannelType = "validation"
)

Enum values for AutoMLChannelType

func (AutoMLChannelType) Values added in v1.29.0

Values returns all known values for AutoMLChannelType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLContainerDefinition

type AutoMLContainerDefinition struct {

	// The Amazon Elastic Container Registry (Amazon ECR) path of the container. For
	// more information, see ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
	// .
	//
	// This member is required.
	Image *string

	// The location of the model artifacts. For more information, see
	// ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
	// .
	//
	// This member is required.
	ModelDataUrl *string

	// The environment variables to set in the container. For more information, see
	// ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
	// .
	Environment map[string]string
	// contains filtered or unexported fields
}

A list of container definitions that describe the different containers that make up an AutoML candidate. For more information, see ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html) .

type AutoMLDataSource

type AutoMLDataSource struct {

	// The Amazon S3 location of the input data.
	//
	// This member is required.
	S3DataSource *AutoMLS3DataSource
	// contains filtered or unexported fields
}

The data source for the Autopilot job.

type AutoMLDataSplitConfig added in v1.29.0

type AutoMLDataSplitConfig struct {

	// The validation fraction (optional) is a float that specifies the portion of the
	// training dataset to be used for validation. The default value is 0.2, and values
	// must be greater than 0 and less than 1. We recommend setting this value to be
	// less than 0.5.
	ValidationFraction *float32
	// contains filtered or unexported fields
}

This structure specifies how to split the data into train and validation datasets. The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob , the validation dataset must be less than 2 GB in size.

type AutoMLJobArtifacts

type AutoMLJobArtifacts struct {

	// The URL of the notebook location.
	CandidateDefinitionNotebookLocation *string

	// The URL of the notebook location.
	DataExplorationNotebookLocation *string
	// contains filtered or unexported fields
}

The artifacts that are generated during an AutoML job.

type AutoMLJobChannel added in v1.72.0

type AutoMLJobChannel struct {

	// The type of channel. Defines whether the data are used for training or
	// validation. The default value is training . Channels for training and validation
	// must share the same ContentType The type of channel defaults to training for
	// the time-series forecasting problem type.
	ChannelType AutoMLChannelType

	// The allowed compression types depend on the input format and problem type. We
	// allow the compression type Gzip for S3Prefix inputs on tabular data only. For
	// all other inputs, the compression type should be None . If no compression type
	// is provided, we default to None .
	CompressionType CompressionType

	// The content type of the data from the input source. The following are the
	// allowed content types for different problems:
	//   - For tabular problem types: text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	//   - For image classification: image/png , image/jpeg , or image/* . The default
	//   value is image/* .
	//   - For text classification: text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	//   - For time-series forecasting: text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	//   - For text generation (LLMs fine-tuning): text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	ContentType *string

	// The data source for an AutoML channel (Required).
	DataSource *AutoMLDataSource
	// contains filtered or unexported fields
}

A channel is a named input source that training algorithms can consume. This channel is used for AutoML jobs V2 (jobs created by calling CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html) ).

type AutoMLJobCompletionCriteria

type AutoMLJobCompletionCriteria struct {

	// The maximum runtime, in seconds, an AutoML job has to complete. If an AutoML
	// job exceeds the maximum runtime, the job is stopped automatically and its
	// processing is ended gracefully. The AutoML job identifies the best model whose
	// training was completed and marks it as the best-performing model. Any unfinished
	// steps of the job, such as automatic one-click Autopilot model deployment, are
	// not completed.
	MaxAutoMLJobRuntimeInSeconds *int32

	// The maximum number of times a training job is allowed to run. For text and
	// image classification, time-series forecasting, as well as text generation (LLMs
	// fine-tuning) problem types, the supported value is 1. For tabular problem types,
	// the maximum value is 750.
	MaxCandidates *int32

	// The maximum time, in seconds, that each training job executed inside
	// hyperparameter tuning is allowed to run as part of a hyperparameter tuning job.
	// For more information, see the StoppingCondition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html)
	// used by the CreateHyperParameterTuningJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html)
	// action. For job V2s (jobs created by calling CreateAutoMLJobV2 ), this field
	// controls the runtime of the job candidate. For TextGenerationJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextClassificationJobConfig.html)
	// problem types, the maximum time defaults to 72 hours (259200 seconds).
	MaxRuntimePerTrainingJobInSeconds *int32
	// contains filtered or unexported fields
}

How long a job is allowed to run, or how many candidates a job is allowed to generate.

type AutoMLJobConfig

type AutoMLJobConfig struct {

	// The configuration for generating a candidate for an AutoML job (optional).
	CandidateGenerationConfig *AutoMLCandidateGenerationConfig

	// How long an AutoML job is allowed to run, or how many candidates a job is
	// allowed to generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The configuration for splitting the input training dataset. Type:
	// AutoMLDataSplitConfig
	DataSplitConfig *AutoMLDataSplitConfig

	// The method that Autopilot uses to train the data. You can either specify the
	// mode manually or let Autopilot choose for you based on the dataset size by
	// selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets
	// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING
	// mode uses a multi-stack ensemble model to predict classification and regression
	// tasks directly from your dataset. This machine learning mode combines several
	// base models to produce an optimal predictive model. It then uses a stacking
	// ensemble method to combine predictions from contributing members. A multi-stack
	// ensemble model can provide better performance over a single model by combining
	// the predictive capabilities of multiple models. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING
	// (HPO) mode uses the best hyperparameters to train the best version of a model.
	// HPO automatically selects an algorithm for the type of problem you want to
	// solve. Then HPO finds the best hyperparameters according to your objective
	// metric. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
	Mode AutoMLMode

	// The security configuration for traffic encryption or Amazon VPC settings.
	SecurityConfig *AutoMLSecurityConfig
	// contains filtered or unexported fields
}

A collection of settings used for an AutoML job.

type AutoMLJobObjective

type AutoMLJobObjective struct {

	// The name of the objective metric used to measure the predictive quality of a
	// machine learning system. During training, the model's parameters are updated
	// iteratively to optimize its performance based on the feedback provided by the
	// objective metric when evaluating the model on the validation dataset. The list
	// of available metrics supported by Autopilot and the default metric applied when
	// you do not specify a metric name explicitly depend on the problem type.
	//   - For tabular problem types:
	//   - List of available metrics:
	//   - Regression: InferenceLatency , MAE , MSE , R2 , RMSE
	//   - Binary classification: Accuracy , AUC , BalancedAccuracy , F1 ,
	//   InferenceLatency , LogLoss , Precision , Recall
	//   - Multiclass classification: Accuracy , BalancedAccuracy , F1macro ,
	//   InferenceLatency , LogLoss , PrecisionMacro , RecallMacro For a description of
	//   each metric, see Autopilot metrics for classification and regression (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics)
	//   .
	//   - Default objective metrics:
	//   - Regression: MSE .
	//   - Binary classification: F1 .
	//   - Multiclass classification: Accuracy .
	//   - For image or text classification problem types:
	//   - List of available metrics: Accuracy For a description of each metric, see
	//   Autopilot metrics for text and image classification (https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html)
	//   .
	//   - Default objective metrics: Accuracy
	//   - For time-series forecasting problem types:
	//   - List of available metrics: RMSE , wQL , Average wQL , MASE , MAPE , WAPE For
	//   a description of each metric, see Autopilot metrics for time-series
	//   forecasting (https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html)
	//   .
	//   - Default objective metrics: AverageWeightedQuantileLoss
	//   - For text generation problem types (LLMs fine-tuning): Fine-tuning language
	//   models in Autopilot does not require setting the AutoMLJobObjective field.
	//   Autopilot fine-tunes LLMs without requiring multiple candidates to be trained
	//   and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your
	//   target model to enhance a default objective metric, the cross-entropy loss.
	//   After fine-tuning a language model, you can evaluate the quality of its
	//   generated text using different metrics. For a list of the available metrics, see
	//   Metrics for fine-tuning LLMs in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html)
	//   .
	//
	// This member is required.
	MetricName AutoMLMetricEnum
	// contains filtered or unexported fields
}

Specifies a metric to minimize or maximize as the objective of an AutoML job.

type AutoMLJobObjectiveType

type AutoMLJobObjectiveType string
const (
	AutoMLJobObjectiveTypeMaximize AutoMLJobObjectiveType = "Maximize"
	AutoMLJobObjectiveTypeMinimize AutoMLJobObjectiveType = "Minimize"
)

Enum values for AutoMLJobObjectiveType

func (AutoMLJobObjectiveType) Values added in v0.29.0

Values returns all known values for AutoMLJobObjectiveType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLJobSecondaryStatus

type AutoMLJobSecondaryStatus string
const (
	AutoMLJobSecondaryStatusStarting                       AutoMLJobSecondaryStatus = "Starting"
	AutoMLJobSecondaryStatusAnalyzingData                  AutoMLJobSecondaryStatus = "AnalyzingData"
	AutoMLJobSecondaryStatusFeatureEngineering             AutoMLJobSecondaryStatus = "FeatureEngineering"
	AutoMLJobSecondaryStatusModelTuning                    AutoMLJobSecondaryStatus = "ModelTuning"
	AutoMLJobSecondaryStatusMaxCandidatesReached           AutoMLJobSecondaryStatus = "MaxCandidatesReached"
	AutoMLJobSecondaryStatusFailed                         AutoMLJobSecondaryStatus = "Failed"
	AutoMLJobSecondaryStatusStopped                        AutoMLJobSecondaryStatus = "Stopped"
	AutoMLJobSecondaryStatusMaxAutoMlJobRuntimeReached     AutoMLJobSecondaryStatus = "MaxAutoMLJobRuntimeReached"
	AutoMLJobSecondaryStatusStopping                       AutoMLJobSecondaryStatus = "Stopping"
	AutoMLJobSecondaryStatusCandidateDefinitionsGenerated  AutoMLJobSecondaryStatus = "CandidateDefinitionsGenerated"
	AutoMLJobSecondaryStatusGeneratingExplainabilityReport AutoMLJobSecondaryStatus = "GeneratingExplainabilityReport"
	AutoMLJobSecondaryStatusCompleted                      AutoMLJobSecondaryStatus = "Completed"
	AutoMLJobSecondaryStatusExplainabilityError            AutoMLJobSecondaryStatus = "ExplainabilityError"
	AutoMLJobSecondaryStatusDeployingModel                 AutoMLJobSecondaryStatus = "DeployingModel"
	AutoMLJobSecondaryStatusModelDeploymentError           AutoMLJobSecondaryStatus = "ModelDeploymentError"
	AutoMLJobSecondaryStatusGeneratingModelInsightsReport  AutoMLJobSecondaryStatus = "GeneratingModelInsightsReport"
	AutoMLJobSecondaryStatusModelInsightsError             AutoMLJobSecondaryStatus = "ModelInsightsError"
	AutoMLJobSecondaryStatusTrainingModels                 AutoMLJobSecondaryStatus = "TrainingModels"
	AutoMLJobSecondaryStatusPreTraining                    AutoMLJobSecondaryStatus = "PreTraining"
)

Enum values for AutoMLJobSecondaryStatus

func (AutoMLJobSecondaryStatus) Values added in v0.29.0

Values returns all known values for AutoMLJobSecondaryStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLJobStatus

type AutoMLJobStatus string
const (
	AutoMLJobStatusCompleted  AutoMLJobStatus = "Completed"
	AutoMLJobStatusInProgress AutoMLJobStatus = "InProgress"
	AutoMLJobStatusFailed     AutoMLJobStatus = "Failed"
	AutoMLJobStatusStopped    AutoMLJobStatus = "Stopped"
	AutoMLJobStatusStopping   AutoMLJobStatus = "Stopping"
)

Enum values for AutoMLJobStatus

func (AutoMLJobStatus) Values added in v0.29.0

func (AutoMLJobStatus) Values() []AutoMLJobStatus

Values returns all known values for AutoMLJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLJobStepMetadata added in v1.56.0

type AutoMLJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the AutoML job.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for an AutoML job step.

type AutoMLJobSummary

type AutoMLJobSummary struct {

	// The ARN of the AutoML job.
	//
	// This member is required.
	AutoMLJobArn *string

	// The name of the AutoML job you are requesting.
	//
	// This member is required.
	AutoMLJobName *string

	// The secondary status of the AutoML job.
	//
	// This member is required.
	AutoMLJobSecondaryStatus AutoMLJobSecondaryStatus

	// The status of the AutoML job.
	//
	// This member is required.
	AutoMLJobStatus AutoMLJobStatus

	// When the AutoML job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// When the AutoML job was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The end time of an AutoML job.
	EndTime *time.Time

	// The failure reason of an AutoML job.
	FailureReason *string

	// The list of reasons for partial failures within an AutoML job.
	PartialFailureReasons []AutoMLPartialFailureReason
	// contains filtered or unexported fields
}

Provides a summary about an AutoML job.

type AutoMLMetricEnum

type AutoMLMetricEnum string
const (
	AutoMLMetricEnumAccuracy                    AutoMLMetricEnum = "Accuracy"
	AutoMLMetricEnumMse                         AutoMLMetricEnum = "MSE"
	AutoMLMetricEnumF1                          AutoMLMetricEnum = "F1"
	AutoMLMetricEnumF1Macro                     AutoMLMetricEnum = "F1macro"
	AutoMLMetricEnumAuc                         AutoMLMetricEnum = "AUC"
	AutoMLMetricEnumRmse                        AutoMLMetricEnum = "RMSE"
	AutoMLMetricEnumMae                         AutoMLMetricEnum = "MAE"
	AutoMLMetricEnumR2                          AutoMLMetricEnum = "R2"
	AutoMLMetricEnumBalancedAccuracy            AutoMLMetricEnum = "BalancedAccuracy"
	AutoMLMetricEnumPrecision                   AutoMLMetricEnum = "Precision"
	AutoMLMetricEnumPrecisionMacro              AutoMLMetricEnum = "PrecisionMacro"
	AutoMLMetricEnumRecall                      AutoMLMetricEnum = "Recall"
	AutoMLMetricEnumRecallMacro                 AutoMLMetricEnum = "RecallMacro"
	AutoMLMetricEnumMape                        AutoMLMetricEnum = "MAPE"
	AutoMLMetricEnumMase                        AutoMLMetricEnum = "MASE"
	AutoMLMetricEnumWape                        AutoMLMetricEnum = "WAPE"
	AutoMLMetricEnumAverageWeightedQuantileLoss AutoMLMetricEnum = "AverageWeightedQuantileLoss"
)

Enum values for AutoMLMetricEnum

func (AutoMLMetricEnum) Values added in v0.29.0

Values returns all known values for AutoMLMetricEnum. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLMetricExtendedEnum added in v1.30.0

type AutoMLMetricExtendedEnum string
const (
	AutoMLMetricExtendedEnumAccuracy                    AutoMLMetricExtendedEnum = "Accuracy"
	AutoMLMetricExtendedEnumMse                         AutoMLMetricExtendedEnum = "MSE"
	AutoMLMetricExtendedEnumF1                          AutoMLMetricExtendedEnum = "F1"
	AutoMLMetricExtendedEnumF1Macro                     AutoMLMetricExtendedEnum = "F1macro"
	AutoMLMetricExtendedEnumAuc                         AutoMLMetricExtendedEnum = "AUC"
	AutoMLMetricExtendedEnumRmse                        AutoMLMetricExtendedEnum = "RMSE"
	AutoMLMetricExtendedEnumMae                         AutoMLMetricExtendedEnum = "MAE"
	AutoMLMetricExtendedEnumR2                          AutoMLMetricExtendedEnum = "R2"
	AutoMLMetricExtendedEnumBalancedAccuracy            AutoMLMetricExtendedEnum = "BalancedAccuracy"
	AutoMLMetricExtendedEnumPrecision                   AutoMLMetricExtendedEnum = "Precision"
	AutoMLMetricExtendedEnumPrecisionMacro              AutoMLMetricExtendedEnum = "PrecisionMacro"
	AutoMLMetricExtendedEnumRecall                      AutoMLMetricExtendedEnum = "Recall"
	AutoMLMetricExtendedEnumRecallMacro                 AutoMLMetricExtendedEnum = "RecallMacro"
	AutoMLMetricExtendedEnumLogLoss                     AutoMLMetricExtendedEnum = "LogLoss"
	AutoMLMetricExtendedEnumInferenceLatency            AutoMLMetricExtendedEnum = "InferenceLatency"
	AutoMLMetricExtendedEnumMape                        AutoMLMetricExtendedEnum = "MAPE"
	AutoMLMetricExtendedEnumMase                        AutoMLMetricExtendedEnum = "MASE"
	AutoMLMetricExtendedEnumWape                        AutoMLMetricExtendedEnum = "WAPE"
	AutoMLMetricExtendedEnumAverageWeightedQuantileLoss AutoMLMetricExtendedEnum = "AverageWeightedQuantileLoss"
	AutoMLMetricExtendedEnumRouge1                      AutoMLMetricExtendedEnum = "Rouge1"
	AutoMLMetricExtendedEnumRouge2                      AutoMLMetricExtendedEnum = "Rouge2"
	AutoMLMetricExtendedEnumRougel                      AutoMLMetricExtendedEnum = "RougeL"
	AutoMLMetricExtendedEnumRougelSum                   AutoMLMetricExtendedEnum = "RougeLSum"
	AutoMLMetricExtendedEnumPerplexity                  AutoMLMetricExtendedEnum = "Perplexity"
	AutoMLMetricExtendedEnumValidationLoss              AutoMLMetricExtendedEnum = "ValidationLoss"
	AutoMLMetricExtendedEnumTrainingLoss                AutoMLMetricExtendedEnum = "TrainingLoss"
)

Enum values for AutoMLMetricExtendedEnum

func (AutoMLMetricExtendedEnum) Values added in v1.30.0

Values returns all known values for AutoMLMetricExtendedEnum. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLMode added in v1.42.0

type AutoMLMode string
const (
	AutoMLModeAuto                 AutoMLMode = "AUTO"
	AutoMLModeEnsembling           AutoMLMode = "ENSEMBLING"
	AutoMLModeHyperparameterTuning AutoMLMode = "HYPERPARAMETER_TUNING"
)

Enum values for AutoMLMode

func (AutoMLMode) Values added in v1.42.0

func (AutoMLMode) Values() []AutoMLMode

Values returns all known values for AutoMLMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLOutputDataConfig

type AutoMLOutputDataConfig struct {

	// The Amazon S3 output path. Must be 128 characters or less.
	//
	// This member is required.
	S3OutputPath *string

	// The Key Management Service (KMS) encryption key ID.
	KmsKeyId *string
	// contains filtered or unexported fields
}

The output data configuration.

type AutoMLPartialFailureReason added in v1.3.0

type AutoMLPartialFailureReason struct {

	// The message containing the reason for a partial failure of an AutoML job.
	PartialFailureMessage *string
	// contains filtered or unexported fields
}

The reason for a partial failure of an AutoML job.

type AutoMLProblemTypeConfig added in v1.72.0

type AutoMLProblemTypeConfig interface {
	// contains filtered or unexported methods
}

A collection of settings specific to the problem type used to configure an AutoML job V2. There must be one and only one config of the following type.

The following types satisfy this interface:

AutoMLProblemTypeConfigMemberImageClassificationJobConfig
AutoMLProblemTypeConfigMemberTabularJobConfig
AutoMLProblemTypeConfigMemberTextClassificationJobConfig
AutoMLProblemTypeConfigMemberTextGenerationJobConfig
AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.AutoMLProblemTypeConfig
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.AutoMLProblemTypeConfigMemberImageClassificationJobConfig:
		_ = v.Value // Value is types.ImageClassificationJobConfig

	case *types.AutoMLProblemTypeConfigMemberTabularJobConfig:
		_ = v.Value // Value is types.TabularJobConfig

	case *types.AutoMLProblemTypeConfigMemberTextClassificationJobConfig:
		_ = v.Value // Value is types.TextClassificationJobConfig

	case *types.AutoMLProblemTypeConfigMemberTextGenerationJobConfig:
		_ = v.Value // Value is types.TextGenerationJobConfig

	case *types.AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig:
		_ = v.Value // Value is types.TimeSeriesForecastingJobConfig

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type AutoMLProblemTypeConfigMemberImageClassificationJobConfig added in v1.72.0

type AutoMLProblemTypeConfigMemberImageClassificationJobConfig struct {
	Value ImageClassificationJobConfig
	// contains filtered or unexported fields
}

Settings used to configure an AutoML job V2 for the image classification problem type.

type AutoMLProblemTypeConfigMemberTabularJobConfig added in v1.85.0

type AutoMLProblemTypeConfigMemberTabularJobConfig struct {
	Value TabularJobConfig
	// contains filtered or unexported fields
}

Settings used to configure an AutoML job V2 for the tabular problem type (regression, classification).

type AutoMLProblemTypeConfigMemberTextClassificationJobConfig added in v1.72.0

type AutoMLProblemTypeConfigMemberTextClassificationJobConfig struct {
	Value TextClassificationJobConfig
	// contains filtered or unexported fields
}

Settings used to configure an AutoML job V2 for the text classification problem type.

type AutoMLProblemTypeConfigMemberTextGenerationJobConfig added in v1.113.0

type AutoMLProblemTypeConfigMemberTextGenerationJobConfig struct {
	Value TextGenerationJobConfig
	// contains filtered or unexported fields
}

Settings used to configure an AutoML job V2 for the text generation (LLMs fine-tuning) problem type. The text generation models that support fine-tuning in Autopilot are currently accessible exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the full list of its supported Regions (https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html) .

type AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig added in v1.89.0

type AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig struct {
	Value TimeSeriesForecastingJobConfig
	// contains filtered or unexported fields
}

Settings used to configure an AutoML job V2 for the time-series forecasting problem type.

type AutoMLProblemTypeConfigName added in v1.85.0

type AutoMLProblemTypeConfigName string
const (
	AutoMLProblemTypeConfigNameImageClassification   AutoMLProblemTypeConfigName = "ImageClassification"
	AutoMLProblemTypeConfigNameTextClassification    AutoMLProblemTypeConfigName = "TextClassification"
	AutoMLProblemTypeConfigNameTabular               AutoMLProblemTypeConfigName = "Tabular"
	AutoMLProblemTypeConfigNameTimeseriesForecasting AutoMLProblemTypeConfigName = "TimeSeriesForecasting"
	AutoMLProblemTypeConfigNameTextGeneration        AutoMLProblemTypeConfigName = "TextGeneration"
)

Enum values for AutoMLProblemTypeConfigName

func (AutoMLProblemTypeConfigName) Values added in v1.85.0

Values returns all known values for AutoMLProblemTypeConfigName. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLProblemTypeResolvedAttributes added in v1.85.0

type AutoMLProblemTypeResolvedAttributes interface {
	// contains filtered or unexported methods
}

Stores resolved attributes specific to the problem type of an AutoML job V2.

The following types satisfy this interface:

AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes
AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.AutoMLProblemTypeResolvedAttributes
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes:
		_ = v.Value // Value is types.TabularResolvedAttributes

	case *types.AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes:
		_ = v.Value // Value is types.TextGenerationResolvedAttributes

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes added in v1.85.0

type AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes struct {
	Value TabularResolvedAttributes
	// contains filtered or unexported fields
}

The resolved attributes for the tabular problem type.

type AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes added in v1.113.0

type AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes struct {
	Value TextGenerationResolvedAttributes
	// contains filtered or unexported fields
}

The resolved attributes for the text generation problem type.

type AutoMLProcessingUnit added in v1.72.0

type AutoMLProcessingUnit string
const (
	AutoMLProcessingUnitCpu AutoMLProcessingUnit = "CPU"
	AutoMLProcessingUnitGpu AutoMLProcessingUnit = "GPU"
)

Enum values for AutoMLProcessingUnit

func (AutoMLProcessingUnit) Values added in v1.72.0

Values returns all known values for AutoMLProcessingUnit. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLResolvedAttributes added in v1.85.0

type AutoMLResolvedAttributes struct {

	// Specifies a metric to minimize or maximize as the objective of an AutoML job.
	AutoMLJobObjective *AutoMLJobObjective

	// Defines the resolved attributes specific to a problem type.
	AutoMLProblemTypeResolvedAttributes AutoMLProblemTypeResolvedAttributes

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria
	// contains filtered or unexported fields
}

The resolved attributes used to configure an AutoML job V2.

type AutoMLS3DataSource

type AutoMLS3DataSource struct {

	// The data type.
	//   - If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses
	//   all objects that match the specified key name prefix for model training. The
	//   S3Prefix should have the following format:
	//   s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
	//   - If you choose ManifestFile , S3Uri identifies an object that is a manifest
	//   file containing a list of object keys that you want SageMaker to use for model
	//   training. A ManifestFile should have the format shown below: [ {"prefix":
	//   "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
	//   "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
	//   "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ...
	//   "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]
	//   - If you choose AugmentedManifestFile , S3Uri identifies an object that is an
	//   augmented manifest file in JSON lines format. This file contains the data you
	//   want to use for model training. AugmentedManifestFile is available for V2 API
	//   jobs only (for example, for jobs created by calling CreateAutoMLJobV2 ). Here
	//   is a minimal, single-record example of an AugmentedManifestFile :
	//   {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
	//   "label-metadata": {"class-name": "cat" } For more information on
	//   AugmentedManifestFile , see Provide Dataset Metadata to Training Jobs with an
	//   Augmented Manifest File (https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html)
	//   .
	//
	// This member is required.
	S3DataType AutoMLS3DataType

	// The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or
	// ManifestFile depending on the data type.
	//
	// This member is required.
	S3Uri *string
	// contains filtered or unexported fields
}

Describes the Amazon S3 data source.

type AutoMLS3DataType

type AutoMLS3DataType string
const (
	AutoMLS3DataTypeManifestFile          AutoMLS3DataType = "ManifestFile"
	AutoMLS3DataTypeS3Prefix              AutoMLS3DataType = "S3Prefix"
	AutoMLS3DataTypeAugmentedManifestFile AutoMLS3DataType = "AugmentedManifestFile"
)

Enum values for AutoMLS3DataType

func (AutoMLS3DataType) Values added in v0.29.0

Values returns all known values for AutoMLS3DataType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLSecurityConfig

type AutoMLSecurityConfig struct {

	// Whether to use traffic encryption between the container layers.
	EnableInterContainerTrafficEncryption *bool

	// The key used to encrypt stored data.
	VolumeKmsKeyId *string

	// The VPC configuration.
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

Security options.

type AutoMLSortBy

type AutoMLSortBy string
const (
	AutoMLSortByName         AutoMLSortBy = "Name"
	AutoMLSortByCreationTime AutoMLSortBy = "CreationTime"
	AutoMLSortByStatus       AutoMLSortBy = "Status"
)

Enum values for AutoMLSortBy

func (AutoMLSortBy) Values added in v0.29.0

func (AutoMLSortBy) Values() []AutoMLSortBy

Values returns all known values for AutoMLSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoMLSortOrder

type AutoMLSortOrder string
const (
	AutoMLSortOrderAscending  AutoMLSortOrder = "Ascending"
	AutoMLSortOrderDescending AutoMLSortOrder = "Descending"
)

Enum values for AutoMLSortOrder

func (AutoMLSortOrder) Values added in v0.29.0

func (AutoMLSortOrder) Values() []AutoMLSortOrder

Values returns all known values for AutoMLSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AutoParameter added in v1.81.0

type AutoParameter struct {

	// The name of the hyperparameter to optimize using Autotune.
	//
	// This member is required.
	Name *string

	// An example value of the hyperparameter to optimize using Autotune.
	//
	// This member is required.
	ValueHint *string
	// contains filtered or unexported fields
}

The name and an example value of the hyperparameter that you want to use in Autotune. If Automatic model tuning (AMT) determines that your hyperparameter is eligible for Autotune, an optimal hyperparameter range is selected for you.

type AutoRollbackConfig added in v0.31.0

type AutoRollbackConfig struct {

	// List of CloudWatch alarms in your account that are configured to monitor
	// metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker
	// rolls back the deployment.
	Alarms []Alarm
	// contains filtered or unexported fields
}

Automatic rollback configuration for handling endpoint deployment failures and recovery.

type Autotune added in v1.81.0

type Autotune struct {

	// Set Mode to Enabled if you want to use Autotune.
	//
	// This member is required.
	Mode AutotuneMode
	// contains filtered or unexported fields
}

A flag to indicate if you want to use Autotune to automatically find optimal values for the following fields:

type AutotuneMode added in v1.81.0

type AutotuneMode string
const (
	AutotuneModeEnabled AutotuneMode = "Enabled"
)

Enum values for AutotuneMode

func (AutotuneMode) Values added in v1.81.0

func (AutotuneMode) Values() []AutotuneMode

Values returns all known values for AutotuneMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type AwsManagedHumanLoopRequestSource

type AwsManagedHumanLoopRequestSource string
const (
	AwsManagedHumanLoopRequestSourceRekognitionDetectModerationLabelsImageV3 AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"
	AwsManagedHumanLoopRequestSourceTextractAnalyzeDocumentFormsV1           AwsManagedHumanLoopRequestSource = "AWS/Textract/AnalyzeDocument/Forms/V1"
)

Enum values for AwsManagedHumanLoopRequestSource

func (AwsManagedHumanLoopRequestSource) Values added in v0.29.0

Values returns all known values for AwsManagedHumanLoopRequestSource. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type BatchDataCaptureConfig added in v1.48.0

type BatchDataCaptureConfig struct {

	// The Amazon S3 location being used to capture the data.
	//
	// This member is required.
	DestinationS3Uri *string

	// Flag that indicates whether to append inference id to the output.
	GenerateInferenceId *bool

	// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
	// key that SageMaker uses to encrypt data on the storage volume attached to the ML
	// compute instance that hosts the batch transform job. The KmsKeyId can be any of
	// the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	KmsKeyId *string
	// contains filtered or unexported fields
}

Configuration to control how SageMaker captures inference data for batch transform jobs.

type BatchDescribeModelPackageError added in v1.18.0

type BatchDescribeModelPackageError struct {

	//
	//
	// This member is required.
	ErrorCode *string

	//
	//
	// This member is required.
	ErrorResponse *string
	// contains filtered or unexported fields
}

The error code and error description associated with the resource.

type BatchDescribeModelPackageSummary added in v1.18.0

type BatchDescribeModelPackageSummary struct {

	// The creation time of the mortgage package summary.
	//
	// This member is required.
	CreationTime *time.Time

	// Defines how to perform inference generation after a training job is run.
	//
	// This member is required.
	InferenceSpecification *InferenceSpecification

	// The Amazon Resource Name (ARN) of the model package.
	//
	// This member is required.
	ModelPackageArn *string

	// The group name for the model package
	//
	// This member is required.
	ModelPackageGroupName *string

	// The status of the mortgage package.
	//
	// This member is required.
	ModelPackageStatus ModelPackageStatus

	// The approval status of the model.
	ModelApprovalStatus ModelApprovalStatus

	// The description of the model package.
	ModelPackageDescription *string

	// The version number of a versioned model.
	ModelPackageVersion *int32
	// contains filtered or unexported fields
}

Provides summary information about the model package.

type BatchStrategy

type BatchStrategy string
const (
	BatchStrategyMultiRecord  BatchStrategy = "MultiRecord"
	BatchStrategySingleRecord BatchStrategy = "SingleRecord"
)

Enum values for BatchStrategy

func (BatchStrategy) Values added in v0.29.0

func (BatchStrategy) Values() []BatchStrategy

Values returns all known values for BatchStrategy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type BatchTransformInput added in v1.48.0

type BatchTransformInput struct {

	// The Amazon S3 location being used to capture the data.
	//
	// This member is required.
	DataCapturedDestinationS3Uri *string

	// The dataset format for your batch transform job.
	//
	// This member is required.
	DatasetFormat *MonitoringDatasetFormat

	// Path to the filesystem where the batch transform data is available to the
	// container.
	//
	// This member is required.
	LocalPath *string

	// If specified, monitoring jobs subtract this time from the end time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	EndTimeOffset *string

	// The attributes of the input data to exclude from the analysis.
	ExcludeFeaturesAttribute *string

	// The attributes of the input data that are the input features.
	FeaturesAttribute *string

	// The attribute of the input data that represents the ground truth label.
	InferenceAttribute *string

	// In a classification problem, the attribute that represents the class
	// probability.
	ProbabilityAttribute *string

	// The threshold for the class probability to be evaluated as a positive result.
	ProbabilityThresholdAttribute *float64

	// Whether input data distributed in Amazon S3 is fully replicated or sharded by
	// an S3 key. Defaults to FullyReplicated
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether the Pipe or File is used as the input mode for transferring data for
	// the monitoring job. Pipe mode is recommended for large datasets. File mode is
	// useful for small files that fit in memory. Defaults to File .
	S3InputMode ProcessingS3InputMode

	// If specified, monitoring jobs substract this time from the start time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	StartTimeOffset *string
	// contains filtered or unexported fields
}

Input object for the batch transform job.

type BestObjectiveNotImproving added in v1.67.0

type BestObjectiveNotImproving struct {

	// The number of training jobs that have failed to improve model performance by 1%
	// or greater over prior training jobs as evaluated against an objective function.
	MaxNumberOfTrainingJobsNotImproving *int32
	// contains filtered or unexported fields
}

A structure that keeps track of which training jobs launched by your hyperparameter tuning job are not improving model performance as evaluated against an objective function.

type Bias added in v0.31.0

type Bias struct {

	// The post-training bias report for a model.
	PostTrainingReport *MetricsSource

	// The pre-training bias report for a model.
	PreTrainingReport *MetricsSource

	// The bias report for a model
	Report *MetricsSource
	// contains filtered or unexported fields
}

Contains bias metrics for a model.

type BlueGreenUpdatePolicy added in v0.31.0

type BlueGreenUpdatePolicy struct {

	// Defines the traffic routing strategy to shift traffic from the old fleet to the
	// new fleet during an endpoint deployment.
	//
	// This member is required.
	TrafficRoutingConfiguration *TrafficRoutingConfig

	// Maximum execution timeout for the deployment. Note that the timeout value
	// should be larger than the total waiting time specified in
	// TerminationWaitInSeconds and WaitIntervalInSeconds .
	MaximumExecutionTimeoutInSeconds *int32

	// Additional waiting time in seconds after the completion of an endpoint
	// deployment before terminating the old endpoint fleet. Default is 0.
	TerminationWaitInSeconds *int32
	// contains filtered or unexported fields
}

Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

type BooleanOperator

type BooleanOperator string
const (
	BooleanOperatorAnd BooleanOperator = "And"
	BooleanOperatorOr  BooleanOperator = "Or"
)

Enum values for BooleanOperator

func (BooleanOperator) Values added in v0.29.0

func (BooleanOperator) Values() []BooleanOperator

Values returns all known values for BooleanOperator. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CacheHitResult added in v0.31.0

type CacheHitResult struct {

	// The Amazon Resource Name (ARN) of the pipeline execution.
	SourcePipelineExecutionArn *string
	// contains filtered or unexported fields
}

Details on the cache hit of a pipeline execution step.

type CallbackStepMetadata added in v1.7.0

type CallbackStepMetadata struct {

	// The pipeline generated token from the Amazon SQS queue.
	CallbackToken *string

	// A list of the output parameters of the callback step.
	OutputParameters []OutputParameter

	// The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the
	// callback step.
	SqsQueueUrl *string
	// contains filtered or unexported fields
}

Metadata about a callback step.

type CandidateArtifactLocations added in v1.3.0

type CandidateArtifactLocations struct {

	// The Amazon S3 prefix to the explainability artifacts generated for the AutoML
	// candidate.
	//
	// This member is required.
	Explainability *string

	// The Amazon S3 prefix to the accuracy metrics and the inference results observed
	// over the testing window. Available only for the time-series forecasting problem
	// type.
	BacktestResults *string

	// The Amazon S3 prefix to the model insight artifacts generated for the AutoML
	// candidate.
	ModelInsights *string
	// contains filtered or unexported fields
}

The location of artifacts for an AutoML candidate job.

type CandidateGenerationConfig added in v1.85.0

type CandidateGenerationConfig struct {

	// Stores the configuration information for the selection of algorithms used to
	// train model candidates on tabular data. The list of available algorithms to
	// choose from depends on the training mode set in TabularJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html)
	// .
	//   - AlgorithmsConfig should not be set in AUTO training mode.
	//   - When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be
	//   set and one only. If the list of algorithms provided as values for
	//   AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of
	//   algorithms for the given training mode.
	//   - When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the
	//   full set of algorithms for the given training mode.
	// For the list of all algorithms per problem type and training mode, see
	// AutoMLAlgorithmConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// . For more information on each algorithm, see the Algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// section in Autopilot developer guide.
	AlgorithmsConfig []AutoMLAlgorithmConfig
	// contains filtered or unexported fields
}

Stores the configuration information for how model candidates are generated using an AutoML job V2.

type CandidateProperties added in v1.3.0

type CandidateProperties struct {

	// The Amazon S3 prefix to the artifacts generated for an AutoML candidate.
	CandidateArtifactLocations *CandidateArtifactLocations

	// Information about the candidate metrics for an AutoML job.
	CandidateMetrics []MetricDatum
	// contains filtered or unexported fields
}

The properties of an AutoML candidate job.

type CandidateSortBy

type CandidateSortBy string
const (
	CandidateSortByCreationTime              CandidateSortBy = "CreationTime"
	CandidateSortByStatus                    CandidateSortBy = "Status"
	CandidateSortByFinalObjectiveMetricValue CandidateSortBy = "FinalObjectiveMetricValue"
)

Enum values for CandidateSortBy

func (CandidateSortBy) Values added in v0.29.0

func (CandidateSortBy) Values() []CandidateSortBy

Values returns all known values for CandidateSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CandidateStatus

type CandidateStatus string
const (
	CandidateStatusCompleted  CandidateStatus = "Completed"
	CandidateStatusInProgress CandidateStatus = "InProgress"
	CandidateStatusFailed     CandidateStatus = "Failed"
	CandidateStatusStopped    CandidateStatus = "Stopped"
	CandidateStatusStopping   CandidateStatus = "Stopping"
)

Enum values for CandidateStatus

func (CandidateStatus) Values added in v0.29.0

func (CandidateStatus) Values() []CandidateStatus

Values returns all known values for CandidateStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CandidateStepType

type CandidateStepType string
const (
	CandidateStepTypeTraining   CandidateStepType = "AWS::SageMaker::TrainingJob"
	CandidateStepTypeTransform  CandidateStepType = "AWS::SageMaker::TransformJob"
	CandidateStepTypeProcessing CandidateStepType = "AWS::SageMaker::ProcessingJob"
)

Enum values for CandidateStepType

func (CandidateStepType) Values added in v0.29.0

Values returns all known values for CandidateStepType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CanvasAppSettings added in v1.44.0

type CanvasAppSettings struct {

	// The model deployment settings for the SageMaker Canvas application.
	DirectDeploySettings *DirectDeploySettings

	// The settings for connecting to an external data source with OAuth.
	IdentityProviderOAuthSettings []IdentityProviderOAuthSetting

	// The settings for document querying.
	KendraSettings *KendraSettings

	// The model registry settings for the SageMaker Canvas application.
	ModelRegisterSettings *ModelRegisterSettings

	// Time series forecast settings for the SageMaker Canvas application.
	TimeSeriesForecastingSettings *TimeSeriesForecastingSettings

	// The workspace settings for the SageMaker Canvas application.
	WorkspaceSettings *WorkspaceSettings
	// contains filtered or unexported fields
}

The SageMaker Canvas application settings.

type CapacitySize added in v0.31.0

type CapacitySize struct {

	// Specifies the endpoint capacity type.
	//   - INSTANCE_COUNT : The endpoint activates based on the number of instances.
	//   - CAPACITY_PERCENT : The endpoint activates based on the specified percentage
	//   of capacity.
	//
	// This member is required.
	Type CapacitySizeType

	// Defines the capacity size, either as a number of instances or a capacity
	// percentage.
	//
	// This member is required.
	Value *int32
	// contains filtered or unexported fields
}

Specifies the type and size of the endpoint capacity to activate for a blue/green deployment, a rolling deployment, or a rollback strategy. You can specify your batches as either instance count or the overall percentage or your fleet. For a rollback strategy, if you don't specify the fields in this object, or if you set the Value to 100%, then SageMaker uses a blue/green rollback strategy and rolls all traffic back to the blue fleet.

type CapacitySizeType added in v0.31.0

type CapacitySizeType string
const (
	CapacitySizeTypeInstanceCount   CapacitySizeType = "INSTANCE_COUNT"
	CapacitySizeTypeCapacityPercent CapacitySizeType = "CAPACITY_PERCENT"
)

Enum values for CapacitySizeType

func (CapacitySizeType) Values added in v0.31.0

Values returns all known values for CapacitySizeType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CaptureContentTypeHeader

type CaptureContentTypeHeader struct {

	// The list of all content type headers that Amazon SageMaker will treat as CSV
	// and capture accordingly.
	CsvContentTypes []string

	// The list of all content type headers that SageMaker will treat as JSON and
	// capture accordingly.
	JsonContentTypes []string
	// contains filtered or unexported fields
}

Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.

type CaptureMode

type CaptureMode string
const (
	CaptureModeInput  CaptureMode = "Input"
	CaptureModeOutput CaptureMode = "Output"
)

Enum values for CaptureMode

func (CaptureMode) Values added in v0.29.0

func (CaptureMode) Values() []CaptureMode

Values returns all known values for CaptureMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CaptureOption

type CaptureOption struct {

	// Specify the boundary of data to capture.
	//
	// This member is required.
	CaptureMode CaptureMode
	// contains filtered or unexported fields
}

Specifies data Model Monitor will capture.

type CaptureStatus

type CaptureStatus string
const (
	CaptureStatusStarted CaptureStatus = "Started"
	CaptureStatusStopped CaptureStatus = "Stopped"
)

Enum values for CaptureStatus

func (CaptureStatus) Values added in v0.29.0

func (CaptureStatus) Values() []CaptureStatus

Values returns all known values for CaptureStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CategoricalParameter added in v1.20.0

type CategoricalParameter struct {

	// The Name of the environment variable.
	//
	// This member is required.
	Name *string

	// The list of values you can pass.
	//
	// This member is required.
	Value []string
	// contains filtered or unexported fields
}

Environment parameters you want to benchmark your load test against.

type CategoricalParameterRange

type CategoricalParameterRange struct {

	// The name of the categorical hyperparameter to tune.
	//
	// This member is required.
	Name *string

	// A list of the categories for the hyperparameter.
	//
	// This member is required.
	Values []string
	// contains filtered or unexported fields
}

A list of categorical hyperparameters to tune.

type CategoricalParameterRangeSpecification

type CategoricalParameterRangeSpecification struct {

	// The allowed categories for the hyperparameter.
	//
	// This member is required.
	Values []string
	// contains filtered or unexported fields
}

Defines the possible values for a categorical hyperparameter.

type Channel

type Channel struct {

	// The name of the channel.
	//
	// This member is required.
	ChannelName *string

	// The location of the channel data.
	//
	// This member is required.
	DataSource *DataSource

	// If training data is compressed, the compression type. The default value is None
	// . CompressionType is used only in Pipe input mode. In File mode, leave this
	// field unset or set it to None.
	CompressionType CompressionType

	// The MIME type of the data.
	ContentType *string

	// (Optional) The input mode to use for the data channel in a training job. If you
	// don't set a value for InputMode , SageMaker uses the value set for
	// TrainingInputMode . Use this parameter to override the TrainingInputMode
	// setting in a AlgorithmSpecification (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html)
	// request when you have a channel that needs a different input mode from the
	// training job's general setting. To download the data from Amazon Simple Storage
	// Service (Amazon S3) to the provisioned ML storage volume, and mount the
	// directory to a Docker volume, use File input mode. To stream data directly from
	// Amazon S3 to the container, choose Pipe input mode. To use a model for
	// incremental training, choose File input model.
	InputMode TrainingInputMode

	// Specify RecordIO as the value when input data is in raw format but the training
	// algorithm requires the RecordIO format. In this case, SageMaker wraps each
	// individual S3 object in a RecordIO record. If the input data is already in
	// RecordIO format, you don't need to set this attribute. For more information, see
	// Create a Dataset Using RecordIO (https://mxnet.apache.org/api/architecture/note_data_loading#data-format)
	// . In File mode, leave this field unset or set it to None.
	RecordWrapperType RecordWrapper

	// A configuration for a shuffle option for input data in a channel. If you use
	// S3Prefix for S3DataType , this shuffles the results of the S3 key prefix
	// matches. If you use ManifestFile , the order of the S3 object references in the
	// ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the
	// JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is
	// determined using the Seed value. For Pipe input mode, shuffling is done at the
	// start of every epoch. With large datasets this ensures that the order of the
	// training data is different for each epoch, it helps reduce bias and possible
	// overfitting. In a multi-node training job when ShuffleConfig is combined with
	// S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so
	// that the content sent to a particular node on the first epoch might be sent to a
	// different node on the second epoch.
	ShuffleConfig *ShuffleConfig
	// contains filtered or unexported fields
}

A channel is a named input source that training algorithms can consume.

type ChannelSpecification

type ChannelSpecification struct {

	// The name of the channel.
	//
	// This member is required.
	Name *string

	// The supported MIME types for the data.
	//
	// This member is required.
	SupportedContentTypes []string

	// The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker
	// copies the data from the input source onto the local Amazon Elastic Block Store
	// (Amazon EBS) volumes before starting your training algorithm. This is the most
	// commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from
	// the source directly to your algorithm without using the EBS volume.
	//
	// This member is required.
	SupportedInputModes []TrainingInputMode

	// A brief description of the channel.
	Description *string

	// Indicates whether the channel is required by the algorithm.
	IsRequired *bool

	// The allowed compression types, if data compression is used.
	SupportedCompressionTypes []CompressionType
	// contains filtered or unexported fields
}

Defines a named input source, called a channel, to be used by an algorithm.

type CheckpointConfig

type CheckpointConfig struct {

	// Identifies the S3 path where you want SageMaker to store checkpoints. For
	// example, s3://bucket-name/key-name-prefix .
	//
	// This member is required.
	S3Uri *string

	// (Optional) The local directory where checkpoints are written. The default
	// directory is /opt/ml/checkpoints/ .
	LocalPath *string
	// contains filtered or unexported fields
}

Contains information about the output location for managed spot training checkpoint data.

type ClarifyCheckStepMetadata added in v1.20.0

type ClarifyCheckStepMetadata struct {

	// The Amazon S3 URI of baseline constraints file to be used for the drift check.
	BaselineUsedForDriftCheckConstraints *string

	// The Amazon S3 URI of the newly calculated baseline constraints file.
	CalculatedBaselineConstraints *string

	// The Amazon Resource Name (ARN) of the check processing job that was run by this
	// step's execution.
	CheckJobArn *string

	// The type of the Clarify Check step
	CheckType *string

	// The model package group name.
	ModelPackageGroupName *string

	// This flag indicates if a newly calculated baseline can be accessed through step
	// properties BaselineUsedForDriftCheckConstraints and
	// BaselineUsedForDriftCheckStatistics . If it is set to False , the previous
	// baseline of the configured check type must also be available. These can be
	// accessed through the BaselineUsedForDriftCheckConstraints property.
	RegisterNewBaseline *bool

	// This flag indicates if the drift check against the previous baseline will be
	// skipped or not. If it is set to False , the previous baseline of the configured
	// check type must be available.
	SkipCheck *bool

	// The Amazon S3 URI of the violation report if violations are detected.
	ViolationReport *string
	// contains filtered or unexported fields
}

The container for the metadata for the ClarifyCheck step. For more information, see the topic on ClarifyCheck step (https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-clarify-check) in the Amazon SageMaker Developer Guide.

type ClarifyExplainerConfig added in v1.46.0

type ClarifyExplainerConfig struct {

	// The configuration for SHAP analysis.
	//
	// This member is required.
	ShapConfig *ClarifyShapConfig

	// A JMESPath boolean expression used to filter which records to explain.
	// Explanations are activated by default. See EnableExplanations (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable)
	// for additional information.
	EnableExplanations *string

	// The inference configuration parameter for the model container.
	InferenceConfig *ClarifyInferenceConfig
	// contains filtered or unexported fields
}

The configuration parameters for the SageMaker Clarify explainer.

type ClarifyFeatureType added in v1.46.0

type ClarifyFeatureType string
const (
	ClarifyFeatureTypeNumerical   ClarifyFeatureType = "numerical"
	ClarifyFeatureTypeCategorical ClarifyFeatureType = "categorical"
	ClarifyFeatureTypeText        ClarifyFeatureType = "text"
)

Enum values for ClarifyFeatureType

func (ClarifyFeatureType) Values added in v1.46.0

Values returns all known values for ClarifyFeatureType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClarifyInferenceConfig added in v1.46.0

type ClarifyInferenceConfig struct {

	// A template string used to format a JSON record into an acceptable model
	// container input. For example, a ContentTemplate string
	// '{"myfeatures":$features}' will format a list of features [1,2,3] into the
	// record string '{"myfeatures":[1,2,3]}' . Required only when the model container
	// input is in JSON Lines format.
	ContentTemplate *string

	// The names of the features. If provided, these are included in the endpoint
	// response payload to help readability of the InvokeEndpoint output. See the
	// Response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
	// section under Invoke the endpoint in the Developer Guide for more information.
	FeatureHeaders []string

	// A list of data types of the features (optional). Applicable only to NLP
	// explainability. If provided, FeatureTypes must have at least one 'text' string
	// (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers
	// the feature types based on the baseline data. The feature types are included in
	// the endpoint response payload. For additional information see the response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
	// section under Invoke the endpoint in the Developer Guide for more information.
	FeatureTypes []ClarifyFeatureType

	// Provides the JMESPath expression to extract the features from a model container
	// input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath
	// expression 'myfeatures' , it extracts a list of features [1,2,3] from request
	// data '{"myfeatures":[1,2,3]}' .
	FeaturesAttribute *string

	// A JMESPath expression used to locate the list of label headers in the model
	// container output. Example: If the model container output of a batch request is
	// '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set
	// LabelAttribute to 'labels' to extract the list of label headers
	// ["cat","dog","fish"]
	LabelAttribute *string

	// For multiclass classification problems, the label headers are the names of the
	// classes. Otherwise, the label header is the name of the predicted label. These
	// are used to help readability for the output of the InvokeEndpoint API. See the
	// response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
	// section under Invoke the endpoint in the Developer Guide for more information.
	// If there are no label headers in the model container output, provide them
	// manually using this parameter.
	LabelHeaders []string

	// A zero-based index used to extract a label header or list of label headers from
	// model container output in CSV format. Example for a multiclass model: If the
	// model container output consists of label headers followed by probabilities:
	// '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select
	// the label headers ['cat','dog','fish'] .
	LabelIndex *int32

	// The maximum payload size (MB) allowed of a request from the explainer to the
	// model container. Defaults to 6 MB.
	MaxPayloadInMB *int32

	// The maximum number of records in a request that the model container can process
	// when querying the model container for the predictions of a synthetic dataset (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-synthetic)
	// . A record is a unit of input data that inference can be made on, for example, a
	// single line in CSV data. If MaxRecordCount is 1 , the model container expects
	// one record per request. A value of 2 or greater means that the model expects
	// batch requests, which can reduce overhead and speed up the inferencing process.
	// If this parameter is not provided, the explainer will tune the record count per
	// request according to the model container's capacity at runtime.
	MaxRecordCount *int32

	// A JMESPath expression used to extract the probability (or score) from the model
	// container output if the model container is in JSON Lines format. Example: If the
	// model container output of a single request is
	// '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to
	// 'probability' .
	ProbabilityAttribute *string

	// A zero-based index used to extract a probability value (score) or list from
	// model container output in CSV format. If this value is not provided, the entire
	// model container output will be treated as a probability value (score) or list.
	// Example for a single class model: If the model container output consists of a
	// string-formatted prediction label followed by its probability: '1,0.6' , set
	// ProbabilityIndex to 1 to select the probability value 0.6 . Example for a
	// multiclass model: If the model container output consists of a string-formatted
	// prediction label followed by its probability:
	// '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to
	// select the probability values [0.1,0.6,0.3] .
	ProbabilityIndex *int32
	// contains filtered or unexported fields
}

The inference configuration parameter for the model container.

type ClarifyShapBaselineConfig added in v1.46.0

type ClarifyShapBaselineConfig struct {

	// The MIME type of the baseline data. Choose from 'text/csv' or
	// 'application/jsonlines' . Defaults to 'text/csv' .
	MimeType *string

	// The inline SHAP baseline data in string format. ShapBaseline can have one or
	// multiple records to be used as the baseline dataset. The format of the SHAP
	// baseline file should be the same format as the training dataset. For example, if
	// the training dataset is in CSV format and each record contains four features,
	// and all features are numerical, then the format of the baseline data should also
	// share these characteristics. For natural language processing (NLP) of text
	// columns, the baseline value should be the value used to replace the unit of text
	// specified by the Granularity of the TextConfig parameter. The size limit for
	// ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide
	// more than 4 KB of baseline data.
	ShapBaseline *string

	// The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline
	// file is stored. The format of the SHAP baseline file should be the same format
	// as the format of the training dataset. For example, if the training dataset is
	// in CSV format, and each record in the training dataset has four features, and
	// all features are numerical, then the baseline file should also have this same
	// format. Each record should contain only the features. If you are using a virtual
	// private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For
	// more information about setting up endpoints with Amazon Virtual Private Cloud,
	// see Give SageMaker access to Resources in your Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	ShapBaselineUri *string
	// contains filtered or unexported fields
}

The configuration for the SHAP baseline (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html) (also called the background or reference dataset) of the Kernal SHAP algorithm.

type ClarifyShapConfig added in v1.46.0

type ClarifyShapConfig struct {

	// The configuration for the SHAP baseline of the Kernal SHAP algorithm.
	//
	// This member is required.
	ShapBaselineConfig *ClarifyShapBaselineConfig

	// The number of samples to be used for analysis by the Kernal SHAP algorithm. The
	// number of samples determines the size of the synthetic dataset, which has an
	// impact on latency of explainability requests. For more information, see the
	// Synthetic data of Configure and create an endpoint (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html)
	// .
	NumberOfSamples *int32

	// The starting value used to initialize the random number generator in the
	// explainer. Provide a value for this parameter to obtain a deterministic SHAP
	// result.
	Seed *int32

	// A parameter that indicates if text features are treated as text and
	// explanations are provided for individual units of text. Required for natural
	// language processing (NLP) explainability only.
	TextConfig *ClarifyTextConfig

	// A Boolean toggle to indicate if you want to use the logit function (true) or
	// log-odds units (false) for model predictions. Defaults to false.
	UseLogit *bool
	// contains filtered or unexported fields
}

The configuration for SHAP analysis using SageMaker Clarify Explainer.

type ClarifyTextConfig added in v1.46.0

type ClarifyTextConfig struct {

	// The unit of granularity for the analysis of text features. For example, if the
	// unit is 'token' , then each token (like a word in English) of the text is
	// treated as a feature. SHAP values are computed for each unit/feature.
	//
	// This member is required.
	Granularity ClarifyTextGranularity

	// Specifies the language of the text features in ISO 639-1 (https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)
	// or ISO 639-3 (https://en.wikipedia.org/wiki/ISO_639-3) code of a supported
	// language. For a mix of multiple languages, use code 'xx' .
	//
	// This member is required.
	Language ClarifyTextLanguage
	// contains filtered or unexported fields
}

A parameter used to configure the SageMaker Clarify explainer to treat text features as text so that explanations are provided for individual units of text. Required only for natural language processing (NLP) explainability.

type ClarifyTextGranularity added in v1.46.0

type ClarifyTextGranularity string
const (
	ClarifyTextGranularityToken     ClarifyTextGranularity = "token"
	ClarifyTextGranularitySentence  ClarifyTextGranularity = "sentence"
	ClarifyTextGranularityParagraph ClarifyTextGranularity = "paragraph"
)

Enum values for ClarifyTextGranularity

func (ClarifyTextGranularity) Values added in v1.46.0

Values returns all known values for ClarifyTextGranularity. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClarifyTextLanguage added in v1.46.0

type ClarifyTextLanguage string
const (
	ClarifyTextLanguageAfrikaans       ClarifyTextLanguage = "af"
	ClarifyTextLanguageAlbanian        ClarifyTextLanguage = "sq"
	ClarifyTextLanguageArabic          ClarifyTextLanguage = "ar"
	ClarifyTextLanguageArmenian        ClarifyTextLanguage = "hy"
	ClarifyTextLanguageBasque          ClarifyTextLanguage = "eu"
	ClarifyTextLanguageBengali         ClarifyTextLanguage = "bn"
	ClarifyTextLanguageBulgarian       ClarifyTextLanguage = "bg"
	ClarifyTextLanguageCatalan         ClarifyTextLanguage = "ca"
	ClarifyTextLanguageChinese         ClarifyTextLanguage = "zh"
	ClarifyTextLanguageCroatian        ClarifyTextLanguage = "hr"
	ClarifyTextLanguageCzech           ClarifyTextLanguage = "cs"
	ClarifyTextLanguageDanish          ClarifyTextLanguage = "da"
	ClarifyTextLanguageDutch           ClarifyTextLanguage = "nl"
	ClarifyTextLanguageEnglish         ClarifyTextLanguage = "en"
	ClarifyTextLanguageEstonian        ClarifyTextLanguage = "et"
	ClarifyTextLanguageFinnish         ClarifyTextLanguage = "fi"
	ClarifyTextLanguageFrench          ClarifyTextLanguage = "fr"
	ClarifyTextLanguageGerman          ClarifyTextLanguage = "de"
	ClarifyTextLanguageGreek           ClarifyTextLanguage = "el"
	ClarifyTextLanguageGujarati        ClarifyTextLanguage = "gu"
	ClarifyTextLanguageHebrew          ClarifyTextLanguage = "he"
	ClarifyTextLanguageHindi           ClarifyTextLanguage = "hi"
	ClarifyTextLanguageHungarian       ClarifyTextLanguage = "hu"
	ClarifyTextLanguageIcelandic       ClarifyTextLanguage = "is"
	ClarifyTextLanguageIndonesian      ClarifyTextLanguage = "id"
	ClarifyTextLanguageIrish           ClarifyTextLanguage = "ga"
	ClarifyTextLanguageItalian         ClarifyTextLanguage = "it"
	ClarifyTextLanguageKannada         ClarifyTextLanguage = "kn"
	ClarifyTextLanguageKyrgyz          ClarifyTextLanguage = "ky"
	ClarifyTextLanguageLatvian         ClarifyTextLanguage = "lv"
	ClarifyTextLanguageLithuanian      ClarifyTextLanguage = "lt"
	ClarifyTextLanguageLuxembourgish   ClarifyTextLanguage = "lb"
	ClarifyTextLanguageMacedonian      ClarifyTextLanguage = "mk"
	ClarifyTextLanguageMalayalam       ClarifyTextLanguage = "ml"
	ClarifyTextLanguageMarathi         ClarifyTextLanguage = "mr"
	ClarifyTextLanguageNepali          ClarifyTextLanguage = "ne"
	ClarifyTextLanguageNorwegianBokmal ClarifyTextLanguage = "nb"
	ClarifyTextLanguagePersian         ClarifyTextLanguage = "fa"
	ClarifyTextLanguagePolish          ClarifyTextLanguage = "pl"
	ClarifyTextLanguagePortuguese      ClarifyTextLanguage = "pt"
	ClarifyTextLanguageRomanian        ClarifyTextLanguage = "ro"
	ClarifyTextLanguageRussian         ClarifyTextLanguage = "ru"
	ClarifyTextLanguageSanskrit        ClarifyTextLanguage = "sa"
	ClarifyTextLanguageSerbian         ClarifyTextLanguage = "sr"
	ClarifyTextLanguageSetswana        ClarifyTextLanguage = "tn"
	ClarifyTextLanguageSinhala         ClarifyTextLanguage = "si"
	ClarifyTextLanguageSlovak          ClarifyTextLanguage = "sk"
	ClarifyTextLanguageSlovenian       ClarifyTextLanguage = "sl"
	ClarifyTextLanguageSpanish         ClarifyTextLanguage = "es"
	ClarifyTextLanguageSwedish         ClarifyTextLanguage = "sv"
	ClarifyTextLanguageTagalog         ClarifyTextLanguage = "tl"
	ClarifyTextLanguageTamil           ClarifyTextLanguage = "ta"
	ClarifyTextLanguageTatar           ClarifyTextLanguage = "tt"
	ClarifyTextLanguageTelugu          ClarifyTextLanguage = "te"
	ClarifyTextLanguageTurkish         ClarifyTextLanguage = "tr"
	ClarifyTextLanguageUkrainian       ClarifyTextLanguage = "uk"
	ClarifyTextLanguageUrdu            ClarifyTextLanguage = "ur"
	ClarifyTextLanguageYoruba          ClarifyTextLanguage = "yo"
	ClarifyTextLanguageLigurian        ClarifyTextLanguage = "lij"
	ClarifyTextLanguageMultiLanguage   ClarifyTextLanguage = "xx"
)

Enum values for ClarifyTextLanguage

func (ClarifyTextLanguage) Values added in v1.46.0

Values returns all known values for ClarifyTextLanguage. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClusterInstanceGroupDetails added in v1.119.0

type ClusterInstanceGroupDetails struct {

	// The number of instances that are currently in the instance group of a SageMaker
	// HyperPod cluster.
	CurrentCount *int32

	// The execution role for the instance group to assume.
	ExecutionRole *string

	// The name of the instance group of a SageMaker HyperPod cluster.
	InstanceGroupName *string

	// The instance type of the instance group of a SageMaker HyperPod cluster.
	InstanceType ClusterInstanceType

	// Details of LifeCycle configuration for the instance group.
	LifeCycleConfig *ClusterLifeCycleConfig

	// The number of instances you specified to add to the instance group of a
	// SageMaker HyperPod cluster.
	TargetCount *int32

	// The number you specified to TreadsPerCore in CreateCluster for enabling or
	// disabling multithreading. For instance types that support multithreading, you
	// can specify 1 for disabling multithreading and 2 for enabling multithreading.
	// For more information, see the reference table of CPU cores and threads per CPU
	// core per instance type (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html)
	// in the Amazon Elastic Compute Cloud User Guide.
	ThreadsPerCore *int32
	// contains filtered or unexported fields
}

Details of an instance group in a SageMaker HyperPod cluster.

type ClusterInstanceGroupSpecification added in v1.119.0

type ClusterInstanceGroupSpecification struct {

	// Specifies an IAM execution role to be assumed by the instance group.
	//
	// This member is required.
	ExecutionRole *string

	// Specifies the number of instances to add to the instance group of a SageMaker
	// HyperPod cluster.
	//
	// This member is required.
	InstanceCount *int32

	// Specifies the name of the instance group.
	//
	// This member is required.
	InstanceGroupName *string

	// Specifies the instance type of the instance group.
	//
	// This member is required.
	InstanceType ClusterInstanceType

	// Specifies the LifeCycle configuration for the instance group.
	//
	// This member is required.
	LifeCycleConfig *ClusterLifeCycleConfig

	// Specifies the value for Threads per core. For instance types that support
	// multithreading, you can specify 1 for disabling multithreading and 2 for
	// enabling multithreading. For instance types that doesn't support multithreading,
	// specify 1 . For more information, see the reference table of CPU cores and
	// threads per CPU core per instance type (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html)
	// in the Amazon Elastic Compute Cloud User Guide.
	ThreadsPerCore *int32
	// contains filtered or unexported fields
}

The specifications of an instance group that you need to define.

type ClusterInstanceStatus added in v1.119.0

type ClusterInstanceStatus string
const (
	ClusterInstanceStatusRunning        ClusterInstanceStatus = "Running"
	ClusterInstanceStatusFailure        ClusterInstanceStatus = "Failure"
	ClusterInstanceStatusPending        ClusterInstanceStatus = "Pending"
	ClusterInstanceStatusShuttingDown   ClusterInstanceStatus = "ShuttingDown"
	ClusterInstanceStatusSystemUpdating ClusterInstanceStatus = "SystemUpdating"
)

Enum values for ClusterInstanceStatus

func (ClusterInstanceStatus) Values added in v1.119.0

Values returns all known values for ClusterInstanceStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClusterInstanceStatusDetails added in v1.119.0

type ClusterInstanceStatusDetails struct {

	// The status of an instance in a SageMaker HyperPod cluster.
	//
	// This member is required.
	Status ClusterInstanceStatus

	// The message from an instance in a SageMaker HyperPod cluster.
	Message *string
	// contains filtered or unexported fields
}

Details of an instance in a SageMaker HyperPod cluster.

type ClusterInstanceType added in v1.119.0

type ClusterInstanceType string
const (
	ClusterInstanceTypeMlP4d24xlarge   ClusterInstanceType = "ml.p4d.24xlarge"
	ClusterInstanceTypeMlP4de24xlarge  ClusterInstanceType = "ml.p4de.24xlarge"
	ClusterInstanceTypeMlP548xlarge    ClusterInstanceType = "ml.p5.48xlarge"
	ClusterInstanceTypeMlTrn132xlarge  ClusterInstanceType = "ml.trn1.32xlarge"
	ClusterInstanceTypeMlTrn1n32xlarge ClusterInstanceType = "ml.trn1n.32xlarge"
	ClusterInstanceTypeMlG5Xlarge      ClusterInstanceType = "ml.g5.xlarge"
	ClusterInstanceTypeMlG52xlarge     ClusterInstanceType = "ml.g5.2xlarge"
	ClusterInstanceTypeMlG54xlarge     ClusterInstanceType = "ml.g5.4xlarge"
	ClusterInstanceTypeMlG58xlarge     ClusterInstanceType = "ml.g5.8xlarge"
	ClusterInstanceTypeMlG512xlarge    ClusterInstanceType = "ml.g5.12xlarge"
	ClusterInstanceTypeMlG516xlarge    ClusterInstanceType = "ml.g5.16xlarge"
	ClusterInstanceTypeMlG524xlarge    ClusterInstanceType = "ml.g5.24xlarge"
	ClusterInstanceTypeMlG548xlarge    ClusterInstanceType = "ml.g5.48xlarge"
	ClusterInstanceTypeMlC5Large       ClusterInstanceType = "ml.c5.large"
	ClusterInstanceTypeMlC5Xlarge      ClusterInstanceType = "ml.c5.xlarge"
	ClusterInstanceTypeMlC52xlarge     ClusterInstanceType = "ml.c5.2xlarge"
	ClusterInstanceTypeMlC54xlarge     ClusterInstanceType = "ml.c5.4xlarge"
	ClusterInstanceTypeMlC59xlarge     ClusterInstanceType = "ml.c5.9xlarge"
	ClusterInstanceTypeMlC512xlarge    ClusterInstanceType = "ml.c5.12xlarge"
	ClusterInstanceTypeMlC518xlarge    ClusterInstanceType = "ml.c5.18xlarge"
	ClusterInstanceTypeMlC524xlarge    ClusterInstanceType = "ml.c5.24xlarge"
	ClusterInstanceTypeMlC5nLarge      ClusterInstanceType = "ml.c5n.large"
	ClusterInstanceTypeMlC5n2xlarge    ClusterInstanceType = "ml.c5n.2xlarge"
	ClusterInstanceTypeMlC5n4xlarge    ClusterInstanceType = "ml.c5n.4xlarge"
	ClusterInstanceTypeMlC5n9xlarge    ClusterInstanceType = "ml.c5n.9xlarge"
	ClusterInstanceTypeMlC5n18xlarge   ClusterInstanceType = "ml.c5n.18xlarge"
	ClusterInstanceTypeMlM5Large       ClusterInstanceType = "ml.m5.large"
	ClusterInstanceTypeMlM5Xlarge      ClusterInstanceType = "ml.m5.xlarge"
	ClusterInstanceTypeMlM52xlarge     ClusterInstanceType = "ml.m5.2xlarge"
	ClusterInstanceTypeMlM54xlarge     ClusterInstanceType = "ml.m5.4xlarge"
	ClusterInstanceTypeMlM58xlarge     ClusterInstanceType = "ml.m5.8xlarge"
	ClusterInstanceTypeMlM512xlarge    ClusterInstanceType = "ml.m5.12xlarge"
	ClusterInstanceTypeMlM516xlarge    ClusterInstanceType = "ml.m5.16xlarge"
	ClusterInstanceTypeMlM524xlarge    ClusterInstanceType = "ml.m5.24xlarge"
	ClusterInstanceTypeMlT3Medium      ClusterInstanceType = "ml.t3.medium"
	ClusterInstanceTypeMlT3Large       ClusterInstanceType = "ml.t3.large"
	ClusterInstanceTypeMlT3Xlarge      ClusterInstanceType = "ml.t3.xlarge"
	ClusterInstanceTypeMlT32xlarge     ClusterInstanceType = "ml.t3.2xlarge"
)

Enum values for ClusterInstanceType

func (ClusterInstanceType) Values added in v1.119.0

Values returns all known values for ClusterInstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClusterLifeCycleConfig added in v1.119.0

type ClusterLifeCycleConfig struct {

	// The directory of the LifeCycle script under SourceS3Uri . This LifeCycle script
	// runs during cluster creation.
	//
	// This member is required.
	OnCreate *string

	// An Amazon S3 bucket path where your LifeCycle scripts are stored.
	//
	// This member is required.
	SourceS3Uri *string
	// contains filtered or unexported fields
}

The LifeCycle configuration for a SageMaker HyperPod cluster.

type ClusterNodeDetails added in v1.119.0

type ClusterNodeDetails struct {

	// The instance group name in which the instance is.
	InstanceGroupName *string

	// The ID of the instance.
	InstanceId *string

	// The status of the instance.
	InstanceStatus *ClusterInstanceStatusDetails

	// The type of the instance.
	InstanceType ClusterInstanceType

	// The time when the instance is launched.
	LaunchTime *time.Time

	// The LifeCycle configuration applied to the instance.
	LifeCycleConfig *ClusterLifeCycleConfig

	// The number of threads per CPU core you specified under CreateCluster .
	ThreadsPerCore *int32
	// contains filtered or unexported fields
}

Details of an instance (also called a node interchangeably) in a SageMaker HyperPod cluster.

type ClusterNodeSummary added in v1.119.0

type ClusterNodeSummary struct {

	// The name of the instance group in which the instance is.
	//
	// This member is required.
	InstanceGroupName *string

	// The ID of the instance.
	//
	// This member is required.
	InstanceId *string

	// The status of the instance.
	//
	// This member is required.
	InstanceStatus *ClusterInstanceStatusDetails

	// The type of the instance.
	//
	// This member is required.
	InstanceType ClusterInstanceType

	// The time when the instance is launched.
	//
	// This member is required.
	LaunchTime *time.Time
	// contains filtered or unexported fields
}

Lists a summary of the properties of an instance (also called a node interchangeably) of a SageMaker HyperPod cluster.

type ClusterSortBy added in v1.119.0

type ClusterSortBy string
const (
	ClusterSortByCreationTime ClusterSortBy = "CREATION_TIME"
	ClusterSortByName         ClusterSortBy = "NAME"
)

Enum values for ClusterSortBy

func (ClusterSortBy) Values added in v1.119.0

func (ClusterSortBy) Values() []ClusterSortBy

Values returns all known values for ClusterSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClusterStatus added in v1.119.0

type ClusterStatus string
const (
	ClusterStatusCreating       ClusterStatus = "Creating"
	ClusterStatusDeleting       ClusterStatus = "Deleting"
	ClusterStatusFailed         ClusterStatus = "Failed"
	ClusterStatusInservice      ClusterStatus = "InService"
	ClusterStatusRollingback    ClusterStatus = "RollingBack"
	ClusterStatusSystemupdating ClusterStatus = "SystemUpdating"
	ClusterStatusUpdating       ClusterStatus = "Updating"
)

Enum values for ClusterStatus

func (ClusterStatus) Values added in v1.119.0

func (ClusterStatus) Values() []ClusterStatus

Values returns all known values for ClusterStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ClusterSummary added in v1.119.0

type ClusterSummary struct {

	// The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
	//
	// This member is required.
	ClusterArn *string

	// The name of the SageMaker HyperPod cluster.
	//
	// This member is required.
	ClusterName *string

	// The status of the SageMaker HyperPod cluster.
	//
	// This member is required.
	ClusterStatus ClusterStatus

	// The time when the SageMaker HyperPod cluster is created.
	//
	// This member is required.
	CreationTime *time.Time
	// contains filtered or unexported fields
}

Lists a summary of the properties of a SageMaker HyperPod cluster.

type CodeEditorAppSettings added in v1.120.0

type CodeEditorAppSettings struct {

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the Code Editor application lifecycle
	// configuration.
	LifecycleConfigArns []string
	// contains filtered or unexported fields
}

The Code Editor application settings. For more information about Code Editor, see Get started with Code Editor in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html) .

type CodeRepository added in v1.56.0

type CodeRepository struct {

	// The URL of the Git repository.
	//
	// This member is required.
	RepositoryUrl *string
	// contains filtered or unexported fields
}

A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.

type CodeRepositorySortBy

type CodeRepositorySortBy string
const (
	CodeRepositorySortByName             CodeRepositorySortBy = "Name"
	CodeRepositorySortByCreationTime     CodeRepositorySortBy = "CreationTime"
	CodeRepositorySortByLastModifiedTime CodeRepositorySortBy = "LastModifiedTime"
)

Enum values for CodeRepositorySortBy

func (CodeRepositorySortBy) Values added in v0.29.0

Values returns all known values for CodeRepositorySortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CodeRepositorySortOrder

type CodeRepositorySortOrder string
const (
	CodeRepositorySortOrderAscending  CodeRepositorySortOrder = "Ascending"
	CodeRepositorySortOrderDescending CodeRepositorySortOrder = "Descending"
)

Enum values for CodeRepositorySortOrder

func (CodeRepositorySortOrder) Values added in v0.29.0

Values returns all known values for CodeRepositorySortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CodeRepositorySummary

type CodeRepositorySummary struct {

	// The Amazon Resource Name (ARN) of the Git repository.
	//
	// This member is required.
	CodeRepositoryArn *string

	// The name of the Git repository.
	//
	// This member is required.
	CodeRepositoryName *string

	// The date and time that the Git repository was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The date and time that the Git repository was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// Configuration details for the Git repository, including the URL where it is
	// located and the ARN of the Amazon Web Services Secrets Manager secret that
	// contains the credentials used to access the repository.
	GitConfig *GitConfig
	// contains filtered or unexported fields
}

Specifies summary information about a Git repository.

type CognitoConfig

type CognitoConfig struct {

	// The client ID for your Amazon Cognito user pool.
	//
	// This member is required.
	ClientId *string

	// A  user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
	// is a user directory in Amazon Cognito. With a user pool, your users can sign in
	// to your web or mobile app through Amazon Cognito. Your users can also sign in
	// through social identity providers like Google, Facebook, Amazon, or Apple, and
	// through SAML identity providers.
	//
	// This member is required.
	UserPool *string
	// contains filtered or unexported fields
}

Use this parameter to configure your Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html) .

type CognitoMemberDefinition

type CognitoMemberDefinition struct {

	// An identifier for an application client. You must create the app client ID
	// using Amazon Cognito.
	//
	// This member is required.
	ClientId *string

	// An identifier for a user group.
	//
	// This member is required.
	UserGroup *string

	// An identifier for a user pool. The user pool must be in the same region as the
	// service that you are calling.
	//
	// This member is required.
	UserPool *string
	// contains filtered or unexported fields
}

Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.

type CollectionConfig added in v1.108.0

type CollectionConfig interface {
	// contains filtered or unexported methods
}

Configuration for your collection.

The following types satisfy this interface:

CollectionConfigMemberVectorConfig
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.CollectionConfig
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.CollectionConfigMemberVectorConfig:
		_ = v.Value // Value is types.VectorConfig

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type CollectionConfigMemberVectorConfig added in v1.108.0

type CollectionConfigMemberVectorConfig struct {
	Value VectorConfig
	// contains filtered or unexported fields
}

Configuration for your vector collection type.

  • Dimension : The number of elements in your vector.

type CollectionConfiguration

type CollectionConfiguration struct {

	// The name of the tensor collection. The name must be unique relative to other
	// rule configuration names.
	CollectionName *string

	// Parameter values for the tensor collection. The allowed parameters are "name" ,
	// "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and
	// "save_histogram" .
	CollectionParameters map[string]string
	// contains filtered or unexported fields
}

Configuration information for the Amazon SageMaker Debugger output tensor collections.

type CollectionType added in v1.108.0

type CollectionType string
const (
	CollectionTypeList   CollectionType = "List"
	CollectionTypeSet    CollectionType = "Set"
	CollectionTypeVector CollectionType = "Vector"
)

Enum values for CollectionType

func (CollectionType) Values added in v1.108.0

func (CollectionType) Values() []CollectionType

Values returns all known values for CollectionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CompilationJobStatus

type CompilationJobStatus string
const (
	CompilationJobStatusInprogress CompilationJobStatus = "INPROGRESS"
	CompilationJobStatusCompleted  CompilationJobStatus = "COMPLETED"
	CompilationJobStatusFailed     CompilationJobStatus = "FAILED"
	CompilationJobStatusStarting   CompilationJobStatus = "STARTING"
	CompilationJobStatusStopping   CompilationJobStatus = "STOPPING"
	CompilationJobStatusStopped    CompilationJobStatus = "STOPPED"
)

Enum values for CompilationJobStatus

func (CompilationJobStatus) Values added in v0.29.0

Values returns all known values for CompilationJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CompilationJobSummary

type CompilationJobSummary struct {

	// The Amazon Resource Name (ARN) of the model compilation job.
	//
	// This member is required.
	CompilationJobArn *string

	// The name of the model compilation job that you want a summary for.
	//
	// This member is required.
	CompilationJobName *string

	// The status of the model compilation job.
	//
	// This member is required.
	CompilationJobStatus CompilationJobStatus

	// The time when the model compilation job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The time when the model compilation job completed.
	CompilationEndTime *time.Time

	// The time when the model compilation job started.
	CompilationStartTime *time.Time

	// The type of device that the model will run on after the compilation job has
	// completed.
	CompilationTargetDevice TargetDevice

	// The type of accelerator that the model will run on after the compilation job
	// has completed.
	CompilationTargetPlatformAccelerator TargetPlatformAccelerator

	// The type of architecture that the model will run on after the compilation job
	// has completed.
	CompilationTargetPlatformArch TargetPlatformArch

	// The type of OS that the model will run on after the compilation job has
	// completed.
	CompilationTargetPlatformOs TargetPlatformOs

	// The time when the model compilation job was last modified.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

A summary of a model compilation job.

type CompleteOnConvergence added in v1.67.0

type CompleteOnConvergence string
const (
	CompleteOnConvergenceDisabled CompleteOnConvergence = "Disabled"
	CompleteOnConvergenceEnabled  CompleteOnConvergence = "Enabled"
)

Enum values for CompleteOnConvergence

func (CompleteOnConvergence) Values added in v1.67.0

Values returns all known values for CompleteOnConvergence. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CompressionType

type CompressionType string
const (
	CompressionTypeNone CompressionType = "None"
	CompressionTypeGzip CompressionType = "Gzip"
)

Enum values for CompressionType

func (CompressionType) Values added in v0.29.0

func (CompressionType) Values() []CompressionType

Values returns all known values for CompressionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ConditionOutcome added in v0.31.0

type ConditionOutcome string
const (
	ConditionOutcomeTrue  ConditionOutcome = "True"
	ConditionOutcomeFalse ConditionOutcome = "False"
)

Enum values for ConditionOutcome

func (ConditionOutcome) Values added in v0.31.0

Values returns all known values for ConditionOutcome. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ConditionStepMetadata added in v0.31.0

type ConditionStepMetadata struct {

	// The outcome of the Condition step evaluation.
	Outcome ConditionOutcome
	// contains filtered or unexported fields
}

Metadata for a Condition step.

type ConflictException

type ConflictException struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact .

func (*ConflictException) Error

func (e *ConflictException) Error() string

func (*ConflictException) ErrorCode

func (e *ConflictException) ErrorCode() string

func (*ConflictException) ErrorFault

func (e *ConflictException) ErrorFault() smithy.ErrorFault

func (*ConflictException) ErrorMessage

func (e *ConflictException) ErrorMessage() string

type ContainerConfig added in v1.120.0

type ContainerConfig struct {

	// The arguments for the container when you're running the application.
	ContainerArguments []string

	// The entrypoint used to run the application in the container.
	ContainerEntrypoint []string

	// The environment variables to set in the container
	ContainerEnvironmentVariables map[string]string
	// contains filtered or unexported fields
}

The configuration used to run the application image container.

type ContainerDefinition

type ContainerDefinition struct {

	// This parameter is ignored for models that contain only a PrimaryContainer . When
	// a ContainerDefinition is part of an inference pipeline, the value of the
	// parameter uniquely identifies the container for the purposes of logging and
	// metrics. For information, see Use Logs and Metrics to Monitor an Inference
	// Pipeline (https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html)
	// . If you don't specify a value for this parameter for a ContainerDefinition
	// that is part of an inference pipeline, a unique name is automatically assigned
	// based on the position of the ContainerDefinition in the pipeline. If you
	// specify a value for the ContainerHostName for any ContainerDefinition that is
	// part of an inference pipeline, you must specify a value for the
	// ContainerHostName parameter of every ContainerDefinition in that pipeline.
	ContainerHostname *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string to string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]string

	// The path where inference code is stored. This can be either in Amazon EC2
	// Container Registry or in a Docker registry that is accessible from the same VPC
	// that you configure for your endpoint. If you are using your own custom algorithm
	// instead of an algorithm provided by SageMaker, the inference code must meet
	// SageMaker requirements. SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see
	// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// . The model artifacts in an Amazon S3 bucket and the Docker image for inference
	// container in Amazon EC2 Container Registry must be in the same region as the
	// model or endpoint you are creating.
	Image *string

	// Specifies whether the model container is in Amazon ECR or a private Docker
	// registry accessible from your Amazon Virtual Private Cloud (VPC). For
	// information about storing containers in a private Docker registry, see Use a
	// Private Docker Registry for Real-Time Inference Containers (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html)
	// . The model artifacts in an Amazon S3 bucket and the Docker image for inference
	// container in Amazon EC2 Container Registry must be in the same region as the
	// model or endpoint you are creating.
	ImageConfig *ImageConfig

	// The inference specification name in the model package version.
	InferenceSpecificationName *string

	// Whether the container hosts a single model or multiple models.
	Mode ContainerMode

	// Specifies the location of ML model data to deploy. Currently you cannot use
	// ModelDataSource in conjunction with SageMaker batch transform, SageMaker
	// serverless endpoints, SageMaker multi-model endpoints, and SageMaker
	// Marketplace.
	ModelDataSource *ModelDataSource

	// The S3 path where the model artifacts, which result from model training, are
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix). The S3 path is required for SageMaker built-in algorithms, but not if
	// you use your own algorithms. For more information on built-in algorithms, see
	// Common Parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
	// . The model artifacts must be in an S3 bucket that is in the same region as the
	// model or endpoint you are creating. If you provide a value for this parameter,
	// SageMaker uses Amazon Web Services Security Token Service to download model
	// artifacts from the S3 path you provide. Amazon Web Services STS is activated in
	// your Amazon Web Services account by default. If you previously deactivated
	// Amazon Web Services STS for a region, you need to reactivate Amazon Web Services
	// STS for that region. For more information, see Activating and Deactivating
	// Amazon Web Services STS in an Amazon Web Services Region (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html)
	// in the Amazon Web Services Identity and Access Management User Guide. If you use
	// a built-in algorithm to create a model, SageMaker requires that you provide a S3
	// path to the model artifacts in ModelDataUrl .
	ModelDataUrl *string

	// The name or Amazon Resource Name (ARN) of the model package to use to create
	// the model.
	ModelPackageName *string

	// Specifies additional configuration for multi-model endpoints.
	MultiModelConfig *MultiModelConfig
	// contains filtered or unexported fields
}

Describes the container, as part of model definition.

type ContainerMode

type ContainerMode string
const (
	ContainerModeSingleModel ContainerMode = "SingleModel"
	ContainerModeMultiModel  ContainerMode = "MultiModel"
)

Enum values for ContainerMode

func (ContainerMode) Values added in v0.29.0

func (ContainerMode) Values() []ContainerMode

Values returns all known values for ContainerMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ContentClassifier

type ContentClassifier string
const (
	ContentClassifierFreeOfPersonallyIdentifiableInformation ContentClassifier = "FreeOfPersonallyIdentifiableInformation"
	ContentClassifierFreeOfAdultContent                      ContentClassifier = "FreeOfAdultContent"
)

Enum values for ContentClassifier

func (ContentClassifier) Values added in v0.29.0

Values returns all known values for ContentClassifier. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ContextSource added in v0.31.0

type ContextSource struct {

	// The URI of the source.
	//
	// This member is required.
	SourceUri *string

	// The ID of the source.
	SourceId *string

	// The type of the source.
	SourceType *string
	// contains filtered or unexported fields
}

A structure describing the source of a context.

type ContextSummary added in v0.31.0

type ContextSummary struct {

	// The Amazon Resource Name (ARN) of the context.
	ContextArn *string

	// The name of the context.
	ContextName *string

	// The type of the context.
	ContextType *string

	// When the context was created.
	CreationTime *time.Time

	// When the context was last modified.
	LastModifiedTime *time.Time

	// The source of the context.
	Source *ContextSource
	// contains filtered or unexported fields
}

Lists a summary of the properties of a context. A context provides a logical grouping of other entities.

type ContinuousParameterRange

type ContinuousParameterRange struct {

	// The maximum value for the hyperparameter. The tuning job uses floating-point
	// values between MinValue value and this value for tuning.
	//
	// This member is required.
	MaxValue *string

	// The minimum value for the hyperparameter. The tuning job uses floating-point
	// values between this value and MaxValue for tuning.
	//
	// This member is required.
	MinValue *string

	// The name of the continuous hyperparameter to tune.
	//
	// This member is required.
	Name *string

	// The scale that hyperparameter tuning uses to search the hyperparameter range.
	// For information about choosing a hyperparameter scale, see Hyperparameter
	// Scaling (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type)
	// . One of the following values: Auto SageMaker hyperparameter tuning chooses the
	// best scale for the hyperparameter. Linear Hyperparameter tuning searches the
	// values in the hyperparameter range by using a linear scale. Logarithmic
	// Hyperparameter tuning searches the values in the hyperparameter range by using a
	// logarithmic scale. Logarithmic scaling works only for ranges that have only
	// values greater than 0. ReverseLogarithmic Hyperparameter tuning searches the
	// values in the hyperparameter range by using a reverse logarithmic scale. Reverse
	// logarithmic scaling works only for ranges that are entirely within the range
	// 0<=x<1.0.
	ScalingType HyperParameterScalingType
	// contains filtered or unexported fields
}

A list of continuous hyperparameters to tune.

type ContinuousParameterRangeSpecification

type ContinuousParameterRangeSpecification struct {

	// The maximum floating-point value allowed.
	//
	// This member is required.
	MaxValue *string

	// The minimum floating-point value allowed.
	//
	// This member is required.
	MinValue *string
	// contains filtered or unexported fields
}

Defines the possible values for a continuous hyperparameter.

type ConvergenceDetected added in v1.67.0

type ConvergenceDetected struct {

	// A flag to stop a tuning job once AMT has detected that the job has converged.
	CompleteOnConvergence CompleteOnConvergence
	// contains filtered or unexported fields
}

A flag to indicating that automatic model tuning (AMT) has detected model convergence, defined as a lack of significant improvement (1% or less) against an objective metric.

type CrossAccountFilterOption added in v1.93.0

type CrossAccountFilterOption string
const (
	CrossAccountFilterOptionSameAccount  CrossAccountFilterOption = "SameAccount"
	CrossAccountFilterOptionCrossAccount CrossAccountFilterOption = "CrossAccount"
)

Enum values for CrossAccountFilterOption

func (CrossAccountFilterOption) Values added in v1.93.0

Values returns all known values for CrossAccountFilterOption. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type CustomFileSystem added in v1.120.0

type CustomFileSystem interface {
	// contains filtered or unexported methods
}

A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.

The following types satisfy this interface:

CustomFileSystemMemberEFSFileSystem
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.CustomFileSystem
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.CustomFileSystemMemberEFSFileSystem:
		_ = v.Value // Value is types.EFSFileSystem

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type CustomFileSystemConfig added in v1.120.0

type CustomFileSystemConfig interface {
	// contains filtered or unexported methods
}

The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.

The following types satisfy this interface:

CustomFileSystemConfigMemberEFSFileSystemConfig
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.CustomFileSystemConfig
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.CustomFileSystemConfigMemberEFSFileSystemConfig:
		_ = v.Value // Value is types.EFSFileSystemConfig

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type CustomFileSystemConfigMemberEFSFileSystemConfig added in v1.120.0

type CustomFileSystemConfigMemberEFSFileSystemConfig struct {
	Value EFSFileSystemConfig
	// contains filtered or unexported fields
}

The settings for a custom Amazon EFS file system.

type CustomFileSystemMemberEFSFileSystem added in v1.120.0

type CustomFileSystemMemberEFSFileSystem struct {
	Value EFSFileSystem
	// contains filtered or unexported fields
}

A custom file system in Amazon EFS.

type CustomImage added in v0.29.0

type CustomImage struct {

	// The name of the AppImageConfig.
	//
	// This member is required.
	AppImageConfigName *string

	// The name of the CustomImage. Must be unique to your account.
	//
	// This member is required.
	ImageName *string

	// The version number of the CustomImage.
	ImageVersionNumber *int32
	// contains filtered or unexported fields
}

A custom SageMaker image. For more information, see Bring your own SageMaker image (https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html) .

type CustomPosixUserConfig added in v1.120.0

type CustomPosixUserConfig struct {

	// The POSIX group ID.
	//
	// This member is required.
	Gid *int64

	// The POSIX user ID.
	//
	// This member is required.
	Uid *int64
	// contains filtered or unexported fields
}

Details about the POSIX identity that is used for file system operations.

type CustomizedMetricSpecification added in v1.98.0

type CustomizedMetricSpecification struct {

	// The name of the customized metric.
	MetricName *string

	// The namespace of the customized metric.
	Namespace *string

	// The statistic of the customized metric.
	Statistic Statistic
	// contains filtered or unexported fields
}

A customized metric.

type DataCaptureConfig

type DataCaptureConfig struct {

	// Specifies data Model Monitor will capture. You can configure whether to collect
	// only input, only output, or both
	//
	// This member is required.
	CaptureOptions []CaptureOption

	// The Amazon S3 location used to capture the data.
	//
	// This member is required.
	DestinationS3Uri *string

	// The percentage of requests SageMaker will capture. A lower value is recommended
	// for Endpoints with high traffic.
	//
	// This member is required.
	InitialSamplingPercentage *int32

	// Configuration specifying how to treat different headers. If no headers are
	// specified SageMaker will by default base64 encode when capturing the data.
	CaptureContentTypeHeader *CaptureContentTypeHeader

	// Whether data capture should be enabled or disabled (defaults to enabled).
	EnableCapture *bool

	// The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker
	// uses to encrypt the captured data at rest using Amazon S3 server-side
	// encryption. The KmsKeyId can be any of the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	KmsKeyId *string
	// contains filtered or unexported fields
}

Configuration to control how SageMaker captures inference data.

type DataCaptureConfigSummary

type DataCaptureConfigSummary struct {

	// Whether data capture is currently functional.
	//
	// This member is required.
	CaptureStatus CaptureStatus

	// The percentage of requests being captured by your Endpoint.
	//
	// This member is required.
	CurrentSamplingPercentage *int32

	// The Amazon S3 location being used to capture the data.
	//
	// This member is required.
	DestinationS3Uri *string

	// Whether data capture is enabled or disabled.
	//
	// This member is required.
	EnableCapture *bool

	// The KMS key being used to encrypt the data in Amazon S3.
	//
	// This member is required.
	KmsKeyId *string
	// contains filtered or unexported fields
}

The currently active data capture configuration used by your Endpoint.

type DataCatalogConfig added in v0.31.0

type DataCatalogConfig struct {

	// The name of the Glue table catalog.
	//
	// This member is required.
	Catalog *string

	// The name of the Glue table database.
	//
	// This member is required.
	Database *string

	// The name of the Glue table.
	//
	// This member is required.
	TableName *string
	// contains filtered or unexported fields
}

The meta data of the Glue table which serves as data catalog for the OfflineStore .

type DataDistributionType added in v0.31.0

type DataDistributionType string
const (
	DataDistributionTypeFullyreplicated DataDistributionType = "FullyReplicated"
	DataDistributionTypeShardedbys3key  DataDistributionType = "ShardedByS3Key"
)

Enum values for DataDistributionType

func (DataDistributionType) Values added in v0.31.0

Values returns all known values for DataDistributionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DataProcessing

type DataProcessing struct {

	// A JSONPath (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
	// expression used to select a portion of the input data to pass to the algorithm.
	// Use the InputFilter parameter to exclude fields, such as an ID column, from the
	// input. If you want SageMaker to pass the entire input dataset to the algorithm,
	// accept the default value $ . Examples: "$" , "$[1:]" , "$.features"
	InputFilter *string

	// Specifies the source of the data to join with the transformed data. The valid
	// values are None and Input . The default value is None , which specifies not to
	// join the input with the transformed data. If you want the batch transform job to
	// join the original input data with the transformed data, set JoinSource to Input
	// . You can specify OutputFilter as an additional filter to select a portion of
	// the joined dataset and store it in the output file. For JSON or JSONLines
	// objects, such as a JSON array, SageMaker adds the transformed data to the input
	// JSON object in an attribute called SageMakerOutput . The joined result for JSON
	// must be a key-value pair object. If the input is not a key-value pair object,
	// SageMaker creates a new JSON file. In the new JSON file, and the input data is
	// stored under the SageMakerInput key and the results are stored in
	// SageMakerOutput . For CSV data, SageMaker takes each row as a JSON array and
	// joins the transformed data with the input by appending each transformed row to
	// the end of the input. The joined data has the original input data followed by
	// the transformed data and the output is a CSV file. For information on how
	// joining in applied, see Workflow for Associating Inferences with Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow)
	// .
	JoinSource JoinSource

	// A JSONPath (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
	// expression used to select a portion of the joined dataset to save in the output
	// file for a batch transform job. If you want SageMaker to store the entire input
	// dataset in the output file, leave the default value, $ . If you specify indexes
	// that aren't within the dimension size of the joined dataset, you get an error.
	// Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"
	OutputFilter *string
	// contains filtered or unexported fields
}

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html) .

type DataQualityAppSpecification added in v0.31.0

type DataQualityAppSpecification struct {

	// The container image that the data quality monitoring job runs.
	//
	// This member is required.
	ImageUri *string

	// The arguments to send to the container that the monitoring job runs.
	ContainerArguments []string

	// The entrypoint for a container used to run a monitoring job.
	ContainerEntrypoint []string

	// Sets the environment variables in the container that the monitoring job runs.
	Environment map[string]string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flattened JSON so that
	// the built-in container can use the converted data. Applicable only for the
	// built-in (first party) containers.
	RecordPreprocessorSourceUri *string
	// contains filtered or unexported fields
}

Information about the container that a data quality monitoring job runs.

type DataQualityBaselineConfig added in v0.31.0

type DataQualityBaselineConfig struct {

	// The name of the job that performs baselining for the data quality monitoring
	// job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource

	// The statistics resource for a monitoring job.
	StatisticsResource *MonitoringStatisticsResource
	// contains filtered or unexported fields
}

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

type DataQualityJobInput added in v0.31.0

type DataQualityJobInput struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput
	// contains filtered or unexported fields
}

The input for the data quality monitoring job. Currently endpoints are supported for input.

type DataSource

type DataSource struct {

	// The file system that is associated with a channel.
	FileSystemDataSource *FileSystemDataSource

	// The S3 location of the data source that is associated with a channel.
	S3DataSource *S3DataSource
	// contains filtered or unexported fields
}

Describes the location of the channel data.

type DataSourceName added in v1.103.0

type DataSourceName string
const (
	DataSourceNameSalesforceGenie DataSourceName = "SalesforceGenie"
	DataSourceNameSnowflake       DataSourceName = "Snowflake"
)

Enum values for DataSourceName

func (DataSourceName) Values added in v1.103.0

func (DataSourceName) Values() []DataSourceName

Values returns all known values for DataSourceName. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DatasetDefinition added in v0.31.0

type DatasetDefinition struct {

	// Configuration for Athena Dataset Definition input.
	AthenaDatasetDefinition *AthenaDatasetDefinition

	// Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).
	DataDistributionType DataDistributionType

	// Whether to use File or Pipe input mode. In File (default) mode, Amazon
	// SageMaker copies the data from the input source onto the local Amazon Elastic
	// Block Store (Amazon EBS) volumes before starting your training algorithm. This
	// is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams
	// input data from the source directly to your algorithm without using the EBS
	// volume.
	InputMode InputMode

	// The local path where you want Amazon SageMaker to download the Dataset
	// Definition inputs to run a processing job. LocalPath is an absolute path to the
	// input data. This is a required parameter when AppManaged is False (default).
	LocalPath *string

	// Configuration for Redshift Dataset Definition input.
	RedshiftDatasetDefinition *RedshiftDatasetDefinition
	// contains filtered or unexported fields
}

Configuration for Dataset Definition inputs. The Dataset Definition input must specify exactly one of either AthenaDatasetDefinition or RedshiftDatasetDefinition types.

type DebugHookConfig

type DebugHookConfig struct {

	// Path to Amazon S3 storage location for metrics and tensors.
	//
	// This member is required.
	S3OutputPath *string

	// Configuration information for Amazon SageMaker Debugger tensor collections. To
	// learn more about how to configure the CollectionConfiguration parameter, see
	// Use the SageMaker and Debugger Configuration API Operations to Create, Update,
	// and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	CollectionConfigurations []CollectionConfiguration

	// Configuration information for the Amazon SageMaker Debugger hook parameters.
	HookParameters map[string]string

	// Path to local storage location for metrics and tensors. Defaults to
	// /opt/ml/output/tensors/ .
	LocalPath *string
	// contains filtered or unexported fields
}

Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html) .

type DebugRuleConfiguration

type DebugRuleConfiguration struct {

	// The name of the rule configuration. It must be unique relative to other rule
	// configuration names.
	//
	// This member is required.
	RuleConfigurationName *string

	// The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
	//
	// This member is required.
	RuleEvaluatorImage *string

	// The instance type to deploy a custom rule for debugging a training job.
	InstanceType ProcessingInstanceType

	// Path to local storage location for output of rules. Defaults to
	// /opt/ml/processing/output/rule/ .
	LocalPath *string

	// Runtime configuration for rule container.
	RuleParameters map[string]string

	// Path to Amazon S3 storage location for rules.
	S3OutputPath *string

	// The size, in GB, of the ML storage volume attached to the processing instance.
	VolumeSizeInGB *int32
	// contains filtered or unexported fields
}

Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html) .

type DebugRuleEvaluationStatus

type DebugRuleEvaluationStatus struct {

	// Timestamp when the rule evaluation status was last modified.
	LastModifiedTime *time.Time

	// The name of the rule configuration.
	RuleConfigurationName *string

	// The Amazon Resource Name (ARN) of the rule evaluation job.
	RuleEvaluationJobArn *string

	// Status of the rule evaluation.
	RuleEvaluationStatus RuleEvaluationStatus

	// Details from the rule evaluation.
	StatusDetails *string
	// contains filtered or unexported fields
}

Information about the status of the rule evaluation.

type DefaultEbsStorageSettings added in v1.120.0

type DefaultEbsStorageSettings struct {

	// The default size of the EBS storage volume for a private space.
	//
	// This member is required.
	DefaultEbsVolumeSizeInGb *int32

	// The maximum size of the EBS storage volume for a private space.
	//
	// This member is required.
	MaximumEbsVolumeSizeInGb *int32
	// contains filtered or unexported fields
}

A collection of default EBS storage settings that applies to private spaces created within a domain or user profile.

type DefaultSpaceSettings added in v1.56.0

type DefaultSpaceSettings struct {

	// The ARN of the execution role for the space.
	ExecutionRole *string

	// The JupyterServer app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The KernelGateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// The security group IDs for the Amazon Virtual Private Cloud that the space uses
	// for communication.
	SecurityGroups []string
	// contains filtered or unexported fields
}

A collection of settings that apply to spaces created in the Domain.

type DefaultSpaceStorageSettings added in v1.120.0

type DefaultSpaceStorageSettings struct {

	// The default EBS storage settings for a private space.
	DefaultEbsStorageSettings *DefaultEbsStorageSettings
	// contains filtered or unexported fields
}

The default storage settings for a private space.

type DeployedImage

type DeployedImage struct {

	// The date and time when the image path for the model resolved to the
	// ResolvedImage
	ResolutionTime *time.Time

	// The specific digest path of the image hosted in this ProductionVariant .
	ResolvedImage *string

	// The image path you specified when you created the model.
	SpecifiedImage *string
	// contains filtered or unexported fields
}

Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html) . If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html) in the Amazon ECR User Guide.

type DeploymentConfig added in v0.31.0

type DeploymentConfig struct {

	// Automatic rollback configuration for handling endpoint deployment failures and
	// recovery.
	AutoRollbackConfiguration *AutoRollbackConfig

	// Update policy for a blue/green deployment. If this update policy is specified,
	// SageMaker creates a new fleet during the deployment while maintaining the old
	// fleet. SageMaker flips traffic to the new fleet according to the specified
	// traffic routing configuration. Only one update policy should be used in the
	// deployment configuration. If no update policy is specified, SageMaker uses a
	// blue/green deployment strategy with all at once traffic shifting by default.
	BlueGreenUpdatePolicy *BlueGreenUpdatePolicy

	// Specifies a rolling deployment strategy for updating a SageMaker endpoint.
	RollingUpdatePolicy *RollingUpdatePolicy
	// contains filtered or unexported fields
}

The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.

type DeploymentRecommendation added in v1.80.0

type DeploymentRecommendation struct {

	// Status of the deployment recommendation. The status NOT_APPLICABLE means that
	// SageMaker is unable to provide a default recommendation for the model using the
	// information provided. If the deployment status is IN_PROGRESS , retry your API
	// call after a few seconds to get a COMPLETED deployment recommendation.
	//
	// This member is required.
	RecommendationStatus RecommendationStatus

	// A list of RealTimeInferenceRecommendation (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RealTimeInferenceRecommendation.html)
	// items.
	RealTimeInferenceRecommendations []RealTimeInferenceRecommendation
	// contains filtered or unexported fields
}

A set of recommended deployment configurations for the model. To get more advanced recommendations, see CreateInferenceRecommendationsJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html) to create an inference recommendation job.

type DeploymentStage added in v1.37.0

type DeploymentStage struct {

	// Configuration of the devices in the stage.
	//
	// This member is required.
	DeviceSelectionConfig *DeviceSelectionConfig

	// The name of the stage.
	//
	// This member is required.
	StageName *string

	// Configuration of the deployment details.
	DeploymentConfig *EdgeDeploymentConfig
	// contains filtered or unexported fields
}

Contains information about a stage in an edge deployment plan.

type DeploymentStageStatusSummary added in v1.37.0

type DeploymentStageStatusSummary struct {

	// Configuration of the deployment details.
	//
	// This member is required.
	DeploymentConfig *EdgeDeploymentConfig

	// General status of the current state.
	//
	// This member is required.
	DeploymentStatus *EdgeDeploymentStatus

	// Configuration of the devices in the stage.
	//
	// This member is required.
	DeviceSelectionConfig *DeviceSelectionConfig

	// The name of the stage.
	//
	// This member is required.
	StageName *string
	// contains filtered or unexported fields
}

Contains information summarizing the deployment stage results.

type DerivedInformation added in v1.104.0

type DerivedInformation struct {

	// The data input configuration that SageMaker Neo automatically derived for the
	// model. When SageMaker Neo derives this information, you don't need to specify
	// the data input configuration when you create a compilation job.
	DerivedDataInputConfig *string
	// contains filtered or unexported fields
}

Information that SageMaker Neo automatically derived about the model.

type DesiredWeightAndCapacity

type DesiredWeightAndCapacity struct {

	// The name of the variant to update.
	//
	// This member is required.
	VariantName *string

	// The variant's capacity.
	DesiredInstanceCount *int32

	// The variant's weight.
	DesiredWeight *float32

	// Specifies the serverless update concurrency configuration for an endpoint
	// variant.
	ServerlessUpdateConfig *ProductionVariantServerlessUpdateConfig
	// contains filtered or unexported fields
}

Specifies weight and capacity values for a production variant.

type DetailedAlgorithmStatus

type DetailedAlgorithmStatus string
const (
	DetailedAlgorithmStatusNotStarted DetailedAlgorithmStatus = "NotStarted"
	DetailedAlgorithmStatusInProgress DetailedAlgorithmStatus = "InProgress"
	DetailedAlgorithmStatusCompleted  DetailedAlgorithmStatus = "Completed"
	DetailedAlgorithmStatusFailed     DetailedAlgorithmStatus = "Failed"
)

Enum values for DetailedAlgorithmStatus

func (DetailedAlgorithmStatus) Values added in v0.29.0

Values returns all known values for DetailedAlgorithmStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DetailedModelPackageStatus

type DetailedModelPackageStatus string
const (
	DetailedModelPackageStatusNotStarted DetailedModelPackageStatus = "NotStarted"
	DetailedModelPackageStatusInProgress DetailedModelPackageStatus = "InProgress"
	DetailedModelPackageStatusCompleted  DetailedModelPackageStatus = "Completed"
	DetailedModelPackageStatusFailed     DetailedModelPackageStatus = "Failed"
)

Enum values for DetailedModelPackageStatus

func (DetailedModelPackageStatus) Values added in v0.29.0

Values returns all known values for DetailedModelPackageStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Device added in v0.31.0

type Device struct {

	// The name of the device.
	//
	// This member is required.
	DeviceName *string

	// Description of the device.
	Description *string

	// Amazon Web Services Internet of Things (IoT) object name.
	IotThingName *string
	// contains filtered or unexported fields
}

Information of a particular device.

type DeviceDeploymentStatus added in v1.37.0

type DeviceDeploymentStatus string
const (
	DeviceDeploymentStatusReadyToDeploy DeviceDeploymentStatus = "READYTODEPLOY"
	DeviceDeploymentStatusInProgress    DeviceDeploymentStatus = "INPROGRESS"
	DeviceDeploymentStatusDeployed      DeviceDeploymentStatus = "DEPLOYED"
	DeviceDeploymentStatusFailed        DeviceDeploymentStatus = "FAILED"
	DeviceDeploymentStatusStopping      DeviceDeploymentStatus = "STOPPING"
	DeviceDeploymentStatusStopped       DeviceDeploymentStatus = "STOPPED"
)

Enum values for DeviceDeploymentStatus

func (DeviceDeploymentStatus) Values added in v1.37.0

Values returns all known values for DeviceDeploymentStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DeviceDeploymentSummary added in v1.37.0

type DeviceDeploymentSummary struct {

	// The ARN of the device.
	//
	// This member is required.
	DeviceArn *string

	// The name of the device.
	//
	// This member is required.
	DeviceName *string

	// The ARN of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanArn *string

	// The name of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanName *string

	// The name of the stage in the edge deployment plan.
	//
	// This member is required.
	StageName *string

	// The name of the deployed stage.
	DeployedStageName *string

	// The time when the deployment on the device started.
	DeploymentStartTime *time.Time

	// The description of the device.
	Description *string

	// The deployment status of the device.
	DeviceDeploymentStatus DeviceDeploymentStatus

	// The detailed error message for the deployoment status result.
	DeviceDeploymentStatusMessage *string

	// The name of the fleet to which the device belongs to.
	DeviceFleetName *string
	// contains filtered or unexported fields
}

Contains information summarizing device details and deployment status.

type DeviceFleetSummary added in v0.31.0

type DeviceFleetSummary struct {

	// Amazon Resource Name (ARN) of the device fleet.
	//
	// This member is required.
	DeviceFleetArn *string

	// Name of the device fleet.
	//
	// This member is required.
	DeviceFleetName *string

	// Timestamp of when the device fleet was created.
	CreationTime *time.Time

	// Timestamp of when the device fleet was last updated.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

Summary of the device fleet.

type DeviceSelectionConfig added in v1.37.0

type DeviceSelectionConfig struct {

	// Type of device subsets to deploy to the current stage.
	//
	// This member is required.
	DeviceSubsetType DeviceSubsetType

	// A filter to select devices with names containing this name.
	DeviceNameContains *string

	// List of devices chosen to deploy.
	DeviceNames []string

	// Percentage of devices in the fleet to deploy to the current stage.
	Percentage *int32
	// contains filtered or unexported fields
}

Contains information about the configurations of selected devices.

type DeviceStats added in v0.31.0

type DeviceStats struct {

	// The number of devices connected with a heartbeat.
	//
	// This member is required.
	ConnectedDeviceCount *int64

	// The number of registered devices.
	//
	// This member is required.
	RegisteredDeviceCount *int64
	// contains filtered or unexported fields
}

Status of devices.

type DeviceSubsetType added in v1.37.0

type DeviceSubsetType string
const (
	DeviceSubsetTypePercentage   DeviceSubsetType = "PERCENTAGE"
	DeviceSubsetTypeSelection    DeviceSubsetType = "SELECTION"
	DeviceSubsetTypeNameContains DeviceSubsetType = "NAMECONTAINS"
)

Enum values for DeviceSubsetType

func (DeviceSubsetType) Values added in v1.37.0

Values returns all known values for DeviceSubsetType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DeviceSummary added in v0.31.0

type DeviceSummary struct {

	// Amazon Resource Name (ARN) of the device.
	//
	// This member is required.
	DeviceArn *string

	// The unique identifier of the device.
	//
	// This member is required.
	DeviceName *string

	// Edge Manager agent version.
	AgentVersion *string

	// A description of the device.
	Description *string

	// The name of the fleet the device belongs to.
	DeviceFleetName *string

	// The Amazon Web Services Internet of Things (IoT) object thing name associated
	// with the device..
	IotThingName *string

	// The last heartbeat received from the device.
	LatestHeartbeat *time.Time

	// Models on the device.
	Models []EdgeModelSummary

	// The timestamp of the last registration or de-reregistration.
	RegistrationTime *time.Time
	// contains filtered or unexported fields
}

Summary of the device.

type DirectDeploySettings added in v1.111.0

type DirectDeploySettings struct {

	// Describes whether model deployment permissions are enabled or disabled in the
	// Canvas application.
	Status FeatureStatus
	// contains filtered or unexported fields
}

The model deployment settings for the SageMaker Canvas application. In order to enable model deployment for Canvas, the SageMaker Domain's or user profile's Amazon Web Services IAM execution role must have the AmazonSageMakerCanvasDirectDeployAccess policy attached. You can also turn on model deployment permissions through the SageMaker Domain's or user profile's settings in the SageMaker console.

type DirectInternetAccess

type DirectInternetAccess string
const (
	DirectInternetAccessEnabled  DirectInternetAccess = "Enabled"
	DirectInternetAccessDisabled DirectInternetAccess = "Disabled"
)

Enum values for DirectInternetAccess

func (DirectInternetAccess) Values added in v0.29.0

Values returns all known values for DirectInternetAccess. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Direction added in v1.20.0

type Direction string
const (
	DirectionBoth        Direction = "Both"
	DirectionAscendants  Direction = "Ascendants"
	DirectionDescendants Direction = "Descendants"
)

Enum values for Direction

func (Direction) Values added in v1.20.0

func (Direction) Values() []Direction

Values returns all known values for Direction. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DomainDetails

type DomainDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The domain's Amazon Resource Name (ARN).
	DomainArn *string

	// The domain ID.
	DomainId *string

	// The domain name.
	DomainName *string

	// The last modified time.
	LastModifiedTime *time.Time

	// The status.
	Status DomainStatus

	// The domain's URL.
	Url *string
	// contains filtered or unexported fields
}

The domain's details.

type DomainSettings added in v1.18.0

type DomainSettings struct {

	// The configuration for attaching a SageMaker user profile name to the execution
	// role as a sts:SourceIdentity key (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html)
	// .
	ExecutionRoleIdentityConfig ExecutionRoleIdentityConfig

	// A collection of settings that configure the RStudioServerPro Domain-level app.
	RStudioServerProDomainSettings *RStudioServerProDomainSettings

	// The security groups for the Amazon Virtual Private Cloud that the Domain uses
	// for communication between Domain-level apps and user apps.
	SecurityGroupIds []string
	// contains filtered or unexported fields
}

A collection of settings that apply to the SageMaker Domain . These settings are specified through the CreateDomain API call.

type DomainSettingsForUpdate added in v1.18.0

type DomainSettingsForUpdate struct {

	// The configuration for attaching a SageMaker user profile name to the execution
	// role as a sts:SourceIdentity key (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html)
	// . This configuration can only be modified if there are no apps in the InService
	// or Pending state.
	ExecutionRoleIdentityConfig ExecutionRoleIdentityConfig

	// A collection of RStudioServerPro Domain-level app settings to update. A single
	// RStudioServerPro application is created for a domain.
	RStudioServerProDomainSettingsForUpdate *RStudioServerProDomainSettingsForUpdate

	// The security groups for the Amazon Virtual Private Cloud that the Domain uses
	// for communication between Domain-level apps and user apps.
	SecurityGroupIds []string
	// contains filtered or unexported fields
}

A collection of Domain configuration settings to update.

type DomainStatus

type DomainStatus string
const (
	DomainStatusDeleting     DomainStatus = "Deleting"
	DomainStatusFailed       DomainStatus = "Failed"
	DomainStatusInService    DomainStatus = "InService"
	DomainStatusPending      DomainStatus = "Pending"
	DomainStatusUpdating     DomainStatus = "Updating"
	DomainStatusUpdateFailed DomainStatus = "Update_Failed"
	DomainStatusDeleteFailed DomainStatus = "Delete_Failed"
)

Enum values for DomainStatus

func (DomainStatus) Values added in v0.29.0

func (DomainStatus) Values() []DomainStatus

Values returns all known values for DomainStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type DriftCheckBaselines added in v1.20.0

type DriftCheckBaselines struct {

	// Represents the drift check bias baselines that can be used when the model
	// monitor is set using the model package.
	Bias *DriftCheckBias

	// Represents the drift check explainability baselines that can be used when the
	// model monitor is set using the model package.
	Explainability *DriftCheckExplainability

	// Represents the drift check model data quality baselines that can be used when
	// the model monitor is set using the model package.
	ModelDataQuality *DriftCheckModelDataQuality

	// Represents the drift check model quality baselines that can be used when the
	// model monitor is set using the model package.
	ModelQuality *DriftCheckModelQuality
	// contains filtered or unexported fields
}

Represents the drift check baselines that can be used when the model monitor is set using the model package.

type DriftCheckBias added in v1.20.0

type DriftCheckBias struct {

	// The bias config file for a model.
	ConfigFile *FileSource

	// The post-training constraints.
	PostTrainingConstraints *MetricsSource

	// The pre-training constraints.
	PreTrainingConstraints *MetricsSource
	// contains filtered or unexported fields
}

Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

type DriftCheckExplainability added in v1.20.0

type DriftCheckExplainability struct {

	// The explainability config file for the model.
	ConfigFile *FileSource

	// The drift check explainability constraints.
	Constraints *MetricsSource
	// contains filtered or unexported fields
}

Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

type DriftCheckModelDataQuality added in v1.20.0

type DriftCheckModelDataQuality struct {

	// The drift check model data quality constraints.
	Constraints *MetricsSource

	// The drift check model data quality statistics.
	Statistics *MetricsSource
	// contains filtered or unexported fields
}

Represents the drift check data quality baselines that can be used when the model monitor is set using the model package.

type DriftCheckModelQuality added in v1.20.0

type DriftCheckModelQuality struct {

	// The drift check model quality constraints.
	Constraints *MetricsSource

	// The drift check model quality statistics.
	Statistics *MetricsSource
	// contains filtered or unexported fields
}

Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

type DynamicScalingConfiguration added in v1.98.0

type DynamicScalingConfiguration struct {

	// The recommended maximum capacity to specify for your autoscaling policy.
	MaxCapacity *int32

	// The recommended minimum capacity to specify for your autoscaling policy.
	MinCapacity *int32

	// The recommended scale in cooldown time for your autoscaling policy.
	ScaleInCooldown *int32

	// The recommended scale out cooldown time for your autoscaling policy.
	ScaleOutCooldown *int32

	// An object of the scaling policies for each metric.
	ScalingPolicies []ScalingPolicy
	// contains filtered or unexported fields
}

An object with the recommended values for you to specify when creating an autoscaling policy.

type EFSFileSystem added in v1.120.0

type EFSFileSystem struct {

	// The ID of your Amazon EFS file system.
	//
	// This member is required.
	FileSystemId *string
	// contains filtered or unexported fields
}

A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.

type EFSFileSystemConfig added in v1.120.0

type EFSFileSystemConfig struct {

	// The ID of your Amazon EFS file system.
	//
	// This member is required.
	FileSystemId *string

	// The path to the file system directory that is accessible in Amazon SageMaker
	// Studio. Permitted users can access only this directory and below.
	FileSystemPath *string
	// contains filtered or unexported fields
}

The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker Domain.

type EMRStepMetadata added in v1.22.0

type EMRStepMetadata struct {

	// The identifier of the EMR cluster.
	ClusterId *string

	// The path to the log file where the cluster step's failure root cause is
	// recorded.
	LogFilePath *string

	// The identifier of the EMR cluster step.
	StepId *string

	// The name of the EMR cluster step.
	StepName *string
	// contains filtered or unexported fields
}

The configurations and outcomes of an Amazon EMR step execution.

type EbsStorageSettings added in v1.120.0

type EbsStorageSettings struct {

	// The size of an EBS storage volume for a private space.
	//
	// This member is required.
	EbsVolumeSizeInGb *int32
	// contains filtered or unexported fields
}

A collection of EBS storage settings that applies to private spaces.

type Edge added in v1.20.0

type Edge struct {

	// The type of the Association(Edge) between the source and destination. For
	// example ContributedTo , Produced , or DerivedFrom .
	AssociationType AssociationEdgeType

	// The Amazon Resource Name (ARN) of the destination lineage entity of the
	// directed edge.
	DestinationArn *string

	// The Amazon Resource Name (ARN) of the source lineage entity of the directed
	// edge.
	SourceArn *string
	// contains filtered or unexported fields
}

A directed edge connecting two lineage entities.

type EdgeDeploymentConfig added in v1.37.0

type EdgeDeploymentConfig struct {

	// Toggle that determines whether to rollback to previous configuration if the
	// current deployment fails. By default this is turned on. You may turn this off if
	// you want to investigate the errors yourself.
	//
	// This member is required.
	FailureHandlingPolicy FailureHandlingPolicy
	// contains filtered or unexported fields
}

Contains information about the configuration of a deployment.

type EdgeDeploymentModelConfig added in v1.37.0

type EdgeDeploymentModelConfig struct {

	// The edge packaging job associated with this deployment.
	//
	// This member is required.
	EdgePackagingJobName *string

	// The name the device application uses to reference this model.
	//
	// This member is required.
	ModelHandle *string
	// contains filtered or unexported fields
}

Contains information about the configuration of a model in a deployment.

type EdgeDeploymentPlanSummary added in v1.37.0

type EdgeDeploymentPlanSummary struct {

	// The name of the device fleet used for the deployment.
	//
	// This member is required.
	DeviceFleetName *string

	// The number of edge devices that failed the deployment.
	//
	// This member is required.
	EdgeDeploymentFailed *int32

	// The number of edge devices yet to pick up the deployment, or in progress.
	//
	// This member is required.
	EdgeDeploymentPending *int32

	// The ARN of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanArn *string

	// The name of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanName *string

	// The number of edge devices with the successful deployment.
	//
	// This member is required.
	EdgeDeploymentSuccess *int32

	// The time when the edge deployment plan was created.
	CreationTime *time.Time

	// The time when the edge deployment plan was last updated.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

Contains information summarizing an edge deployment plan.

type EdgeDeploymentStatus added in v1.37.0

type EdgeDeploymentStatus struct {

	// The number of edge devices that failed the deployment in current stage.
	//
	// This member is required.
	EdgeDeploymentFailedInStage *int32

	// The number of edge devices yet to pick up the deployment in current stage, or
	// in progress.
	//
	// This member is required.
	EdgeDeploymentPendingInStage *int32

	// The number of edge devices with the successful deployment in the current stage.
	//
	// This member is required.
	EdgeDeploymentSuccessInStage *int32

	// The general status of the current stage.
	//
	// This member is required.
	StageStatus StageStatus

	// The time when the deployment API started.
	EdgeDeploymentStageStartTime *time.Time

	// A detailed message about deployment status in current stage.
	EdgeDeploymentStatusMessage *string
	// contains filtered or unexported fields
}

Contains information summarizing the deployment stage results.

type EdgeModel added in v0.31.0

type EdgeModel struct {

	// The name of the model.
	//
	// This member is required.
	ModelName *string

	// The model version.
	//
	// This member is required.
	ModelVersion *string

	// The timestamp of the last inference that was made.
	LatestInference *time.Time

	// The timestamp of the last data sample taken.
	LatestSampleTime *time.Time
	// contains filtered or unexported fields
}

The model on the edge device.

type EdgeModelStat added in v0.31.0

type EdgeModelStat struct {

	// The number of devices that have this model version, a heart beat, and are
	// currently running.
	//
	// This member is required.
	ActiveDeviceCount *int64

	// The number of devices that have this model version and have a heart beat.
	//
	// This member is required.
	ConnectedDeviceCount *int64

	// The name of the model.
	//
	// This member is required.
	ModelName *string

	// The model version.
	//
	// This member is required.
	ModelVersion *string

	// The number of devices that have this model version and do not have a heart beat.
	//
	// This member is required.
	OfflineDeviceCount *int64

	// The number of devices with this model version and are producing sample data.
	//
	// This member is required.
	SamplingDeviceCount *int64
	// contains filtered or unexported fields
}

Status of edge devices with this model.

type EdgeModelSummary added in v0.31.0

type EdgeModelSummary struct {

	// The name of the model.
	//
	// This member is required.
	ModelName *string

	// The version model.
	//
	// This member is required.
	ModelVersion *string
	// contains filtered or unexported fields
}

Summary of model on edge device.

type EdgeOutputConfig added in v0.31.0

type EdgeOutputConfig struct {

	// The Amazon Simple Storage (S3) bucker URI.
	//
	// This member is required.
	S3OutputLocation *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data on the storage volume after
	// compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the
	// default KMS key for Amazon S3 for your role's account.
	KmsKeyId *string

	// The configuration used to create deployment artifacts. Specify configuration
	// options with a JSON string. The available configuration options for each type
	// are:
	//   - ComponentName (optional) - Name of the GreenGrass V2 component. If not
	//   specified, the default name generated consists of "SagemakerEdgeManager" and the
	//   name of your SageMaker Edge Manager packaging job.
	//   - ComponentDescription (optional) - Description of the component.
	//   - ComponentVersion (optional) - The version of the component. Amazon Web
	//   Services IoT Greengrass uses semantic versions for components. Semantic versions
	//   follow a major.minor.patch number system. For example, version 1.0.0 represents
	//   the first major release for a component. For more information, see the
	//   semantic version specification (https://semver.org/) .
	//   - PlatformOS (optional) - The name of the operating system for the platform.
	//   Supported platforms include Windows and Linux.
	//   - PlatformArchitecture (optional) - The processor architecture for the
	//   platform. Supported architectures Windows include: Windows32_x86, Windows64_x64.
	//   Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
	PresetDeploymentConfig *string

	// The deployment type SageMaker Edge Manager will create. Currently only supports
	// Amazon Web Services IoT Greengrass Version 2 components.
	PresetDeploymentType EdgePresetDeploymentType
	// contains filtered or unexported fields
}

The output configuration.

type EdgePackagingJobStatus added in v0.31.0

type EdgePackagingJobStatus string
const (
	EdgePackagingJobStatusStarting   EdgePackagingJobStatus = "STARTING"
	EdgePackagingJobStatusInProgress EdgePackagingJobStatus = "INPROGRESS"
	EdgePackagingJobStatusCompleted  EdgePackagingJobStatus = "COMPLETED"
	EdgePackagingJobStatusFailed     EdgePackagingJobStatus = "FAILED"
	EdgePackagingJobStatusStopping   EdgePackagingJobStatus = "STOPPING"
	EdgePackagingJobStatusStopped    EdgePackagingJobStatus = "STOPPED"
)

Enum values for EdgePackagingJobStatus

func (EdgePackagingJobStatus) Values added in v0.31.0

Values returns all known values for EdgePackagingJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type EdgePackagingJobSummary added in v0.31.0

type EdgePackagingJobSummary struct {

	// The Amazon Resource Name (ARN) of the edge packaging job.
	//
	// This member is required.
	EdgePackagingJobArn *string

	// The name of the edge packaging job.
	//
	// This member is required.
	EdgePackagingJobName *string

	// The status of the edge packaging job.
	//
	// This member is required.
	EdgePackagingJobStatus EdgePackagingJobStatus

	// The name of the SageMaker Neo compilation job.
	CompilationJobName *string

	// The timestamp of when the job was created.
	CreationTime *time.Time

	// The timestamp of when the edge packaging job was last updated.
	LastModifiedTime *time.Time

	// The name of the model.
	ModelName *string

	// The version of the model.
	ModelVersion *string
	// contains filtered or unexported fields
}

Summary of edge packaging job.

type EdgePresetDeploymentOutput added in v1.8.0

type EdgePresetDeploymentOutput struct {

	// The deployment type created by SageMaker Edge Manager. Currently only supports
	// Amazon Web Services IoT Greengrass Version 2 components.
	//
	// This member is required.
	Type EdgePresetDeploymentType

	// The Amazon Resource Name (ARN) of the generated deployable resource.
	Artifact *string

	// The status of the deployable resource.
	Status EdgePresetDeploymentStatus

	// Returns a message describing the status of the deployed resource.
	StatusMessage *string
	// contains filtered or unexported fields
}

The output of a SageMaker Edge Manager deployable resource.

type EdgePresetDeploymentStatus added in v1.8.0

type EdgePresetDeploymentStatus string
const (
	EdgePresetDeploymentStatusCompleted EdgePresetDeploymentStatus = "COMPLETED"
	EdgePresetDeploymentStatusFailed    EdgePresetDeploymentStatus = "FAILED"
)

Enum values for EdgePresetDeploymentStatus

func (EdgePresetDeploymentStatus) Values added in v1.8.0

Values returns all known values for EdgePresetDeploymentStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type EdgePresetDeploymentType added in v1.8.0

type EdgePresetDeploymentType string
const (
	EdgePresetDeploymentTypeGreengrassV2Component EdgePresetDeploymentType = "GreengrassV2Component"
)

Enum values for EdgePresetDeploymentType

func (EdgePresetDeploymentType) Values added in v1.8.0

Values returns all known values for EdgePresetDeploymentType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Endpoint added in v0.31.0

type Endpoint struct {

	// The time that the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The endpoint configuration associated with the endpoint.
	//
	// This member is required.
	EndpointConfigName *string

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The status of the endpoint.
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// The last time the endpoint was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The currently active data capture configuration used by your Endpoint.
	DataCaptureConfig *DataCaptureConfigSummary

	// If the endpoint failed, the reason it failed.
	FailureReason *string

	// A list of monitoring schedules for the endpoint. For information about model
	// monitoring, see Amazon SageMaker Model Monitor (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html)
	// .
	MonitoringSchedules []MonitoringSchedule

	// A list of the production variants hosted on the endpoint. Each production
	// variant is a model.
	ProductionVariants []ProductionVariantSummary

	// A list of the shadow variants hosted on the endpoint. Each shadow variant is a
	// model in shadow mode with production traffic replicated from the production
	// variant.
	ShadowProductionVariants []ProductionVariantSummary

	// A list of the tags associated with the endpoint. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag
	// contains filtered or unexported fields
}

A hosted endpoint for real-time inference.

type EndpointConfigSortKey

type EndpointConfigSortKey string
const (
	EndpointConfigSortKeyName         EndpointConfigSortKey = "Name"
	EndpointConfigSortKeyCreationTime EndpointConfigSortKey = "CreationTime"
)

Enum values for EndpointConfigSortKey

func (EndpointConfigSortKey) Values added in v0.29.0

Values returns all known values for EndpointConfigSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type EndpointConfigSummary

type EndpointConfigSummary struct {

	// A timestamp that shows when the endpoint configuration was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint configuration.
	//
	// This member is required.
	EndpointConfigArn *string

	// The name of the endpoint configuration.
	//
	// This member is required.
	EndpointConfigName *string
	// contains filtered or unexported fields
}

Provides summary information for an endpoint configuration.

type EndpointInfo added in v1.49.0

type EndpointInfo struct {

	// The name of a customer's endpoint.
	//
	// This member is required.
	EndpointName *string
	// contains filtered or unexported fields
}

Details about a customer endpoint that was compared in an Inference Recommender job.

type EndpointInput

type EndpointInput struct {

	// An endpoint in customer's account which has enabled DataCaptureConfig enabled.
	//
	// This member is required.
	EndpointName *string

	// Path to the filesystem where the endpoint data is available to the container.
	//
	// This member is required.
	LocalPath *string

	// If specified, monitoring jobs substract this time from the end time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	EndTimeOffset *string

	// The attributes of the input data to exclude from the analysis.
	ExcludeFeaturesAttribute *string

	// The attributes of the input data that are the input features.
	FeaturesAttribute *string

	// The attribute of the input data that represents the ground truth label.
	InferenceAttribute *string

	// In a classification problem, the attribute that represents the class
	// probability.
	ProbabilityAttribute *string

	// The threshold for the class probability to be evaluated as a positive result.
	ProbabilityThresholdAttribute *float64

	// Whether input data distributed in Amazon S3 is fully replicated or sharded by
	// an Amazon S3 key. Defaults to FullyReplicated
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether the Pipe or File is used as the input mode for transferring data for
	// the monitoring job. Pipe mode is recommended for large datasets. File mode is
	// useful for small files that fit in memory. Defaults to File .
	S3InputMode ProcessingS3InputMode

	// If specified, monitoring jobs substract this time from the start time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	StartTimeOffset *string
	// contains filtered or unexported fields
}

Input object for the endpoint

type EndpointInputConfiguration added in v1.20.0

type EndpointInputConfiguration struct {

	// The parameter you want to benchmark against.
	EnvironmentParameterRanges *EnvironmentParameterRanges

	// The inference specification name in the model package version.
	InferenceSpecificationName *string

	// The instance types to use for the load test.
	InstanceType ProductionVariantInstanceType

	// Specifies the serverless configuration for an endpoint variant.
	ServerlessConfig *ProductionVariantServerlessConfig
	// contains filtered or unexported fields
}

The endpoint configuration for the load test.

type EndpointMetadata added in v1.56.0

type EndpointMetadata struct {

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The name of the endpoint configuration.
	EndpointConfigName *string

	// The status of the endpoint. For possible values of the status of an endpoint,
	// see EndpointSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_EndpointSummary.html)
	// .
	EndpointStatus EndpointStatus

	// If the status of the endpoint is Failed , or the status is InService but update
	// operation fails, this provides the reason why it failed.
	FailureReason *string
	// contains filtered or unexported fields
}

The metadata of the endpoint.

type EndpointOutputConfiguration added in v1.20.0

type EndpointOutputConfiguration struct {

	// The name of the endpoint made during a recommendation job.
	//
	// This member is required.
	EndpointName *string

	// The name of the production variant (deployed model) made during a
	// recommendation job.
	//
	// This member is required.
	VariantName *string

	// The number of instances recommended to launch initially.
	InitialInstanceCount *int32

	// The instance type recommended by Amazon SageMaker Inference Recommender.
	InstanceType ProductionVariantInstanceType

	// Specifies the serverless configuration for an endpoint variant.
	ServerlessConfig *ProductionVariantServerlessConfig
	// contains filtered or unexported fields
}

The endpoint configuration made by Inference Recommender during a recommendation job.

type EndpointPerformance added in v1.49.0

type EndpointPerformance struct {

	// Details about a customer endpoint that was compared in an Inference Recommender
	// job.
	//
	// This member is required.
	EndpointInfo *EndpointInfo

	// The metrics for an existing endpoint.
	//
	// This member is required.
	Metrics *InferenceMetrics
	// contains filtered or unexported fields
}

The performance results from running an Inference Recommender job on an existing endpoint.

type EndpointSortKey

type EndpointSortKey string
const (
	EndpointSortKeyName         EndpointSortKey = "Name"
	EndpointSortKeyCreationTime EndpointSortKey = "CreationTime"
	EndpointSortKeyStatus       EndpointSortKey = "Status"
)

Enum values for EndpointSortKey

func (EndpointSortKey) Values added in v0.29.0

func (EndpointSortKey) Values() []EndpointSortKey

Values returns all known values for EndpointSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type EndpointStatus

type EndpointStatus string
const (
	EndpointStatusOutOfService         EndpointStatus = "OutOfService"
	EndpointStatusCreating             EndpointStatus = "Creating"
	EndpointStatusUpdating             EndpointStatus = "Updating"
	EndpointStatusSystemUpdating       EndpointStatus = "SystemUpdating"
	EndpointStatusRollingBack          EndpointStatus = "RollingBack"
	EndpointStatusInService            EndpointStatus = "InService"
	EndpointStatusDeleting             EndpointStatus = "Deleting"
	EndpointStatusFailed               EndpointStatus = "Failed"
	EndpointStatusUpdateRollbackFailed EndpointStatus = "UpdateRollbackFailed"
)

Enum values for EndpointStatus

func (EndpointStatus) Values added in v0.29.0

func (EndpointStatus) Values() []EndpointStatus

Values returns all known values for EndpointStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type EndpointSummary

type EndpointSummary struct {

	// A timestamp that shows when the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The status of the endpoint.
	//   - OutOfService : Endpoint is not available to take incoming requests.
	//   - Creating : CreateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html)
	//   is executing.
	//   - Updating : UpdateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
	//   or UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
	//   is executing.
	//   - SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or
	//   deleted or re-scaled until it has completed. This maintenance operation does not
	//   change any customer-specified values such as VPC config, KMS encryption, model,
	//   instance type, or instance count.
	//   - RollingBack : Endpoint fails to scale up or down or change its variant
	//   weight and is in the process of rolling back to its previous configuration. Once
	//   the rollback completes, endpoint returns to an InService status. This
	//   transitional status only applies to an endpoint that has autoscaling enabled and
	//   is undergoing variant weight or capacity changes as part of an
	//   UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
	//   call or when the UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
	//   operation is called explicitly.
	//   - InService : Endpoint is available to process incoming requests.
	//   - Deleting : DeleteEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html)
	//   is executing.
	//   - Failed : Endpoint could not be created, updated, or re-scaled. Use
	//   DescribeEndpointOutput$FailureReason for information about the failure.
	//   DeleteEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html)
	//   is the only operation that can be performed on a failed endpoint.
	// To get a list of endpoints with a specified status, use the StatusEquals filter
	// with a call to ListEndpoints (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpoints.html)
	// .
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// A timestamp that shows when the endpoint was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

Provides summary information for an endpoint.

type EnvironmentParameter added in v1.20.0

type EnvironmentParameter struct {

	// The environment key suggested by the Amazon SageMaker Inference Recommender.
	//
	// This member is required.
	Key *string

	// The value suggested by the Amazon SageMaker Inference Recommender.
	//
	// This member is required.
	Value *string

	// The value type suggested by the Amazon SageMaker Inference Recommender.
	//
	// This member is required.
	ValueType *string
	// contains filtered or unexported fields
}

A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

type EnvironmentParameterRanges added in v1.20.0

type EnvironmentParameterRanges struct {

	// Specified a list of parameters for each category.
	CategoricalParameterRanges []CategoricalParameter
	// contains filtered or unexported fields
}

Specifies the range of environment parameters

type ExecutionRoleIdentityConfig added in v1.41.0

type ExecutionRoleIdentityConfig string
const (
	ExecutionRoleIdentityConfigUserProfileName ExecutionRoleIdentityConfig = "USER_PROFILE_NAME"
	ExecutionRoleIdentityConfigDisabled        ExecutionRoleIdentityConfig = "DISABLED"
)

Enum values for ExecutionRoleIdentityConfig

func (ExecutionRoleIdentityConfig) Values added in v1.41.0

Values returns all known values for ExecutionRoleIdentityConfig. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ExecutionStatus

type ExecutionStatus string
const (
	ExecutionStatusPending                 ExecutionStatus = "Pending"
	ExecutionStatusCompleted               ExecutionStatus = "Completed"
	ExecutionStatusCompletedWithViolations ExecutionStatus = "CompletedWithViolations"
	ExecutionStatusInProgress              ExecutionStatus = "InProgress"
	ExecutionStatusFailed                  ExecutionStatus = "Failed"
	ExecutionStatusStopping                ExecutionStatus = "Stopping"
	ExecutionStatusStopped                 ExecutionStatus = "Stopped"
)

Enum values for ExecutionStatus

func (ExecutionStatus) Values added in v0.29.0

func (ExecutionStatus) Values() []ExecutionStatus

Values returns all known values for ExecutionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Experiment

type Experiment struct {

	// Who created the experiment.
	CreatedBy *UserContext

	// When the experiment was created.
	CreationTime *time.Time

	// The description of the experiment.
	Description *string

	// The name of the experiment as displayed. If DisplayName isn't specified,
	// ExperimentName is displayed.
	DisplayName *string

	// The Amazon Resource Name (ARN) of the experiment.
	ExperimentArn *string

	// The name of the experiment.
	ExperimentName *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// When the experiment was last modified.
	LastModifiedTime *time.Time

	// The source of the experiment.
	Source *ExperimentSource

	// The list of tags that are associated with the experiment. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
	// API to search on the tags.
	Tags []Tag
	// contains filtered or unexported fields
}

The properties of an experiment as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API.

type ExperimentConfig

type ExperimentConfig struct {

	// The name of an existing experiment to associate with the trial component.
	ExperimentName *string

	// The name of the experiment run to associate with the trial component.
	RunName *string

	// The display name for the trial component. If this key isn't specified, the
	// display name is the trial component name.
	TrialComponentDisplayName *string

	// The name of an existing trial to associate the trial component with. If not
	// specified, a new trial is created.
	TrialName *string
	// contains filtered or unexported fields
}

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

type ExperimentSource

type ExperimentSource struct {

	// The Amazon Resource Name (ARN) of the source.
	//
	// This member is required.
	SourceArn *string

	// The source type.
	SourceType *string
	// contains filtered or unexported fields
}

The source of the experiment.

type ExperimentSummary

type ExperimentSummary struct {

	// When the experiment was created.
	CreationTime *time.Time

	// The name of the experiment as displayed. If DisplayName isn't specified,
	// ExperimentName is displayed.
	DisplayName *string

	// The Amazon Resource Name (ARN) of the experiment.
	ExperimentArn *string

	// The name of the experiment.
	ExperimentName *string

	// The source of the experiment.
	ExperimentSource *ExperimentSource

	// When the experiment was last modified.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeExperiment.html) API and provide the ExperimentName .

type Explainability added in v0.31.0

type Explainability struct {

	// The explainability report for a model.
	Report *MetricsSource
	// contains filtered or unexported fields
}

Contains explainability metrics for a model.

type ExplainerConfig added in v1.46.0

type ExplainerConfig struct {

	// A member of ExplainerConfig that contains configuration parameters for the
	// SageMaker Clarify explainer.
	ClarifyExplainerConfig *ClarifyExplainerConfig
	// contains filtered or unexported fields
}

A parameter to activate explainers.

type FailStepMetadata added in v1.24.0

type FailStepMetadata struct {

	// A message that you define and then is processed and rendered by the Fail step
	// when the error occurs.
	ErrorMessage *string
	// contains filtered or unexported fields
}

The container for the metadata for Fail step.

type FailureHandlingPolicy added in v1.37.0

type FailureHandlingPolicy string
const (
	FailureHandlingPolicyRollbackOnFailure FailureHandlingPolicy = "ROLLBACK_ON_FAILURE"
	FailureHandlingPolicyDoNothing         FailureHandlingPolicy = "DO_NOTHING"
)

Enum values for FailureHandlingPolicy

func (FailureHandlingPolicy) Values added in v1.37.0

Values returns all known values for FailureHandlingPolicy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FeatureDefinition added in v0.31.0

type FeatureDefinition struct {

	// Configuration for your collection.
	CollectionConfig CollectionConfig

	// A grouping of elements where each element within the collection must have the
	// same feature type ( String , Integral , or Fractional ).
	//   - List : An ordered collection of elements.
	//   - Set : An unordered collection of unique elements.
	//   - Vector : A specialized list that represents a fixed-size array of elements.
	//   The vector dimension is determined by you. Must have elements with fractional
	//   feature types.
	CollectionType CollectionType

	// The name of a feature. The type must be a string. FeatureName cannot be any of
	// the following: is_deleted , write_time , api_invocation_time .
	FeatureName *string

	// The value type of a feature. Valid values are Integral, Fractional, or String.
	FeatureType FeatureType
	// contains filtered or unexported fields
}

A list of features. You must include FeatureName and FeatureType . Valid feature FeatureType s are Integral , Fractional and String .

type FeatureGroup added in v0.31.0

type FeatureGroup struct {

	// The time a FeatureGroup was created.
	CreationTime *time.Time

	// A free form description of a FeatureGroup .
	Description *string

	// The name of the feature that stores the EventTime of a Record in a FeatureGroup
	// . A EventTime is point in time when a new event occurs that corresponds to the
	// creation or update of a Record in FeatureGroup . All Records in the FeatureGroup
	// must have a corresponding EventTime .
	EventTimeFeatureName *string

	// The reason that the FeatureGroup failed to be replicated in the OfflineStore .
	// This is failure may be due to a failure to create a FeatureGroup in or delete a
	// FeatureGroup from the OfflineStore .
	FailureReason *string

	// A list of Feature s. Each Feature must include a FeatureName and a FeatureType .
	// Valid FeatureType s are Integral , Fractional and String . FeatureName s cannot
	// be any of the following: is_deleted , write_time , api_invocation_time . You can
	// create up to 2,500 FeatureDefinition s per FeatureGroup .
	FeatureDefinitions []FeatureDefinition

	// The Amazon Resource Name (ARN) of a FeatureGroup .
	FeatureGroupArn *string

	// The name of the FeatureGroup .
	FeatureGroupName *string

	// A FeatureGroup status.
	FeatureGroupStatus FeatureGroupStatus

	// A timestamp indicating the last time you updated the feature group.
	LastModifiedTime *time.Time

	// A value that indicates whether the feature group was updated successfully.
	LastUpdateStatus *LastUpdateStatus

	// The configuration of an OfflineStore . Provide an OfflineStoreConfig in a
	// request to CreateFeatureGroup to create an OfflineStore . To encrypt an
	// OfflineStore using at rest data encryption, specify Amazon Web Services Key
	// Management Service (KMS) key ID, or KMSKeyId , in S3StorageConfig .
	OfflineStoreConfig *OfflineStoreConfig

	// The status of OfflineStore .
	OfflineStoreStatus *OfflineStoreStatus

	// Use this to specify the Amazon Web Services Key Management Service (KMS) Key
	// ID, or KMSKeyId , for at rest data encryption. You can turn OnlineStore on or
	// off by specifying the EnableOnlineStore flag at General Assembly. The default
	// value is False .
	OnlineStoreConfig *OnlineStoreConfig

	// The name of the Feature whose value uniquely identifies a Record defined in the
	// FeatureGroup FeatureDefinitions .
	RecordIdentifierFeatureName *string

	// The Amazon Resource Name (ARN) of the IAM execution role used to create the
	// feature group.
	RoleArn *string

	// Tags used to define a FeatureGroup .
	Tags []Tag
	// contains filtered or unexported fields
}

Amazon SageMaker Feature Store stores features in a collection called Feature Group. A Feature Group can be visualized as a table which has rows, with a unique identifier for each row where each column in the table is a feature. In principle, a Feature Group is composed of features and values per features.

type FeatureGroupSortBy added in v0.31.0

type FeatureGroupSortBy string
const (
	FeatureGroupSortByName               FeatureGroupSortBy = "Name"
	FeatureGroupSortByFeatureGroupStatus FeatureGroupSortBy = "FeatureGroupStatus"
	FeatureGroupSortByOfflineStoreStatus FeatureGroupSortBy = "OfflineStoreStatus"
	FeatureGroupSortByCreationTime       FeatureGroupSortBy = "CreationTime"
)

Enum values for FeatureGroupSortBy

func (FeatureGroupSortBy) Values added in v0.31.0

Values returns all known values for FeatureGroupSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FeatureGroupSortOrder added in v0.31.0

type FeatureGroupSortOrder string
const (
	FeatureGroupSortOrderAscending  FeatureGroupSortOrder = "Ascending"
	FeatureGroupSortOrderDescending FeatureGroupSortOrder = "Descending"
)

Enum values for FeatureGroupSortOrder

func (FeatureGroupSortOrder) Values added in v0.31.0

Values returns all known values for FeatureGroupSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FeatureGroupStatus added in v0.31.0

type FeatureGroupStatus string
const (
	FeatureGroupStatusCreating     FeatureGroupStatus = "Creating"
	FeatureGroupStatusCreated      FeatureGroupStatus = "Created"
	FeatureGroupStatusCreateFailed FeatureGroupStatus = "CreateFailed"
	FeatureGroupStatusDeleting     FeatureGroupStatus = "Deleting"
	FeatureGroupStatusDeleteFailed FeatureGroupStatus = "DeleteFailed"
)

Enum values for FeatureGroupStatus

func (FeatureGroupStatus) Values added in v0.31.0

Values returns all known values for FeatureGroupStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FeatureGroupSummary added in v0.31.0

type FeatureGroupSummary struct {

	// A timestamp indicating the time of creation time of the FeatureGroup .
	//
	// This member is required.
	CreationTime *time.Time

	// Unique identifier for the FeatureGroup .
	//
	// This member is required.
	FeatureGroupArn *string

	// The name of FeatureGroup .
	//
	// This member is required.
	FeatureGroupName *string

	// The status of a FeatureGroup. The status can be any of the following: Creating ,
	// Created , CreateFail , Deleting or DetailFail .
	FeatureGroupStatus FeatureGroupStatus

	// Notifies you if replicating data into the OfflineStore has failed. Returns
	// either: Active or Blocked .
	OfflineStoreStatus *OfflineStoreStatus
	// contains filtered or unexported fields
}

The name, ARN, CreationTime , FeatureGroup values, LastUpdatedTime and EnableOnlineStorage status of a FeatureGroup .

type FeatureMetadata added in v1.34.0

type FeatureMetadata struct {

	// A timestamp indicating when the feature was created.
	CreationTime *time.Time

	// An optional description that you specify to better describe the feature.
	Description *string

	// The Amazon Resource Number (ARN) of the feature group.
	FeatureGroupArn *string

	// The name of the feature group containing the feature.
	FeatureGroupName *string

	// The name of feature.
	FeatureName *string

	// The data type of the feature.
	FeatureType FeatureType

	// A timestamp indicating when the feature was last modified.
	LastModifiedTime *time.Time

	// Optional key-value pairs that you specify to better describe the feature.
	Parameters []FeatureParameter
	// contains filtered or unexported fields
}

The metadata for a feature. It can either be metadata that you specify, or metadata that is updated automatically.

type FeatureParameter added in v1.34.0

type FeatureParameter struct {

	// A key that must contain a value to describe the feature.
	Key *string

	// The value that belongs to a key.
	Value *string
	// contains filtered or unexported fields
}

A key-value pair that you specify to describe the feature.

type FeatureStatus added in v1.44.0

type FeatureStatus string
const (
	FeatureStatusEnabled  FeatureStatus = "ENABLED"
	FeatureStatusDisabled FeatureStatus = "DISABLED"
)

Enum values for FeatureStatus

func (FeatureStatus) Values added in v1.44.0

func (FeatureStatus) Values() []FeatureStatus

Values returns all known values for FeatureStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FeatureType added in v0.31.0

type FeatureType string
const (
	FeatureTypeIntegral   FeatureType = "Integral"
	FeatureTypeFractional FeatureType = "Fractional"
	FeatureTypeString     FeatureType = "String"
)

Enum values for FeatureType

func (FeatureType) Values added in v0.31.0

func (FeatureType) Values() []FeatureType

Values returns all known values for FeatureType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FileSource added in v1.20.0

type FileSource struct {

	// The Amazon S3 URI for the file source.
	//
	// This member is required.
	S3Uri *string

	// The digest of the file source.
	ContentDigest *string

	// The type of content stored in the file source.
	ContentType *string
	// contains filtered or unexported fields
}

Contains details regarding the file source.

type FileSystemAccessMode

type FileSystemAccessMode string
const (
	FileSystemAccessModeRw FileSystemAccessMode = "rw"
	FileSystemAccessModeRo FileSystemAccessMode = "ro"
)

Enum values for FileSystemAccessMode

func (FileSystemAccessMode) Values added in v0.29.0

Values returns all known values for FileSystemAccessMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FileSystemConfig added in v0.29.0

type FileSystemConfig struct {

	// The default POSIX group ID (GID). If not specified, defaults to 100 .
	DefaultGid *int32

	// The default POSIX user ID (UID). If not specified, defaults to 1000 .
	DefaultUid *int32

	// The path within the image to mount the user's EFS home directory. The directory
	// should be empty. If not specified, defaults to /home/sagemaker-user.
	MountPath *string
	// contains filtered or unexported fields
}

The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

type FileSystemDataSource

type FileSystemDataSource struct {

	// The full path to the directory to associate with the channel.
	//
	// This member is required.
	DirectoryPath *string

	// The access mode of the mount of the directory associated with the channel. A
	// directory can be mounted either in ro (read-only) or rw (read-write) mode.
	//
	// This member is required.
	FileSystemAccessMode FileSystemAccessMode

	// The file system id.
	//
	// This member is required.
	FileSystemId *string

	// The file system type.
	//
	// This member is required.
	FileSystemType FileSystemType
	// contains filtered or unexported fields
}

Specifies a file system data source for a channel.

type FileSystemType

type FileSystemType string
const (
	FileSystemTypeEfs       FileSystemType = "EFS"
	FileSystemTypeFsxlustre FileSystemType = "FSxLustre"
)

Enum values for FileSystemType

func (FileSystemType) Values added in v0.29.0

func (FileSystemType) Values() []FileSystemType

Values returns all known values for FileSystemType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FillingType added in v1.89.0

type FillingType string
const (
	FillingTypeFrontfill       FillingType = "frontfill"
	FillingTypeMiddlefill      FillingType = "middlefill"
	FillingTypeBackfill        FillingType = "backfill"
	FillingTypeFuturefill      FillingType = "futurefill"
	FillingTypeFrontfillValue  FillingType = "frontfill_value"
	FillingTypeMiddlefillValue FillingType = "middlefill_value"
	FillingTypeBackfillValue   FillingType = "backfill_value"
	FillingTypeFuturefillValue FillingType = "futurefill_value"
)

Enum values for FillingType

func (FillingType) Values added in v1.89.0

func (FillingType) Values() []FillingType

Values returns all known values for FillingType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Filter

type Filter struct {

	// A resource property name. For example, TrainingJobName . For valid property
	// names, see SearchRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html)
	// . You must specify a valid property for the resource.
	//
	// This member is required.
	Name *string

	// A Boolean binary operator that is used to evaluate the filter. The operator
	// field contains one of the following values: Equals The value of Name equals
	// Value . NotEquals The value of Name doesn't equal Value . Exists The Name
	// property exists. NotExists The Name property does not exist. GreaterThan The
	// value of Name is greater than Value . Not supported for text properties.
	// GreaterThanOrEqualTo The value of Name is greater than or equal to Value . Not
	// supported for text properties. LessThan The value of Name is less than Value .
	// Not supported for text properties. LessThanOrEqualTo The value of Name is less
	// than or equal to Value . Not supported for text properties. In The value of Name
	// is one of the comma delimited strings in Value . Only supported for text
	// properties. Contains The value of Name contains the string Value . Only
	// supported for text properties. A SearchExpression can include the Contains
	// operator multiple times when the value of Name is one of the following:
	//   - Experiment.DisplayName
	//   - Experiment.ExperimentName
	//   - Experiment.Tags
	//   - Trial.DisplayName
	//   - Trial.TrialName
	//   - Trial.Tags
	//   - TrialComponent.DisplayName
	//   - TrialComponent.TrialComponentName
	//   - TrialComponent.Tags
	//   - TrialComponent.InputArtifacts
	//   - TrialComponent.OutputArtifacts
	// A SearchExpression can include only one Contains operator for all other values
	// of Name . In these cases, if you include multiple Contains operators in the
	// SearchExpression , the result is the following error message: " 'CONTAINS'
	// operator usage limit of 1 exceeded. "
	Operator Operator

	// A value used with Name and Operator to determine which resources satisfy the
	// filter's condition. For numerical properties, Value must be an integer or
	// floating-point decimal. For timestamp properties, Value must be an ISO 8601
	// date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
	Value *string
	// contains filtered or unexported fields
}

A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API. If you specify a Value , but not an Operator , SageMaker uses the equals operator. In search, there are several property types: Metrics To define a metric filter, enter a value using the form "Metrics." , where is a metric name. For example, the following filter searches for training jobs with an

"accuracy" metric greater than "0.9" : {
    "Name": "Metrics.accuracy",

    "Operator": "GreaterThan",

    "Value": "0.9"
} HyperParameters To define a hyperparameter filter, enter a value with the

form "HyperParameters." . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a

"learning_rate" hyperparameter that is less than "0.5" :  {
    "Name": "HyperParameters.learning_rate",

    "Operator": "LessThan",

    "Value": "0.5"
} Tags To define a tag filter, enter a value with the form Tags. .

type FinalAutoMLJobObjectiveMetric

type FinalAutoMLJobObjectiveMetric struct {

	// The name of the metric with the best result. For a description of the possible
	// objective metrics, see AutoMLJobObjective$MetricName (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html)
	// .
	//
	// This member is required.
	MetricName AutoMLMetricEnum

	// The value of the metric with the best result.
	//
	// This member is required.
	Value *float32

	// The name of the standard metric. For a description of the standard metrics, see
	// Autopilot candidate metrics (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics)
	// .
	StandardMetricName AutoMLMetricEnum

	// The type of metric with the best result.
	Type AutoMLJobObjectiveType
	// contains filtered or unexported fields
}

The best candidate result from an AutoML training job.

type FinalHyperParameterTuningJobObjectiveMetric

type FinalHyperParameterTuningJobObjectiveMetric struct {

	// The name of the objective metric. For SageMaker built-in algorithms, metrics
	// are defined per algorithm. See the metrics for XGBoost (https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-tuning.html)
	// as an example. You can also use a custom algorithm for training and define your
	// own metrics. For more information, see Define metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// .
	//
	// This member is required.
	MetricName *string

	// The value of the objective metric.
	//
	// This member is required.
	Value *float32

	// Select if you want to minimize or maximize the objective metric during
	// hyperparameter tuning.
	Type HyperParameterTuningJobObjectiveType
	// contains filtered or unexported fields
}

Shows the latest objective metric emitted by a training job that was launched by a hyperparameter tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html) .

type FlatInvocations added in v1.97.0

type FlatInvocations string
const (
	FlatInvocationsContinue FlatInvocations = "Continue"
	FlatInvocationsStop     FlatInvocations = "Stop"
)

Enum values for FlatInvocations

func (FlatInvocations) Values added in v1.97.0

func (FlatInvocations) Values() []FlatInvocations

Values returns all known values for FlatInvocations. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FlowDefinitionOutputConfig

type FlowDefinitionOutputConfig struct {

	// The Amazon S3 path where the object containing human output will be made
	// available. To learn more about the format of Amazon A2I output data, see Amazon
	// A2I Output Data (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html)
	// .
	//
	// This member is required.
	S3OutputPath *string

	// The Amazon Key Management Service (KMS) key ID for server-side encryption.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Contains information about where human output will be stored.

type FlowDefinitionStatus

type FlowDefinitionStatus string
const (
	FlowDefinitionStatusInitializing FlowDefinitionStatus = "Initializing"
	FlowDefinitionStatusActive       FlowDefinitionStatus = "Active"
	FlowDefinitionStatusFailed       FlowDefinitionStatus = "Failed"
	FlowDefinitionStatusDeleting     FlowDefinitionStatus = "Deleting"
)

Enum values for FlowDefinitionStatus

func (FlowDefinitionStatus) Values added in v0.29.0

Values returns all known values for FlowDefinitionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type FlowDefinitionSummary

type FlowDefinitionSummary struct {

	// The timestamp when SageMaker created the flow definition.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the flow definition.
	//
	// This member is required.
	FlowDefinitionArn *string

	// The name of the flow definition.
	//
	// This member is required.
	FlowDefinitionName *string

	// The status of the flow definition. Valid values:
	//
	// This member is required.
	FlowDefinitionStatus FlowDefinitionStatus

	// The reason why the flow definition creation failed. A failure reason is
	// returned only when the flow definition status is Failed .
	FailureReason *string
	// contains filtered or unexported fields
}

Contains summary information about the flow definition.

type Framework

type Framework string
const (
	FrameworkTensorflow Framework = "TENSORFLOW"
	FrameworkKeras      Framework = "KERAS"
	FrameworkMxnet      Framework = "MXNET"
	FrameworkOnnx       Framework = "ONNX"
	FrameworkPytorch    Framework = "PYTORCH"
	FrameworkXgboost    Framework = "XGBOOST"
	FrameworkTflite     Framework = "TFLITE"
	FrameworkDarknet    Framework = "DARKNET"
	FrameworkSklearn    Framework = "SKLEARN"
)

Enum values for Framework

func (Framework) Values added in v0.29.0

func (Framework) Values() []Framework

Values returns all known values for Framework. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type GitConfig

type GitConfig struct {

	// The URL where the Git repository is located.
	//
	// This member is required.
	RepositoryUrl *string

	// The default branch for the Git repository.
	Branch *string

	// The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
	// secret that contains the credentials used to access the git repository. The
	// secret must have a staging label of AWSCURRENT and must be in the following
	// format: {"username": UserName, "password": Password}
	SecretArn *string
	// contains filtered or unexported fields
}

Specifies configuration details for a Git repository in your Amazon Web Services account.

type GitConfigForUpdate

type GitConfigForUpdate struct {

	// The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
	// secret that contains the credentials used to access the git repository. The
	// secret must have a staging label of AWSCURRENT and must be in the following
	// format: {"username": UserName, "password": Password}
	SecretArn *string
	// contains filtered or unexported fields
}

Specifies configuration details for a Git repository when the repository is updated.

type HolidayConfigAttributes added in v1.105.0

type HolidayConfigAttributes struct {

	// The country code for the holiday calendar. For the list of public holiday
	// calendars supported by AutoML job V2, see Country Codes (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-timeseries-forecasting-holiday-calendars.html#holiday-country-codes)
	// . Use the country code corresponding to the country of your choice.
	CountryCode *string
	// contains filtered or unexported fields
}

Stores the holiday featurization attributes applicable to each item of time-series datasets during the training of a forecasting model. This allows the model to identify patterns associated with specific holidays.

type HubContentDependency added in v1.56.0

type HubContentDependency struct {

	// The hub content dependency copy path.
	DependencyCopyPath *string

	// The hub content dependency origin path.
	DependencyOriginPath *string
	// contains filtered or unexported fields
}

Any dependencies related to hub content, such as scripts, model artifacts, datasets, or notebooks.

type HubContentInfo added in v1.56.0

type HubContentInfo struct {

	// The date and time that the hub content was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The version of the hub content document schema.
	//
	// This member is required.
	DocumentSchemaVersion *string

	// The Amazon Resource Name (ARN) of the hub content.
	//
	// This member is required.
	HubContentArn *string

	// The name of the hub content.
	//
	// This member is required.
	HubContentName *string

	// The status of the hub content.
	//
	// This member is required.
	HubContentStatus HubContentStatus

	// The type of hub content.
	//
	// This member is required.
	HubContentType HubContentType

	// The version of the hub content.
	//
	// This member is required.
	HubContentVersion *string

	// A description of the hub content.
	HubContentDescription *string

	// The display name of the hub content.
	HubContentDisplayName *string

	// The searchable keywords for the hub content.
	HubContentSearchKeywords []string
	// contains filtered or unexported fields
}

Information about hub content.

type HubContentSortBy added in v1.56.0

type HubContentSortBy string
const (
	HubContentSortByHubContentName   HubContentSortBy = "HubContentName"
	HubContentSortByCreationTime     HubContentSortBy = "CreationTime"
	HubContentSortByHubContentStatus HubContentSortBy = "HubContentStatus"
)

Enum values for HubContentSortBy

func (HubContentSortBy) Values added in v1.56.0

Values returns all known values for HubContentSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HubContentStatus added in v1.56.0

type HubContentStatus string
const (
	HubContentStatusAvailable    HubContentStatus = "Available"
	HubContentStatusImporting    HubContentStatus = "Importing"
	HubContentStatusDeleting     HubContentStatus = "Deleting"
	HubContentStatusImportFailed HubContentStatus = "ImportFailed"
	HubContentStatusDeleteFailed HubContentStatus = "DeleteFailed"
)

Enum values for HubContentStatus

func (HubContentStatus) Values added in v1.56.0

Values returns all known values for HubContentStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HubContentType added in v1.56.0

type HubContentType string
const (
	HubContentTypeModel    HubContentType = "Model"
	HubContentTypeNotebook HubContentType = "Notebook"
)

Enum values for HubContentType

func (HubContentType) Values added in v1.56.0

func (HubContentType) Values() []HubContentType

Values returns all known values for HubContentType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HubInfo added in v1.56.0

type HubInfo struct {

	// The date and time that the hub was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the hub.
	//
	// This member is required.
	HubArn *string

	// The name of the hub.
	//
	// This member is required.
	HubName *string

	// The status of the hub.
	//
	// This member is required.
	HubStatus HubStatus

	// The date and time that the hub was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// A description of the hub.
	HubDescription *string

	// The display name of the hub.
	HubDisplayName *string

	// The searchable keywords for the hub.
	HubSearchKeywords []string
	// contains filtered or unexported fields
}

Information about a hub.

type HubS3StorageConfig added in v1.56.0

type HubS3StorageConfig struct {

	// The Amazon S3 bucket prefix for hosting hub content.
	S3OutputPath *string
	// contains filtered or unexported fields
}

The Amazon S3 storage configuration of a hub.

type HubSortBy added in v1.56.0

type HubSortBy string
const (
	HubSortByHubName        HubSortBy = "HubName"
	HubSortByCreationTime   HubSortBy = "CreationTime"
	HubSortByHubStatus      HubSortBy = "HubStatus"
	HubSortByAccountIdOwner HubSortBy = "AccountIdOwner"
)

Enum values for HubSortBy

func (HubSortBy) Values added in v1.56.0

func (HubSortBy) Values() []HubSortBy

Values returns all known values for HubSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HubStatus added in v1.56.0

type HubStatus string
const (
	HubStatusInService    HubStatus = "InService"
	HubStatusCreating     HubStatus = "Creating"
	HubStatusUpdating     HubStatus = "Updating"
	HubStatusDeleting     HubStatus = "Deleting"
	HubStatusCreateFailed HubStatus = "CreateFailed"
	HubStatusUpdateFailed HubStatus = "UpdateFailed"
	HubStatusDeleteFailed HubStatus = "DeleteFailed"
)

Enum values for HubStatus

func (HubStatus) Values added in v1.56.0

func (HubStatus) Values() []HubStatus

Values returns all known values for HubStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HumanLoopActivationConditionsConfig

type HumanLoopActivationConditionsConfig struct {

	// JSON expressing use-case specific conditions declaratively. If any condition is
	// matched, atomic tasks are created against the configured work team. The set of
	// conditions is different for Rekognition and Textract. For more information about
	// how to structure the JSON, see JSON Schema for Human Loop Activation Conditions
	// in Amazon Augmented AI (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html)
	// in the Amazon SageMaker Developer Guide.
	//
	// This value conforms to the media type: application/json
	//
	// This member is required.
	HumanLoopActivationConditions *string
	// contains filtered or unexported fields
}

Defines under what conditions SageMaker creates a human loop. Used within CreateFlowDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html) . See HumanLoopActivationConditionsConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopActivationConditionsConfig.html) for the required format of activation conditions.

type HumanLoopActivationConfig

type HumanLoopActivationConfig struct {

	// Container structure for defining under what conditions SageMaker creates a
	// human loop.
	//
	// This member is required.
	HumanLoopActivationConditionsConfig *HumanLoopActivationConditionsConfig
	// contains filtered or unexported fields
}

Provides information about how and under what conditions SageMaker creates a human loop. If HumanLoopActivationConfig is not given, then all requests go to humans.

type HumanLoopConfig

type HumanLoopConfig struct {

	// The Amazon Resource Name (ARN) of the human task user interface. You can use
	// standard HTML and Crowd HTML Elements to create a custom worker task template.
	// You use this template to create a human task UI. To learn how to create a custom
	// HTML template, see Create Custom Worker Task Template (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html)
	// . To learn how to create a human task UI, which is a worker task template that
	// can be used in a flow definition, see Create and Delete a Worker Task Templates (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html)
	// .
	//
	// This member is required.
	HumanTaskUiArn *string

	// The number of distinct workers who will perform the same task on each object.
	// For example, if TaskCount is set to 3 for an image classification labeling job,
	// three workers will classify each input image. Increasing TaskCount can improve
	// label accuracy.
	//
	// This member is required.
	TaskCount *int32

	// A description for the human worker task.
	//
	// This member is required.
	TaskDescription *string

	// A title for the human worker task.
	//
	// This member is required.
	TaskTitle *string

	// Amazon Resource Name (ARN) of a team of workers. To learn more about the types
	// of workforces and work teams you can create and use with Amazon A2I, see Create
	// and Manage Workforces (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html)
	// .
	//
	// This member is required.
	WorkteamArn *string

	// Defines the amount of money paid to an Amazon Mechanical Turk worker for each
	// task performed. Use one of the following prices for bounding box tasks. Prices
	// are in US dollars and should be based on the complexity of the task; the longer
	// it takes in your initial testing, the more you should offer.
	//   - 0.036
	//   - 0.048
	//   - 0.060
	//   - 0.072
	//   - 0.120
	//   - 0.240
	//   - 0.360
	//   - 0.480
	//   - 0.600
	//   - 0.720
	//   - 0.840
	//   - 0.960
	//   - 1.080
	//   - 1.200
	// Use one of the following prices for image classification, text classification,
	// and custom tasks. Prices are in US dollars.
	//   - 0.012
	//   - 0.024
	//   - 0.036
	//   - 0.048
	//   - 0.060
	//   - 0.072
	//   - 0.120
	//   - 0.240
	//   - 0.360
	//   - 0.480
	//   - 0.600
	//   - 0.720
	//   - 0.840
	//   - 0.960
	//   - 1.080
	//   - 1.200
	// Use one of the following prices for semantic segmentation tasks. Prices are in
	// US dollars.
	//   - 0.840
	//   - 0.960
	//   - 1.080
	//   - 1.200
	// Use one of the following prices for Textract AnalyzeDocument Important Form Key
	// Amazon Augmented AI review tasks. Prices are in US dollars.
	//   - 2.400
	//   - 2.280
	//   - 2.160
	//   - 2.040
	//   - 1.920
	//   - 1.800
	//   - 1.680
	//   - 1.560
	//   - 1.440
	//   - 1.320
	//   - 1.200
	//   - 1.080
	//   - 0.960
	//   - 0.840
	//   - 0.720
	//   - 0.600
	//   - 0.480
	//   - 0.360
	//   - 0.240
	//   - 0.120
	//   - 0.072
	//   - 0.060
	//   - 0.048
	//   - 0.036
	//   - 0.024
	//   - 0.012
	// Use one of the following prices for Rekognition DetectModerationLabels Amazon
	// Augmented AI review tasks. Prices are in US dollars.
	//   - 1.200
	//   - 1.080
	//   - 0.960
	//   - 0.840
	//   - 0.720
	//   - 0.600
	//   - 0.480
	//   - 0.360
	//   - 0.240
	//   - 0.120
	//   - 0.072
	//   - 0.060
	//   - 0.048
	//   - 0.036
	//   - 0.024
	//   - 0.012
	// Use one of the following prices for Amazon Augmented AI custom human review
	// tasks. Prices are in US dollars.
	//   - 1.200
	//   - 1.080
	//   - 0.960
	//   - 0.840
	//   - 0.720
	//   - 0.600
	//   - 0.480
	//   - 0.360
	//   - 0.240
	//   - 0.120
	//   - 0.072
	//   - 0.060
	//   - 0.048
	//   - 0.036
	//   - 0.024
	//   - 0.012
	PublicWorkforceTaskPrice *PublicWorkforceTaskPrice

	// The length of time that a task remains available for review by human workers.
	TaskAvailabilityLifetimeInSeconds *int32

	// Keywords used to describe the task so that workers can discover the task.
	TaskKeywords []string

	// The amount of time that a worker has to complete a task. The default value is
	// 3,600 seconds (1 hour).
	TaskTimeLimitInSeconds *int32
	// contains filtered or unexported fields
}

Describes the work to be performed by human workers.

type HumanLoopRequestSource

type HumanLoopRequestSource struct {

	// Specifies whether Amazon Rekognition or Amazon Textract are used as the
	// integration source. The default field settings and JSON parsing rules are
	// different based on the integration source. Valid values:
	//
	// This member is required.
	AwsManagedHumanLoopRequestSource AwsManagedHumanLoopRequestSource
	// contains filtered or unexported fields
}

Container for configuring the source of human task requests.

type HumanTaskConfig

type HumanTaskConfig struct {

	// Configures how labels are consolidated across human workers.
	//
	// This member is required.
	AnnotationConsolidationConfig *AnnotationConsolidationConfig

	// The number of human workers that will label an object.
	//
	// This member is required.
	NumberOfHumanWorkersPerDataObject *int32

	// The Amazon Resource Name (ARN) of a Lambda function that is run before a data
	// object is sent to a human worker. Use this function to provide input to a custom
	// labeling job. For built-in task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
	// , use one of the following Amazon SageMaker Ground Truth Lambda function ARNs
	// for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation
	// Lambda (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda)
	// . Bounding box - Finds the most similar boxes from different workers based on
	// the Jaccard index of the boxes.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
	// Image classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of an image based on annotations from individual
	// workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
	// Multi-label image classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of an image based on
	// annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
	// Semantic segmentation - Treats each pixel in an image as a multi-class
	// classification and treats pixel annotations from workers as "votes" for the
	// correct label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
	// Text classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of text based on annotations from individual workers.
	//
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
	// Multi-label text classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of text based on annotations
	// from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
	// Named entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
	// Video Classification - Use this task type when you need workers to classify
	// videos using predefined labels that you specify. Workers are shown videos and
	// are asked to choose one label for each video.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
	// Video Frame Object Detection - Use this task type to have workers identify and
	// locate objects in a sequence of video frames (images extracted from a video)
	// using bounding boxes. For example, you can use this task to ask workers to
	// identify and localize various objects in a series of video frames, such as cars,
	// bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
	// Video Frame Object Tracking - Use this task type to have workers track the
	// movement of objects in a sequence of video frames (images extracted from a
	// video) using bounding boxes. For example, you can use this task to ask workers
	// to track the movement of objects, such as cars, bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
	// 3D Point Cloud Modalities Use the following pre-annotation lambdas for 3D point
	// cloud labeling modality tasks. See 3D Point Cloud Task types  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html)
	// to learn more. 3D Point Cloud Object Detection - Use this task type when you
	// want workers to classify objects in a 3D point cloud by drawing 3D cuboids
	// around objects. For example, you can use this task type to ask workers to
	// identify different types of objects in a point cloud, such as cars, bikes, and
	// pedestrians.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
	// 3D Point Cloud Object Tracking - Use this task type when you want workers to
	// draw 3D cuboids around objects that appear in a sequence of 3D point cloud
	// frames. For example, you can use this task type to ask workers to track the
	// movement of vehicles across multiple point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
	// 3D Point Cloud Semantic Segmentation - Use this task type when you want workers
	// to create a point-level semantic segmentation masks by painting objects in a 3D
	// point cloud using different colors where each color is assigned to one of the
	// classes you specify.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
	// Use the following ARNs for Label Verification and Adjustment Jobs Use label
	// verification and adjustment jobs to review and adjust labels. To learn more, see
	// Verify and Adjust Labels  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html)
	// . Bounding box verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgement for bounding box
	// labels based on annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
	// Bounding box adjustment - Finds the most similar boxes from different workers
	// based on the Jaccard index of the adjusted annotations.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
	// Semantic segmentation verification - Uses a variant of the Expectation
	// Maximization approach to estimate the true class of verification judgment for
	// semantic segmentation labels based on annotations from individual workers.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
	// Semantic segmentation adjustment - Treats each pixel in an image as a
	// multi-class classification and treats pixel adjusted annotations from workers as
	// "votes" for the correct label.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
	// Video Frame Object Detection Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// classify and localize objects in a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
	// Video Frame Object Tracking Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// track object movement across a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
	// 3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud
	// frame.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
	// 3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence
	// of point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
	// 3D point cloud semantic segmentation adjustment - Adjust semantic segmentation
	// masks in a 3D point cloud.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	// This member is required.
	PreHumanTaskLambdaArn *string

	// A description of the task for your human workers.
	//
	// This member is required.
	TaskDescription *string

	// The amount of time that a worker has to complete a task. If you create a custom
	// labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).
	// If you create a labeling job using a built-in task type (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
	// the maximum for this parameter depends on the task type you use:
	//   - For image (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html)
	//   and text (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html)
	//   labeling jobs, the maximum is 8 hours (28,800 seconds).
	//   - For 3D point cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html)
	//   and video frame (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html)
	//   labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For
	//   most users, the maximum is also 30 days.
	//
	// This member is required.
	TaskTimeLimitInSeconds *int32

	// A title for the task for your human workers.
	//
	// This member is required.
	TaskTitle *string

	// Information about the user interface that workers use to complete the labeling
	// task.
	//
	// This member is required.
	UiConfig *UiConfig

	// The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
	//
	// This member is required.
	WorkteamArn *string

	// Defines the maximum number of data objects that can be labeled by human workers
	// at the same time. Also referred to as batch size. Each object may have more than
	// one worker at one time. The default value is 1000 objects. To increase the
	// maximum value to 5000 objects, contact Amazon Web Services Support.
	MaxConcurrentTaskCount *int32

	// The price that you pay for each task performed by an Amazon Mechanical Turk
	// worker.
	PublicWorkforceTaskPrice *PublicWorkforceTaskPrice

	// The length of time that a task remains available for labeling by human workers.
	// The default and maximum values for this parameter depend on the type of
	// workforce you use.
	//   - If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours
	//   (43,200 seconds). The default is 6 hours (21,600 seconds).
	//   - If you choose a private or vendor workforce, the default value is 30 days
	//   (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
	TaskAvailabilityLifetimeInSeconds *int32

	// Keywords used to describe the task so that workers on Amazon Mechanical Turk
	// can discover the task.
	TaskKeywords []string
	// contains filtered or unexported fields
}

Information required for human workers to complete a labeling task.

type HumanTaskUiStatus

type HumanTaskUiStatus string
const (
	HumanTaskUiStatusActive   HumanTaskUiStatus = "Active"
	HumanTaskUiStatusDeleting HumanTaskUiStatus = "Deleting"
)

Enum values for HumanTaskUiStatus

func (HumanTaskUiStatus) Values added in v0.29.0

Values returns all known values for HumanTaskUiStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HumanTaskUiSummary

type HumanTaskUiSummary struct {

	// A timestamp when SageMaker created the human task user interface.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the human task user interface.
	//
	// This member is required.
	HumanTaskUiArn *string

	// The name of the human task user interface.
	//
	// This member is required.
	HumanTaskUiName *string
	// contains filtered or unexported fields
}

Container for human task user interface information.

type HyperParameterAlgorithmSpecification

type HyperParameterAlgorithmSpecification struct {

	// The training input mode that the algorithm supports. For more information about
	// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
	// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
	// directly from Amazon S3 to the container. File mode If an algorithm supports
	// File mode, SageMaker downloads the training data from S3 to the provisioned ML
	// storage volume, and mounts the directory to the Docker volume for the training
	// container. You must provision the ML storage volume with sufficient capacity to
	// accommodate the data downloaded from S3. In addition to the training data, the
	// ML storage volume also stores the output model. The algorithm container uses the
	// ML storage volume to also store intermediate information, if any. For
	// distributed algorithms, training data is distributed uniformly. Your training
	// duration is predictable if the input data objects sizes are approximately the
	// same. SageMaker does not split the files any further for model training. If the
	// object sizes are skewed, training won't be optimal as the data distribution is
	// also skewed when one host in a training cluster is overloaded, thus becoming a
	// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
	// SageMaker streams data directly from S3 to the container with no code changes,
	// and provides file system access to the data. Users can author their training
	// script to interact with these files as if they were stored on disk. FastFile
	// mode works best when the data is read sequentially. Augmented manifest files
	// aren't supported. The startup time is lower when there are fewer files in the S3
	// bucket provided.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The name of the resource algorithm to use for the hyperparameter tuning job. If
	// you specify a value for this parameter, do not specify a value for TrainingImage
	// .
	AlgorithmName *string

	// An array of MetricDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html)
	// objects that specify the metrics that the algorithm emits.
	MetricDefinitions []MetricDefinition

	// The registry path of the Docker image that contains the training algorithm. For
	// information about Docker registry paths for built-in algorithms, see Algorithms
	// Provided by Amazon SageMaker: Common Parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
	// . SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see
	// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// .
	TrainingImage *string
	// contains filtered or unexported fields
}

Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches and the metrics to monitor.

type HyperParameterScalingType

type HyperParameterScalingType string
const (
	HyperParameterScalingTypeAuto               HyperParameterScalingType = "Auto"
	HyperParameterScalingTypeLinear             HyperParameterScalingType = "Linear"
	HyperParameterScalingTypeLogarithmic        HyperParameterScalingType = "Logarithmic"
	HyperParameterScalingTypeReverseLogarithmic HyperParameterScalingType = "ReverseLogarithmic"
)

Enum values for HyperParameterScalingType

func (HyperParameterScalingType) Values added in v0.29.0

Values returns all known values for HyperParameterScalingType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterSpecification

type HyperParameterSpecification struct {

	// The name of this hyperparameter. The name must be unique.
	//
	// This member is required.
	Name *string

	// The type of this hyperparameter. The valid types are Integer , Continuous ,
	// Categorical , and FreeText .
	//
	// This member is required.
	Type ParameterType

	// The default value for this hyperparameter. If a default value is specified, a
	// hyperparameter cannot be required.
	DefaultValue *string

	// A brief description of the hyperparameter.
	Description *string

	// Indicates whether this hyperparameter is required.
	IsRequired *bool

	// Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
	IsTunable *bool

	// The allowed range for this hyperparameter.
	Range *ParameterRange
	// contains filtered or unexported fields
}

Defines a hyperparameter to be used by an algorithm.

type HyperParameterTrainingJobDefinition

type HyperParameterTrainingJobDefinition struct {

	// The HyperParameterAlgorithmSpecification (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterAlgorithmSpecification.html)
	// object that specifies the resource algorithm to use for the training jobs that
	// the tuning job launches.
	//
	// This member is required.
	AlgorithmSpecification *HyperParameterAlgorithmSpecification

	// Specifies the path to the Amazon S3 bucket where you store model artifacts from
	// the training jobs that the tuning job launches.
	//
	// This member is required.
	OutputDataConfig *OutputDataConfig

	// The Amazon Resource Name (ARN) of the IAM role associated with the training
	// jobs that the tuning job launches.
	//
	// This member is required.
	RoleArn *string

	// Specifies a limit to how long a model hyperparameter training job can run. It
	// also specifies how long a managed spot training job has to complete. When the
	// job reaches the time limit, SageMaker ends the training job. Use this API to cap
	// model training costs.
	//
	// This member is required.
	StoppingCondition *StoppingCondition

	// Contains information about the output location for managed spot training
	// checkpoint data.
	CheckpointConfig *CheckpointConfig

	// The job definition name.
	DefinitionName *string

	// To encrypt all communications between ML compute instances in distributed
	// training, choose True . Encryption provides greater security for distributed
	// training, but training might take longer. How long it takes depends on the
	// amount of communication between compute instances, especially if you use a deep
	// learning algorithm in distributed training.
	EnableInterContainerTrafficEncryption *bool

	// A Boolean indicating whether managed spot training is enabled ( True ) or not (
	// False ).
	EnableManagedSpotTraining *bool

	// Isolates the training container. No inbound or outbound network calls can be
	// made, except for calls between peers within a training cluster for distributed
	// training. If network isolation is used for training jobs that are configured to
	// use a VPC, SageMaker downloads and uploads customer data and model artifacts
	// through the specified VPC, but the training container does not have network
	// access.
	EnableNetworkIsolation *bool

	// An environment variable that you can pass into the SageMaker CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	// API. You can use an existing environment variable from the training container (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment)
	// or use your own. See Define metrics and variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// for more information. The maximum number of items specified for Map Entries
	// refers to the maximum number of environment variables for each
	// TrainingJobDefinition and also the maximum for the hyperparameter tuning job
	// itself. That is, the sum of the number of environment variables for all the
	// training job definitions can't exceed the maximum number specified.
	Environment map[string]string

	// Specifies ranges of integer, continuous, and categorical hyperparameters that a
	// hyperparameter tuning job searches. The hyperparameter tuning job launches
	// training jobs with hyperparameter values within these ranges to find the
	// combination of values that result in the training job with the best performance
	// as measured by the objective metric of the hyperparameter tuning job. The
	// maximum number of items specified for Array Members refers to the maximum
	// number of hyperparameters for each range and also the maximum for the
	// hyperparameter tuning job itself. That is, the sum of the number of
	// hyperparameters for all the ranges can't exceed the maximum number specified.
	HyperParameterRanges *ParameterRanges

	// The configuration for the hyperparameter tuning resources, including the
	// compute instances and storage volumes, used for training jobs launched by the
	// tuning job. By default, storage volumes hold model artifacts and incremental
	// states. Choose File for TrainingInputMode in the AlgorithmSpecification
	// parameter to additionally store training data in the storage volume (optional).
	HyperParameterTuningResourceConfig *HyperParameterTuningResourceConfig

	// An array of Channel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html)
	// objects that specify the input for the training jobs that the tuning job
	// launches.
	InputDataConfig []Channel

	// The resources, including the compute instances and storage volumes, to use for
	// the training jobs that the tuning job launches. Storage volumes store model
	// artifacts and incremental states. Training algorithms might also use storage
	// volumes for scratch space. If you want SageMaker to use the storage volume to
	// store the training data, choose File as the TrainingInputMode in the algorithm
	// specification. For distributed training algorithms, specify an instance count
	// greater than 1. If you want to use hyperparameter optimization with instance
	// type flexibility, use HyperParameterTuningResourceConfig instead.
	ResourceConfig *ResourceConfig

	// The number of times to retry the job when the job fails due to an
	// InternalServerError .
	RetryStrategy *RetryStrategy

	// Specifies the values of hyperparameters that do not change for the tuning job.
	StaticHyperParameters map[string]string

	// Defines the objective metric for a hyperparameter tuning job. Hyperparameter
	// tuning uses the value of this metric to evaluate the training jobs it launches,
	// and returns the training job that results in either the highest or lowest value
	// for this metric, depending on the value you specify for the Type parameter. If
	// you want to define a custom objective metric, see Define metrics and
	// environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// .
	TuningObjective *HyperParameterTuningJobObjective

	// The VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
	// object that specifies the VPC that you want the training jobs that this
	// hyperparameter tuning job launches to connect to. Control access to and from
	// your training container by configuring the VPC. For more information, see
	// Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html)
	// .
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

Defines the training jobs launched by a hyperparameter tuning job.

type HyperParameterTrainingJobSummary

type HyperParameterTrainingJobSummary struct {

	// The date and time that the training job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	//
	// This member is required.
	TrainingJobArn *string

	// The name of the training job.
	//
	// This member is required.
	TrainingJobName *string

	// The status of the training job.
	//
	// This member is required.
	TrainingJobStatus TrainingJobStatus

	// A list of the hyperparameters for which you specified ranges to search.
	//
	// This member is required.
	TunedHyperParameters map[string]string

	// The reason that the training job failed.
	FailureReason *string

	// The FinalHyperParameterTuningJobObjectiveMetric (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FinalHyperParameterTuningJobObjectiveMetric.html)
	// object that specifies the value of the objective metric of the tuning job that
	// launched this training job.
	FinalHyperParameterTuningJobObjectiveMetric *FinalHyperParameterTuningJobObjectiveMetric

	// The status of the objective metric for the training job:
	//   - Succeeded: The final objective metric for the training job was evaluated by
	//   the hyperparameter tuning job and used in the hyperparameter tuning process.
	//
	//   - Pending: The training job is in progress and evaluation of its final
	//   objective metric is pending.
	//
	//   - Failed: The final objective metric for the training job was not evaluated,
	//   and was not used in the hyperparameter tuning process. This typically occurs
	//   when the training job failed or did not emit an objective metric.
	ObjectiveStatus ObjectiveStatus

	// Specifies the time when the training job ends on training instances. You are
	// billed for the time interval between the value of TrainingStartTime and this
	// time. For successful jobs and stopped jobs, this is the time after model
	// artifacts are uploaded. For failed jobs, this is the time when SageMaker detects
	// a job failure.
	TrainingEndTime *time.Time

	// The training job definition name.
	TrainingJobDefinitionName *string

	// The date and time that the training job started.
	TrainingStartTime *time.Time

	// The HyperParameter tuning job that launched the training job.
	TuningJobName *string
	// contains filtered or unexported fields
}

The container for the summary information about a training job.

type HyperParameterTuningAllocationStrategy added in v1.39.0

type HyperParameterTuningAllocationStrategy string
const (
	HyperParameterTuningAllocationStrategyPrioritized HyperParameterTuningAllocationStrategy = "Prioritized"
)

Enum values for HyperParameterTuningAllocationStrategy

func (HyperParameterTuningAllocationStrategy) Values added in v1.39.0

Values returns all known values for HyperParameterTuningAllocationStrategy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterTuningInstanceConfig added in v1.39.0

type HyperParameterTuningInstanceConfig struct {

	// The number of instances of the type specified by InstanceType . Choose an
	// instance count larger than 1 for distributed training algorithms. See Step 2:
	// Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK (https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html)
	// for more information.
	//
	// This member is required.
	InstanceCount *int32

	// The instance type used for processing of hyperparameter optimization jobs.
	// Choose from general purpose (no GPUs) instance types: ml.m5.xlarge,
	// ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types:
	// ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see
	// instance type descriptions (https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html)
	// .
	//
	// This member is required.
	InstanceType TrainingInstanceType

	// The volume size in GB of the data to be processed for hyperparameter
	// optimization (optional).
	//
	// This member is required.
	VolumeSizeInGB *int32
	// contains filtered or unexported fields
}

The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

type HyperParameterTuningJobCompletionDetails added in v1.67.0

type HyperParameterTuningJobCompletionDetails struct {

	// The time in timestamp format that AMT detected model convergence, as defined by
	// a lack of significant improvement over time based on criteria developed over a
	// wide range of diverse benchmarking tests.
	ConvergenceDetectedTime *time.Time

	// The number of training jobs launched by a tuning job that are not improving (1%
	// or less) as measured by model performance evaluated against an objective
	// function.
	NumberOfTrainingJobsObjectiveNotImproving *int32
	// contains filtered or unexported fields
}

A structure that contains runtime information about both current and completed hyperparameter tuning jobs.

type HyperParameterTuningJobConfig

type HyperParameterTuningJobConfig struct {

	// The ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
	// object that specifies the maximum number of training and parallel training jobs
	// that can be used for this hyperparameter tuning job.
	//
	// This member is required.
	ResourceLimits *ResourceLimits

	// Specifies how hyperparameter tuning chooses the combinations of hyperparameter
	// values to use for the training job it launches. For information about search
	// strategies, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)
	// .
	//
	// This member is required.
	Strategy HyperParameterTuningJobStrategyType

	// The HyperParameterTuningJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html)
	// specifies the objective metric used to evaluate the performance of training jobs
	// launched by this tuning job.
	HyperParameterTuningJobObjective *HyperParameterTuningJobObjective

	// The ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html)
	// object that specifies the ranges of hyperparameters that this tuning job
	// searches over to find the optimal configuration for the highest model
	// performance against your chosen objective metric.
	ParameterRanges *ParameterRanges

	// A value used to initialize a pseudo-random number generator. Setting a random
	// seed and using the same seed later for the same tuning job will allow
	// hyperparameter optimization to find more a consistent hyperparameter
	// configuration between the two runs.
	RandomSeed *int32

	// The configuration for the Hyperband optimization strategy. This parameter
	// should be provided only if Hyperband is selected as the strategy for
	// HyperParameterTuningJobConfig .
	StrategyConfig *HyperParameterTuningJobStrategyConfig

	// Specifies whether to use early stopping for training jobs launched by the
	// hyperparameter tuning job. Because the Hyperband strategy has its own advanced
	// internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to
	// use Hyperband . This parameter can take on one of the following values (the
	// default value is OFF ): OFF Training jobs launched by the hyperparameter tuning
	// job do not use early stopping. AUTO SageMaker stops training jobs launched by
	// the hyperparameter tuning job when they are unlikely to perform better than
	// previously completed training jobs. For more information, see Stop Training
	// Jobs Early (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html)
	// .
	TrainingJobEarlyStoppingType TrainingJobEarlyStoppingType

	// The tuning job's completion criteria.
	TuningJobCompletionCriteria *TuningJobCompletionCriteria
	// contains filtered or unexported fields
}

Configures a hyperparameter tuning job.

type HyperParameterTuningJobConsumedResources added in v1.67.0

type HyperParameterTuningJobConsumedResources struct {

	// The wall clock runtime in seconds used by your hyperparameter tuning job.
	RuntimeInSeconds *int32
	// contains filtered or unexported fields
}

The total resources consumed by your hyperparameter tuning job.

type HyperParameterTuningJobObjective

type HyperParameterTuningJobObjective struct {

	// The name of the metric to use for the objective metric.
	//
	// This member is required.
	MetricName *string

	// Whether to minimize or maximize the objective metric.
	//
	// This member is required.
	Type HyperParameterTuningJobObjectiveType
	// contains filtered or unexported fields
}

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html) .

type HyperParameterTuningJobObjectiveType

type HyperParameterTuningJobObjectiveType string
const (
	HyperParameterTuningJobObjectiveTypeMaximize HyperParameterTuningJobObjectiveType = "Maximize"
	HyperParameterTuningJobObjectiveTypeMinimize HyperParameterTuningJobObjectiveType = "Minimize"
)

Enum values for HyperParameterTuningJobObjectiveType

func (HyperParameterTuningJobObjectiveType) Values added in v0.29.0

Values returns all known values for HyperParameterTuningJobObjectiveType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterTuningJobSearchEntity added in v1.42.0

type HyperParameterTuningJobSearchEntity struct {

	// The container for the summary information about a training job.
	BestTrainingJob *HyperParameterTrainingJobSummary

	// The total amount of resources consumed by a hyperparameter tuning job.
	ConsumedResources *HyperParameterTuningJobConsumedResources

	// The time that a hyperparameter tuning job was created.
	CreationTime *time.Time

	// The error that was created when a hyperparameter tuning job failed.
	FailureReason *string

	// The time that a hyperparameter tuning job ended.
	HyperParameterTuningEndTime *time.Time

	// The Amazon Resource Name (ARN) of a hyperparameter tuning job.
	HyperParameterTuningJobArn *string

	// Configures a hyperparameter tuning job.
	HyperParameterTuningJobConfig *HyperParameterTuningJobConfig

	// The name of a hyperparameter tuning job.
	HyperParameterTuningJobName *string

	// The status of a hyperparameter tuning job.
	HyperParameterTuningJobStatus HyperParameterTuningJobStatus

	// The time that a hyperparameter tuning job was last modified.
	LastModifiedTime *time.Time

	// Specifies the number of training jobs that this hyperparameter tuning job
	// launched, categorized by the status of their objective metric. The objective
	// metric status shows whether the final objective metric for the training job has
	// been evaluated by the tuning job and used in the hyperparameter tuning process.
	ObjectiveStatusCounters *ObjectiveStatusCounters

	// The container for the summary information about a training job.
	OverallBestTrainingJob *HyperParameterTrainingJobSummary

	// The tags associated with a hyperparameter tuning job. For more information see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// .
	Tags []Tag

	// Defines the training jobs launched by a hyperparameter tuning job.
	TrainingJobDefinition *HyperParameterTrainingJobDefinition

	// The job definitions included in a hyperparameter tuning job.
	TrainingJobDefinitions []HyperParameterTrainingJobDefinition

	// The numbers of training jobs launched by a hyperparameter tuning job,
	// categorized by status.
	TrainingJobStatusCounters *TrainingJobStatusCounters

	// Information about either a current or completed hyperparameter tuning job.
	TuningJobCompletionDetails *HyperParameterTuningJobCompletionDetails

	// Specifies the configuration for a hyperparameter tuning job that uses one or
	// more previous hyperparameter tuning jobs as a starting point. The results of
	// previous tuning jobs are used to inform which combinations of hyperparameters to
	// search over in the new tuning job. All training jobs launched by the new
	// hyperparameter tuning job are evaluated by using the objective metric, and the
	// training job that performs the best is compared to the best training jobs from
	// the parent tuning jobs. From these, the training job that performs the best as
	// measured by the objective metric is returned as the overall best training job.
	// All training jobs launched by parent hyperparameter tuning jobs and the new
	// hyperparameter tuning jobs count against the limit of training jobs for the
	// tuning job.
	WarmStartConfig *HyperParameterTuningJobWarmStartConfig
	// contains filtered or unexported fields
}

An entity returned by the SearchRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html) API containing the properties of a hyperparameter tuning job.

type HyperParameterTuningJobSortByOptions

type HyperParameterTuningJobSortByOptions string
const (
	HyperParameterTuningJobSortByOptionsName         HyperParameterTuningJobSortByOptions = "Name"
	HyperParameterTuningJobSortByOptionsStatus       HyperParameterTuningJobSortByOptions = "Status"
	HyperParameterTuningJobSortByOptionsCreationTime HyperParameterTuningJobSortByOptions = "CreationTime"
)

Enum values for HyperParameterTuningJobSortByOptions

func (HyperParameterTuningJobSortByOptions) Values added in v0.29.0

Values returns all known values for HyperParameterTuningJobSortByOptions. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterTuningJobStatus

type HyperParameterTuningJobStatus string
const (
	HyperParameterTuningJobStatusCompleted  HyperParameterTuningJobStatus = "Completed"
	HyperParameterTuningJobStatusInProgress HyperParameterTuningJobStatus = "InProgress"
	HyperParameterTuningJobStatusFailed     HyperParameterTuningJobStatus = "Failed"
	HyperParameterTuningJobStatusStopped    HyperParameterTuningJobStatus = "Stopped"
	HyperParameterTuningJobStatusStopping   HyperParameterTuningJobStatus = "Stopping"
)

Enum values for HyperParameterTuningJobStatus

func (HyperParameterTuningJobStatus) Values added in v0.29.0

Values returns all known values for HyperParameterTuningJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterTuningJobStrategyConfig added in v1.43.0

type HyperParameterTuningJobStrategyConfig struct {

	// The configuration for the object that specifies the Hyperband strategy. This
	// parameter is only supported for the Hyperband selection for Strategy within the
	// HyperParameterTuningJobConfig API.
	HyperbandStrategyConfig *HyperbandStrategyConfig
	// contains filtered or unexported fields
}

The configuration for a training job launched by a hyperparameter tuning job. Choose Bayesian for Bayesian optimization, and Random for random search optimization. For more advanced use cases, use Hyperband , which evaluates objective metrics for training jobs after every epoch. For more information about strategies, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html) .

type HyperParameterTuningJobStrategyType

type HyperParameterTuningJobStrategyType string
const (
	HyperParameterTuningJobStrategyTypeBayesian  HyperParameterTuningJobStrategyType = "Bayesian"
	HyperParameterTuningJobStrategyTypeRandom    HyperParameterTuningJobStrategyType = "Random"
	HyperParameterTuningJobStrategyTypeHyperband HyperParameterTuningJobStrategyType = "Hyperband"
	HyperParameterTuningJobStrategyTypeGrid      HyperParameterTuningJobStrategyType = "Grid"
)

Enum values for HyperParameterTuningJobStrategyType

func (HyperParameterTuningJobStrategyType) Values added in v0.29.0

Values returns all known values for HyperParameterTuningJobStrategyType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterTuningJobSummary

type HyperParameterTuningJobSummary struct {

	// The date and time that the tuning job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobArn *string

	// The name of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobName *string

	// The status of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobStatus HyperParameterTuningJobStatus

	// The ObjectiveStatusCounters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ObjectiveStatusCounters.html)
	// object that specifies the numbers of training jobs, categorized by objective
	// metric status, that this tuning job launched.
	//
	// This member is required.
	ObjectiveStatusCounters *ObjectiveStatusCounters

	// Specifies the search strategy hyperparameter tuning uses to choose which
	// hyperparameters to evaluate at each iteration.
	//
	// This member is required.
	Strategy HyperParameterTuningJobStrategyType

	// The TrainingJobStatusCounters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobStatusCounters.html)
	// object that specifies the numbers of training jobs, categorized by status, that
	// this tuning job launched.
	//
	// This member is required.
	TrainingJobStatusCounters *TrainingJobStatusCounters

	// The date and time that the tuning job ended.
	HyperParameterTuningEndTime *time.Time

	// The date and time that the tuning job was modified.
	LastModifiedTime *time.Time

	// The ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
	// object that specifies the maximum number of training jobs and parallel training
	// jobs allowed for this tuning job.
	ResourceLimits *ResourceLimits
	// contains filtered or unexported fields
}

Provides summary information about a hyperparameter tuning job.

type HyperParameterTuningJobWarmStartConfig

type HyperParameterTuningJobWarmStartConfig struct {

	// An array of hyperparameter tuning jobs that are used as the starting point for
	// the new hyperparameter tuning job. For more information about warm starting a
	// hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a
	// Starting Point (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html)
	// . Hyperparameter tuning jobs created before October 1, 2018 cannot be used as
	// parent jobs for warm start tuning jobs.
	//
	// This member is required.
	ParentHyperParameterTuningJobs []ParentHyperParameterTuningJob

	// Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new
	// hyperparameter tuning job uses the same input data and training image as the
	// parent tuning jobs. You can change the hyperparameter ranges to search and the
	// maximum number of training jobs that the hyperparameter tuning job launches. You
	// cannot use a new version of the training algorithm, unless the changes in the
	// new version do not affect the algorithm itself. For example, changes that
	// improve logging or adding support for a different data format are allowed. You
	// can also change hyperparameters from tunable to static, and from static to
	// tunable, but the total number of static plus tunable hyperparameters must remain
	// the same as it is in all parent jobs. The objective metric for the new tuning
	// job must be the same as for all parent jobs. TRANSFER_LEARNING The new
	// hyperparameter tuning job can include input data, hyperparameter ranges, maximum
	// number of concurrent training jobs, and maximum number of training jobs that are
	// different than those of its parent hyperparameter tuning jobs. The training
	// image can also be a different version from the version used in the parent
	// hyperparameter tuning job. You can also change hyperparameters from tunable to
	// static, and from static to tunable, but the total number of static plus tunable
	// hyperparameters must remain the same as it is in all parent jobs. The objective
	// metric for the new tuning job must be the same as for all parent jobs.
	//
	// This member is required.
	WarmStartType HyperParameterTuningJobWarmStartType
	// contains filtered or unexported fields
}

Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job. All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

type HyperParameterTuningJobWarmStartType

type HyperParameterTuningJobWarmStartType string
const (
	HyperParameterTuningJobWarmStartTypeIdenticalDataAndAlgorithm HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"
	HyperParameterTuningJobWarmStartTypeTransferLearning          HyperParameterTuningJobWarmStartType = "TransferLearning"
)

Enum values for HyperParameterTuningJobWarmStartType

func (HyperParameterTuningJobWarmStartType) Values added in v0.29.0

Values returns all known values for HyperParameterTuningJobWarmStartType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type HyperParameterTuningResourceConfig added in v1.39.0

type HyperParameterTuningResourceConfig struct {

	// The strategy that determines the order of preference for resources specified in
	// InstanceConfigs used in hyperparameter optimization.
	AllocationStrategy HyperParameterTuningAllocationStrategy

	// A list containing the configuration(s) for one or more resources for processing
	// hyperparameter jobs. These resources include compute instances and storage
	// volumes to use in model training jobs launched by hyperparameter tuning jobs.
	// The AllocationStrategy controls the order in which multiple configurations
	// provided in InstanceConfigs are used. If you only want to use a single instance
	// configuration inside the HyperParameterTuningResourceConfig API, do not provide
	// a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and
	// InstanceCount . If you use InstanceConfigs , do not provide values for
	// InstanceType , VolumeSizeInGB or InstanceCount .
	InstanceConfigs []HyperParameterTuningInstanceConfig

	// The number of compute instances of type InstanceType to use. For distributed
	// training (https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html)
	// , select a value greater than 1.
	InstanceCount *int32

	// The instance type used to run hyperparameter optimization tuning jobs. See
	// descriptions of instance types (https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html)
	// for more information.
	InstanceType TrainingInstanceType

	// A key used by Amazon Web Services Key Management Service to encrypt data on the
	// storage volume attached to the compute instances used to run the training job.
	// You can use either of the following formats to specify a key. KMS Key ID:
	// "1234abcd-12ab-34cd-56ef-1234567890ab" Amazon Resource Name (ARN) of a KMS key:
	// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	// Some instances use local storage, which use a hardware module to encrypt (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// storage volumes. If you choose one of these instance types, you cannot request a
	// VolumeKmsKeyId . For a list of instance types that use local storage, see
	// instance store volumes (http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/)
	// . For more information about Amazon Web Services Key Management Service, see
	// KMS encryption (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-kms-permissions.html)
	// for more information.
	VolumeKmsKeyId *string

	// The volume size in GB for the storage volume to be used in processing
	// hyperparameter optimization jobs (optional). These volumes store model
	// artifacts, incremental states and optionally, scratch space for training
	// algorithms. Do not provide a value for this parameter if a value for
	// InstanceConfigs is also specified. Some instance types have a fixed total local
	// storage size. If you select one of these instances for training, VolumeSizeInGB
	// cannot be greater than this total size. For a list of instance types with local
	// instance storage and their sizes, see instance store volumes (http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/)
	// . SageMaker supports only the General Purpose SSD (gp2) (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html)
	// storage volume type.
	VolumeSizeInGB *int32
	// contains filtered or unexported fields
}

The configuration of resources, including compute instances and storage volumes for use in training jobs launched by hyperparameter tuning jobs. HyperParameterTuningResourceConfig is similar to ResourceConfig , but has the additional InstanceConfigs and AllocationStrategy fields to allow for flexible instance management. Specify one or more instance types, count, and the allocation strategy for instance selection. HyperParameterTuningResourceConfig supports the capabilities of ResourceConfig with the exception of KeepAlivePeriodInSeconds . Hyperparameter tuning jobs use warm pools by default, which reuse clusters between training jobs.

type HyperbandStrategyConfig added in v1.43.0

type HyperbandStrategyConfig struct {

	// The maximum number of resources (such as epochs) that can be used by a training
	// job launched by a hyperparameter tuning job. Once a job reaches the MaxResource
	// value, it is stopped. If a value for MaxResource is not provided, and Hyperband
	// is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts
	// to infer MaxResource from the following keys (if present) in
	// StaticsHyperParameters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters)
	// :
	//   - epochs
	//   - numepochs
	//   - n-epochs
	//   - n_epochs
	//   - num_epochs
	// If HyperbandStrategyConfig is unable to infer a value for MaxResource , it
	// generates a validation error. The maximum value is 20,000 epochs. All metrics
	// that correspond to an objective metric are used to derive early stopping
	// decisions (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html)
	// . For distributive (https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html)
	// training jobs, ensure that duplicate metrics are not printed in the logs across
	// the individual nodes in a training job. If multiple nodes are publishing
	// duplicate or incorrect metrics, training jobs may make an incorrect stopping
	// decision and stop the job prematurely.
	MaxResource *int32

	// The minimum number of resources (such as epochs) that can be used by a training
	// job launched by a hyperparameter tuning job. If the value for MinResource has
	// not been reached, the training job is not stopped by Hyperband .
	MinResource *int32
	// contains filtered or unexported fields
}

The configuration for Hyperband , a multi-fidelity based hyperparameter tuning strategy. Hyperband uses the final and intermediate results of a training job to dynamically allocate resources to utilized hyperparameter configurations while automatically stopping under-performing configurations. This parameter should be provided only if Hyperband is selected as the StrategyConfig under the HyperParameterTuningJobConfig API.

type IamIdentity added in v1.70.0

type IamIdentity struct {

	// The Amazon Resource Name (ARN) of the IAM identity.
	Arn *string

	// The ID of the principal that assumes the IAM identity.
	PrincipalId *string

	// The person or application which assumes the IAM identity.
	SourceIdentity *string
	// contains filtered or unexported fields
}

The IAM Identity details associated with the user. These details are associated with model package groups, model packages and project entities only.

type IdentityProviderOAuthSetting added in v1.103.0

type IdentityProviderOAuthSetting struct {

	// The name of the data source that you're connecting to. Canvas currently
	// supports OAuth for Snowflake and Salesforce Data Cloud.
	DataSourceName DataSourceName

	// The ARN of an Amazon Web Services Secrets Manager secret that stores the
	// credentials from your identity provider, such as the client ID and secret,
	// authorization URL, and token URL.
	SecretArn *string

	// Describes whether OAuth for a data source is enabled or disabled in the Canvas
	// application.
	Status FeatureStatus
	// contains filtered or unexported fields
}

The Amazon SageMaker Canvas application setting where you configure OAuth for connecting to an external data source, such as Snowflake.

type Image added in v0.29.0

type Image struct {

	// When the image was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The ARN of the image.
	//
	// This member is required.
	ImageArn *string

	// The name of the image.
	//
	// This member is required.
	ImageName *string

	// The status of the image.
	//
	// This member is required.
	ImageStatus ImageStatus

	// When the image was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The description of the image.
	Description *string

	// The name of the image as displayed.
	DisplayName *string

	// When a create, update, or delete operation fails, the reason for the failure.
	FailureReason *string
	// contains filtered or unexported fields
}

A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion .

type ImageClassificationJobConfig added in v1.72.0

type ImageClassificationJobConfig struct {

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria
	// contains filtered or unexported fields
}

The collection of settings used by an AutoML job V2 for the image classification problem type.

type ImageConfig added in v0.29.0

type ImageConfig struct {

	// Set this to one of the following values:
	//   - Platform - The model image is hosted in Amazon ECR.
	//   - Vpc - The model image is hosted in a private Docker registry in your VPC.
	//
	// This member is required.
	RepositoryAccessMode RepositoryAccessMode

	// (Optional) Specifies an authentication configuration for the private docker
	// registry where your model image is hosted. Specify a value for this property
	// only if you specified Vpc as the value for the RepositoryAccessMode field, and
	// the private Docker registry where the model image is hosted requires
	// authentication.
	RepositoryAuthConfig *RepositoryAuthConfig
	// contains filtered or unexported fields
}

Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC).

type ImageSortBy added in v0.29.0

type ImageSortBy string
const (
	ImageSortByCreationTime     ImageSortBy = "CREATION_TIME"
	ImageSortByLastModifiedTime ImageSortBy = "LAST_MODIFIED_TIME"
	ImageSortByImageName        ImageSortBy = "IMAGE_NAME"
)

Enum values for ImageSortBy

func (ImageSortBy) Values added in v0.29.0

func (ImageSortBy) Values() []ImageSortBy

Values returns all known values for ImageSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ImageSortOrder added in v0.29.0

type ImageSortOrder string
const (
	ImageSortOrderAscending  ImageSortOrder = "ASCENDING"
	ImageSortOrderDescending ImageSortOrder = "DESCENDING"
)

Enum values for ImageSortOrder

func (ImageSortOrder) Values added in v0.29.0

func (ImageSortOrder) Values() []ImageSortOrder

Values returns all known values for ImageSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ImageStatus added in v0.29.0

type ImageStatus string
const (
	ImageStatusCreating     ImageStatus = "CREATING"
	ImageStatusCreated      ImageStatus = "CREATED"
	ImageStatusCreateFailed ImageStatus = "CREATE_FAILED"
	ImageStatusUpdating     ImageStatus = "UPDATING"
	ImageStatusUpdateFailed ImageStatus = "UPDATE_FAILED"
	ImageStatusDeleting     ImageStatus = "DELETING"
	ImageStatusDeleteFailed ImageStatus = "DELETE_FAILED"
)

Enum values for ImageStatus

func (ImageStatus) Values added in v0.29.0

func (ImageStatus) Values() []ImageStatus

Values returns all known values for ImageStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ImageVersion added in v0.29.0

type ImageVersion struct {

	// When the version was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The ARN of the image the version is based on.
	//
	// This member is required.
	ImageArn *string

	// The ARN of the version.
	//
	// This member is required.
	ImageVersionArn *string

	// The status of the version.
	//
	// This member is required.
	ImageVersionStatus ImageVersionStatus

	// When the version was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The version number.
	//
	// This member is required.
	Version *int32

	// When a create or delete operation fails, the reason for the failure.
	FailureReason *string
	// contains filtered or unexported fields
}

A version of a SageMaker Image . A version represents an existing container image.

type ImageVersionSortBy added in v0.29.0

type ImageVersionSortBy string
const (
	ImageVersionSortByCreationTime     ImageVersionSortBy = "CREATION_TIME"
	ImageVersionSortByLastModifiedTime ImageVersionSortBy = "LAST_MODIFIED_TIME"
	ImageVersionSortByVersion          ImageVersionSortBy = "VERSION"
)

Enum values for ImageVersionSortBy

func (ImageVersionSortBy) Values added in v0.29.0

Values returns all known values for ImageVersionSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ImageVersionSortOrder added in v0.29.0

type ImageVersionSortOrder string
const (
	ImageVersionSortOrderAscending  ImageVersionSortOrder = "ASCENDING"
	ImageVersionSortOrderDescending ImageVersionSortOrder = "DESCENDING"
)

Enum values for ImageVersionSortOrder

func (ImageVersionSortOrder) Values added in v0.29.0

Values returns all known values for ImageVersionSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ImageVersionStatus added in v0.29.0

type ImageVersionStatus string
const (
	ImageVersionStatusCreating     ImageVersionStatus = "CREATING"
	ImageVersionStatusCreated      ImageVersionStatus = "CREATED"
	ImageVersionStatusCreateFailed ImageVersionStatus = "CREATE_FAILED"
	ImageVersionStatusDeleting     ImageVersionStatus = "DELETING"
	ImageVersionStatusDeleteFailed ImageVersionStatus = "DELETE_FAILED"
)

Enum values for ImageVersionStatus

func (ImageVersionStatus) Values added in v0.29.0

Values returns all known values for ImageVersionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceComponentComputeResourceRequirements added in v1.119.0

type InferenceComponentComputeResourceRequirements struct {

	// The minimum MB of memory to allocate to run a model that you assign to an
	// inference component.
	//
	// This member is required.
	MinMemoryRequiredInMb *int32

	// The maximum MB of memory to allocate to run a model that you assign to an
	// inference component.
	MaxMemoryRequiredInMb *int32

	// The number of accelerators to allocate to run a model that you assign to an
	// inference component. Accelerators include GPUs and Amazon Web Services
	// Inferentia.
	NumberOfAcceleratorDevicesRequired *float32

	// The number of CPU cores to allocate to run a model that you assign to an
	// inference component.
	NumberOfCpuCoresRequired *float32
	// contains filtered or unexported fields
}

Defines the compute resources to allocate to run a model that you assign to an inference component. These resources include CPU cores, accelerators, and memory.

type InferenceComponentContainerSpecification added in v1.119.0

type InferenceComponentContainerSpecification struct {

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive
	// (.tar.gz suffix).
	ArtifactUrl *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string-to-string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]string

	// The Amazon Elastic Container Registry (Amazon ECR) path where the Docker image
	// for the model is stored.
	Image *string
	// contains filtered or unexported fields
}

Defines a container that provides the runtime environment for a model that you deploy with an inference component.

type InferenceComponentContainerSpecificationSummary added in v1.119.0

type InferenceComponentContainerSpecificationSummary struct {

	// The Amazon S3 path where the model artifacts are stored.
	ArtifactUrl *string

	// Gets the Amazon EC2 Container Registry path of the docker image of the model
	// that is hosted in this ProductionVariant (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html)
	// . If you used the registry/repository[:tag] form to specify the image path of
	// the primary container when you created the model hosted in this
	// ProductionVariant , the path resolves to a path of the form
	// registry/repository[@digest] . A digest is a hash value that identifies a
	// specific version of an image. For information about Amazon ECR paths, see
	// Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html)
	// in the Amazon ECR User Guide.
	DeployedImage *DeployedImage

	// The environment variables to set in the Docker container.
	Environment map[string]string
	// contains filtered or unexported fields
}

Details about the resources that are deployed with this inference component.

type InferenceComponentRuntimeConfig added in v1.119.0

type InferenceComponentRuntimeConfig struct {

	// The number of runtime copies of the model container to deploy with the
	// inference component. Each copy can serve inference requests.
	//
	// This member is required.
	CopyCount *int32
	// contains filtered or unexported fields
}

Runtime settings for a model that is deployed with an inference component.

type InferenceComponentRuntimeConfigSummary added in v1.119.0

type InferenceComponentRuntimeConfigSummary struct {

	// The number of runtime copies of the model container that are currently deployed.
	CurrentCopyCount *int32

	// The number of runtime copies of the model container that you requested to
	// deploy with the inference component.
	DesiredCopyCount *int32
	// contains filtered or unexported fields
}

Details about the runtime settings for the model that is deployed with the inference component.

type InferenceComponentSortKey added in v1.119.0

type InferenceComponentSortKey string
const (
	InferenceComponentSortKeyName         InferenceComponentSortKey = "Name"
	InferenceComponentSortKeyCreationTime InferenceComponentSortKey = "CreationTime"
	InferenceComponentSortKeyStatus       InferenceComponentSortKey = "Status"
)

Enum values for InferenceComponentSortKey

func (InferenceComponentSortKey) Values added in v1.119.0

Values returns all known values for InferenceComponentSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceComponentSpecification added in v1.119.0

type InferenceComponentSpecification struct {

	// The compute resources allocated to run the model assigned to the inference
	// component.
	//
	// This member is required.
	ComputeResourceRequirements *InferenceComponentComputeResourceRequirements

	// Defines a container that provides the runtime environment for a model that you
	// deploy with an inference component.
	Container *InferenceComponentContainerSpecification

	// The name of an existing SageMaker model object in your account that you want to
	// deploy with the inference component.
	ModelName *string

	// Settings that take effect while the model container starts up.
	StartupParameters *InferenceComponentStartupParameters
	// contains filtered or unexported fields
}

Details about the resources to deploy with this inference component, including the model, container, and compute resources.

type InferenceComponentSpecificationSummary added in v1.119.0

type InferenceComponentSpecificationSummary struct {

	// The compute resources allocated to run the model assigned to the inference
	// component.
	ComputeResourceRequirements *InferenceComponentComputeResourceRequirements

	// Details about the container that provides the runtime environment for the model
	// that is deployed with the inference component.
	Container *InferenceComponentContainerSpecificationSummary

	// The name of the SageMaker model object that is deployed with the inference
	// component.
	ModelName *string

	// Settings that take effect while the model container starts up.
	StartupParameters *InferenceComponentStartupParameters
	// contains filtered or unexported fields
}

Details about the resources that are deployed with this inference component.

type InferenceComponentStartupParameters added in v1.119.0

type InferenceComponentStartupParameters struct {

	// The timeout value, in seconds, for your inference container to pass health
	// check by Amazon S3 Hosting. For more information about health check, see How
	// Your Container Should Respond to Health Check (Ping) Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests)
	// .
	ContainerStartupHealthCheckTimeoutInSeconds *int32

	// The timeout value, in seconds, to download and extract the model that you want
	// to host from Amazon S3 to the individual inference instance associated with this
	// inference component.
	ModelDataDownloadTimeoutInSeconds *int32
	// contains filtered or unexported fields
}

Settings that take effect while the model container starts up.

type InferenceComponentStatus added in v1.119.0

type InferenceComponentStatus string
const (
	InferenceComponentStatusInService InferenceComponentStatus = "InService"
	InferenceComponentStatusCreating  InferenceComponentStatus = "Creating"
	InferenceComponentStatusUpdating  InferenceComponentStatus = "Updating"
	InferenceComponentStatusFailed    InferenceComponentStatus = "Failed"
	InferenceComponentStatusDeleting  InferenceComponentStatus = "Deleting"
)

Enum values for InferenceComponentStatus

func (InferenceComponentStatus) Values added in v1.119.0

Values returns all known values for InferenceComponentStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceComponentSummary added in v1.119.0

type InferenceComponentSummary struct {

	// The time when the inference component was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint that hosts the inference
	// component.
	//
	// This member is required.
	EndpointArn *string

	// The name of the endpoint that hosts the inference component.
	//
	// This member is required.
	EndpointName *string

	// The Amazon Resource Name (ARN) of the inference component.
	//
	// This member is required.
	InferenceComponentArn *string

	// The name of the inference component.
	//
	// This member is required.
	InferenceComponentName *string

	// The time when the inference component was last updated.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The name of the production variant that hosts the inference component.
	//
	// This member is required.
	VariantName *string

	// The status of the inference component.
	InferenceComponentStatus InferenceComponentStatus
	// contains filtered or unexported fields
}

A summary of the properties of an inference component.

type InferenceExecutionConfig added in v1.2.0

type InferenceExecutionConfig struct {

	// How containers in a multi-container are run. The following values are valid.
	//   - SERIAL - Containers run as a serial pipeline.
	//   - DIRECT - Only the individual container that you specify is run.
	//
	// This member is required.
	Mode InferenceExecutionMode
	// contains filtered or unexported fields
}

Specifies details about how containers in a multi-container endpoint are run.

type InferenceExecutionMode added in v1.2.0

type InferenceExecutionMode string
const (
	InferenceExecutionModeSerial InferenceExecutionMode = "Serial"
	InferenceExecutionModeDirect InferenceExecutionMode = "Direct"
)

Enum values for InferenceExecutionMode

func (InferenceExecutionMode) Values added in v1.2.0

Values returns all known values for InferenceExecutionMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceExperimentDataStorageConfig added in v1.56.0

type InferenceExperimentDataStorageConfig struct {

	// The Amazon S3 bucket where the inference request and response data is stored.
	//
	// This member is required.
	Destination *string

	// Configuration specifying how to treat different headers. If no headers are
	// specified Amazon SageMaker will by default base64 encode when capturing the
	// data.
	ContentType *CaptureContentTypeHeader

	// The Amazon Web Services Key Management Service key that Amazon SageMaker uses
	// to encrypt captured data at rest using Amazon S3 server-side encryption.
	KmsKey *string
	// contains filtered or unexported fields
}

The Amazon S3 location and configuration for storing inference request and response data.

type InferenceExperimentSchedule added in v1.56.0

type InferenceExperimentSchedule struct {

	// The timestamp at which the inference experiment ended or will end.
	EndTime *time.Time

	// The timestamp at which the inference experiment started or will start.
	StartTime *time.Time
	// contains filtered or unexported fields
}

The start and end times of an inference experiment. The maximum duration that you can set for an inference experiment is 30 days.

type InferenceExperimentStatus added in v1.56.0

type InferenceExperimentStatus string
const (
	InferenceExperimentStatusCreating  InferenceExperimentStatus = "Creating"
	InferenceExperimentStatusCreated   InferenceExperimentStatus = "Created"
	InferenceExperimentStatusUpdating  InferenceExperimentStatus = "Updating"
	InferenceExperimentStatusRunning   InferenceExperimentStatus = "Running"
	InferenceExperimentStatusStarting  InferenceExperimentStatus = "Starting"
	InferenceExperimentStatusStopping  InferenceExperimentStatus = "Stopping"
	InferenceExperimentStatusCompleted InferenceExperimentStatus = "Completed"
	InferenceExperimentStatusCancelled InferenceExperimentStatus = "Cancelled"
)

Enum values for InferenceExperimentStatus

func (InferenceExperimentStatus) Values added in v1.56.0

Values returns all known values for InferenceExperimentStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceExperimentStopDesiredState added in v1.56.0

type InferenceExperimentStopDesiredState string
const (
	InferenceExperimentStopDesiredStateCompleted InferenceExperimentStopDesiredState = "Completed"
	InferenceExperimentStopDesiredStateCancelled InferenceExperimentStopDesiredState = "Cancelled"
)

Enum values for InferenceExperimentStopDesiredState

func (InferenceExperimentStopDesiredState) Values added in v1.56.0

Values returns all known values for InferenceExperimentStopDesiredState. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceExperimentSummary added in v1.56.0

type InferenceExperimentSummary struct {

	// The timestamp at which the inference experiment was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The timestamp when you last modified the inference experiment.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The name of the inference experiment.
	//
	// This member is required.
	Name *string

	// The status of the inference experiment.
	//
	// This member is required.
	Status InferenceExperimentStatus

	// The type of the inference experiment.
	//
	// This member is required.
	Type InferenceExperimentType

	// The timestamp at which the inference experiment was completed.
	CompletionTime *time.Time

	// The description of the inference experiment.
	Description *string

	// The ARN of the IAM role that Amazon SageMaker can assume to access model
	// artifacts and container images, and manage Amazon SageMaker Inference endpoints
	// for model deployment.
	RoleArn *string

	// The duration for which the inference experiment ran or will run. The maximum
	// duration that you can set for an inference experiment is 30 days.
	Schedule *InferenceExperimentSchedule

	// The error message for the inference experiment status result.
	StatusReason *string
	// contains filtered or unexported fields
}

Lists a summary of properties of an inference experiment.

type InferenceExperimentType added in v1.56.0

type InferenceExperimentType string
const (
	InferenceExperimentTypeShadowMode InferenceExperimentType = "ShadowMode"
)

Enum values for InferenceExperimentType

func (InferenceExperimentType) Values added in v1.56.0

Values returns all known values for InferenceExperimentType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InferenceMetrics added in v1.49.0

type InferenceMetrics struct {

	// The expected maximum number of requests per minute for the instance.
	//
	// This member is required.
	MaxInvocations *int32

	// The expected model latency at maximum invocations per minute for the instance.
	//
	// This member is required.
	ModelLatency *int32
	// contains filtered or unexported fields
}

The metrics for an existing endpoint compared in an Inference Recommender job.

type InferenceRecommendation added in v1.20.0

type InferenceRecommendation struct {

	// Defines the endpoint configuration parameters.
	//
	// This member is required.
	EndpointConfiguration *EndpointOutputConfiguration

	// The metrics used to decide what recommendation to make.
	//
	// This member is required.
	Metrics *RecommendationMetrics

	// Defines the model configuration.
	//
	// This member is required.
	ModelConfiguration *ModelConfiguration

	// A timestamp that shows when the benchmark completed.
	InvocationEndTime *time.Time

	// A timestamp that shows when the benchmark started.
	InvocationStartTime *time.Time

	// The recommendation ID which uniquely identifies each recommendation.
	RecommendationId *string
	// contains filtered or unexported fields
}

A list of recommendations made by Amazon SageMaker Inference Recommender.

type InferenceRecommendationsJob added in v1.20.0

type InferenceRecommendationsJob struct {

	// A timestamp that shows when the job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the recommendation job.
	//
	// This member is required.
	JobArn *string

	// The job description.
	//
	// This member is required.
	JobDescription *string

	// The name of the job.
	//
	// This member is required.
	JobName *string

	// The recommendation job type.
	//
	// This member is required.
	JobType RecommendationJobType

	// A timestamp that shows when the job was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to
	// perform tasks on your behalf.
	//
	// This member is required.
	RoleArn *string

	// The status of the job.
	//
	// This member is required.
	Status RecommendationJobStatus

	// A timestamp that shows when the job completed.
	CompletionTime *time.Time

	// If the job fails, provides information why the job failed.
	FailureReason *string

	// The name of the created model.
	ModelName *string

	// The Amazon Resource Name (ARN) of a versioned model package.
	ModelPackageVersionArn *string

	// The Amazon Simple Storage Service (Amazon S3) path where the sample payload is
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	SamplePayloadUrl *string
	// contains filtered or unexported fields
}

A structure that contains a list of recommendation jobs.

type InferenceRecommendationsJobStep added in v1.50.0

type InferenceRecommendationsJobStep struct {

	// The name of the Inference Recommender job.
	//
	// This member is required.
	JobName *string

	// The current status of the benchmark.
	//
	// This member is required.
	Status RecommendationJobStatus

	// The type of the subtask. BENCHMARK : Evaluate the performance of your model on
	// different instance types.
	//
	// This member is required.
	StepType RecommendationStepType

	// The details for a specific benchmark.
	InferenceBenchmark *RecommendationJobInferenceBenchmark
	// contains filtered or unexported fields
}

A returned array object for the Steps response field in the ListInferenceRecommendationsJobSteps (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html) API command.

type InferenceSpecification

type InferenceSpecification struct {

	// The Amazon ECR registry path of the Docker image that contains the inference
	// code.
	//
	// This member is required.
	Containers []ModelPackageContainerDefinition

	// The supported MIME types for the input data.
	SupportedContentTypes []string

	// A list of the instance types that are used to generate inferences in real-time.
	// This parameter is required for unversioned models, and optional for versioned
	// models.
	SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType

	// The supported MIME types for the output data.
	SupportedResponseMIMETypes []string

	// A list of the instance types on which a transformation job can be run or on
	// which an endpoint can be deployed. This parameter is required for unversioned
	// models, and optional for versioned models.
	SupportedTransformInstanceTypes []TransformInstanceType
	// contains filtered or unexported fields
}

Defines how to perform inference generation after a training job is run.

type InfraCheckConfig added in v1.119.0

type InfraCheckConfig struct {

	// Enables an infrastructure health check.
	EnableInfraCheck *bool
	// contains filtered or unexported fields
}

Configuration information for the infrastructure health check of a training job. A SageMaker-provided health check tests the health of instance hardware and cluster network connectivity.

type InputConfig

type InputConfig struct {

	// Identifies the framework in which the model was trained. For example:
	// TENSORFLOW.
	//
	// This member is required.
	Framework Framework

	// The S3 path where the model artifacts, which result from model training, are
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	//
	// This member is required.
	S3Uri *string

	// Specifies the name and shape of the expected data inputs for your trained model
	// with a JSON dictionary form. The data inputs are Framework specific.
	//   - TensorFlow : You must specify the name and shape (NHWC format) of the
	//   expected data inputs using a dictionary format for your trained model. The
	//   dictionary formats required for the console and CLI are different.
	//   - Examples for one input:
	//   - If using the console, {"input":[1,1024,1024,3]}
	//   - If using the CLI, {\"input\":[1,1024,1024,3]}
	//   - Examples for two inputs:
	//   - If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
	//   - If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
	//   - KERAS : You must specify the name and shape (NCHW format) of expected data
	//   inputs using a dictionary format for your trained model. Note that while Keras
	//   model artifacts should be uploaded in NHWC (channel-last) format,
	//   DataInputConfig should be specified in NCHW (channel-first) format. The
	//   dictionary formats required for the console and CLI are different.
	//   - Examples for one input:
	//   - If using the console, {"input_1":[1,3,224,224]}
	//   - If using the CLI, {\"input_1\":[1,3,224,224]}
	//   - Examples for two inputs:
	//   - If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
	//   - If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
	//   - MXNET/ONNX/DARKNET : You must specify the name and shape (NCHW format) of
	//   the expected data inputs in order using a dictionary format for your trained
	//   model. The dictionary formats required for the console and CLI are different.
	//   - Examples for one input:
	//   - If using the console, {"data":[1,3,1024,1024]}
	//   - If using the CLI, {\"data\":[1,3,1024,1024]}
	//   - Examples for two inputs:
	//   - If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
	//   - If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
	//   - PyTorch : You can either specify the name and shape (NCHW format) of
	//   expected data inputs in order using a dictionary format for your trained model
	//   or you can specify the shape only using a list format. The dictionary formats
	//   required for the console and CLI are different. The list formats for the console
	//   and CLI are the same.
	//   - Examples for one input in dictionary format:
	//   - If using the console, {"input0":[1,3,224,224]}
	//   - If using the CLI, {\"input0\":[1,3,224,224]}
	//   - Example for one input in list format: [[1,3,224,224]]
	//   - Examples for two inputs in dictionary format:
	//   - If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
	//   - If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
	//   - Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
	//   - XGBOOST : input data name and shape are not needed.
	// DataInputConfig supports the following parameters for CoreML TargetDevice (ML
	// Model format):
	//   - shape : Input shape, for example {"input_1": {"shape": [1,224,224,3]}} . In
	//   addition to static input shapes, CoreML converter supports Flexible input
	//   shapes:
	//   - Range Dimension. You can use the Range Dimension feature if you know the
	//   input shape will be within some specific interval in that dimension, for
	//   example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
	//   - Enumerated shapes. Sometimes, the models are trained to work only on a
	//   select set of inputs. You can enumerate all supported input shapes, for example:
	//   {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
	//   - default_shape : Default input shape. You can set a default shape during
	//   conversion for both Range Dimension and Enumerated Shapes. For example
	//   {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224,
	//   3]}}
	//   - type : Input type. Allowed values: Image and Tensor . By default, the
	//   converter generates an ML Model with inputs of type Tensor (MultiArray). User
	//   can set input type to be Image. Image input type requires additional input
	//   parameters such as bias and scale .
	//   - bias : If the input type is an Image, you need to provide the bias vector.
	//   - scale : If the input type is an Image, you need to provide a scale factor.
	// CoreML ClassifierConfig parameters can be specified using OutputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html)
	// CompilerOptions . CoreML converter supports Tensorflow and PyTorch models.
	// CoreML conversion examples:
	//   - Tensor type input:
	//   - "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]],
	//   "default_shape": [1,224,224,3]}}
	//   - Tensor type input without input name (PyTorch):
	//   - "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
	//   "default_shape": [1,3,224,224]}]
	//   - Image type input:
	//   - "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]],
	//   "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale":
	//   0.007843137255}}
	//   - "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
	//   - Image type input without input name (PyTorch):
	//   - "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
	//   "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale":
	//   0.007843137255}]
	//   - "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
	// Depending on the model format, DataInputConfig requires the following
	// parameters for ml_eia2 OutputConfig:TargetDevice (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice)
	// .
	//   - For TensorFlow models saved in the SavedModel format, specify the input
	//   names from signature_def_key and the input model shapes for DataInputConfig .
	//   Specify the signature_def_key in OutputConfig:CompilerOptions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
	//   if the model does not use TensorFlow's default signature def key. For example:
	//   - "DataInputConfig": {"inputs": [1, 224, 224, 3]}
	//   - "CompilerOptions": {"signature_def_key": "serving_custom"}
	//   - For TensorFlow models saved as a frozen graph, specify the input tensor
	//   names and shapes in DataInputConfig and the output tensor names for
	//   output_names in OutputConfig:CompilerOptions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
	//   . For example:
	//   - "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
	//   - "CompilerOptions": {"output_names": ["output_tensor:0"]}
	DataInputConfig *string

	// Specifies the framework version to use. This API field is only supported for
	// the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks. For information
	// about framework versions supported for cloud targets and edge devices, see
	// Cloud Supported Instance Types and Frameworks (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html)
	// and Edge Supported Frameworks (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html)
	// .
	FrameworkVersion *string
	// contains filtered or unexported fields
}

Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

type InputMode added in v0.31.0

type InputMode string
const (
	InputModePipe InputMode = "Pipe"
	InputModeFile InputMode = "File"
)

Enum values for InputMode

func (InputMode) Values added in v0.31.0

func (InputMode) Values() []InputMode

Values returns all known values for InputMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type InstanceGroup added in v1.35.0

type InstanceGroup struct {

	// Specifies the number of instances of the instance group.
	//
	// This member is required.
	InstanceCount *int32

	// Specifies the name of the instance group.
	//
	// This member is required.
	InstanceGroupName *string

	// Specifies the instance type of the instance group.
	//
	// This member is required.
	InstanceType TrainingInstanceType
	// contains filtered or unexported fields
}

Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html) API, you can configure multiple instance groups .

type InstanceMetadataServiceConfiguration added in v1.32.0

type InstanceMetadataServiceConfiguration struct {

	// Indicates the minimum IMDS version that the notebook instance supports. When
	// passed as part of CreateNotebookInstance , if no value is selected, then it
	// defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If
	// passed as part of UpdateNotebookInstance , there is no default.
	//
	// This member is required.
	MinimumInstanceMetadataServiceVersion *string
	// contains filtered or unexported fields
}

Information on the IMDS configuration of the notebook instance

type InstanceType

type InstanceType string
const (
	InstanceTypeMlT2Medium     InstanceType = "ml.t2.medium"
	InstanceTypeMlT2Large      InstanceType = "ml.t2.large"
	InstanceTypeMlT2Xlarge     InstanceType = "ml.t2.xlarge"
	InstanceTypeMlT22xlarge    InstanceType = "ml.t2.2xlarge"
	InstanceTypeMlT3Medium     InstanceType = "ml.t3.medium"
	InstanceTypeMlT3Large      InstanceType = "ml.t3.large"
	InstanceTypeMlT3Xlarge     InstanceType = "ml.t3.xlarge"
	InstanceTypeMlT32xlarge    InstanceType = "ml.t3.2xlarge"
	InstanceTypeMlM4Xlarge     InstanceType = "ml.m4.xlarge"
	InstanceTypeMlM42xlarge    InstanceType = "ml.m4.2xlarge"
	InstanceTypeMlM44xlarge    InstanceType = "ml.m4.4xlarge"
	InstanceTypeMlM410xlarge   InstanceType = "ml.m4.10xlarge"
	InstanceTypeMlM416xlarge   InstanceType = "ml.m4.16xlarge"
	InstanceTypeMlM5Xlarge     InstanceType = "ml.m5.xlarge"
	InstanceTypeMlM52xlarge    InstanceType = "ml.m5.2xlarge"
	InstanceTypeMlM54xlarge    InstanceType = "ml.m5.4xlarge"
	InstanceTypeMlM512xlarge   InstanceType = "ml.m5.12xlarge"
	InstanceTypeMlM524xlarge   InstanceType = "ml.m5.24xlarge"
	InstanceTypeMlM5dLarge     InstanceType = "ml.m5d.large"
	InstanceTypeMlM5dXlarge    InstanceType = "ml.m5d.xlarge"
	InstanceTypeMlM5d2xlarge   InstanceType = "ml.m5d.2xlarge"
	InstanceTypeMlM5d4xlarge   InstanceType = "ml.m5d.4xlarge"
	InstanceTypeMlM5d8xlarge   InstanceType = "ml.m5d.8xlarge"
	InstanceTypeMlM5d12xlarge  InstanceType = "ml.m5d.12xlarge"
	InstanceTypeMlM5d16xlarge  InstanceType = "ml.m5d.16xlarge"
	InstanceTypeMlM5d24xlarge  InstanceType = "ml.m5d.24xlarge"
	InstanceTypeMlC4Xlarge     InstanceType = "ml.c4.xlarge"
	InstanceTypeMlC42xlarge    InstanceType = "ml.c4.2xlarge"
	InstanceTypeMlC44xlarge    InstanceType = "ml.c4.4xlarge"
	InstanceTypeMlC48xlarge    InstanceType = "ml.c4.8xlarge"
	InstanceTypeMlC5Xlarge     InstanceType = "ml.c5.xlarge"
	InstanceTypeMlC52xlarge    InstanceType = "ml.c5.2xlarge"
	InstanceTypeMlC54xlarge    InstanceType = "ml.c5.4xlarge"
	InstanceTypeMlC59xlarge    InstanceType = "ml.c5.9xlarge"
	InstanceTypeMlC518xlarge   InstanceType = "ml.c5.18xlarge"
	InstanceTypeMlC5dXlarge    InstanceType = "ml.c5d.xlarge"
	InstanceTypeMlC5d2xlarge   InstanceType = "ml.c5d.2xlarge"
	InstanceTypeMlC5d4xlarge   InstanceType = "ml.c5d.4xlarge"
	InstanceTypeMlC5d9xlarge   InstanceType = "ml.c5d.9xlarge"
	InstanceTypeMlC5d18xlarge  InstanceType = "ml.c5d.18xlarge"
	InstanceTypeMlP2Xlarge     InstanceType = "ml.p2.xlarge"
	InstanceTypeMlP28xlarge    InstanceType = "ml.p2.8xlarge"
	InstanceTypeMlP216xlarge   InstanceType = "ml.p2.16xlarge"
	InstanceTypeMlP32xlarge    InstanceType = "ml.p3.2xlarge"
	InstanceTypeMlP38xlarge    InstanceType = "ml.p3.8xlarge"
	InstanceTypeMlP316xlarge   InstanceType = "ml.p3.16xlarge"
	InstanceTypeMlP3dn24xlarge InstanceType = "ml.p3dn.24xlarge"
	InstanceTypeMlG4dnXlarge   InstanceType = "ml.g4dn.xlarge"
	InstanceTypeMlG4dn2xlarge  InstanceType = "ml.g4dn.2xlarge"
	InstanceTypeMlG4dn4xlarge  InstanceType = "ml.g4dn.4xlarge"
	InstanceTypeMlG4dn8xlarge  InstanceType = "ml.g4dn.8xlarge"
	InstanceTypeMlG4dn12xlarge InstanceType = "ml.g4dn.12xlarge"
	InstanceTypeMlG4dn16xlarge InstanceType = "ml.g4dn.16xlarge"
	InstanceTypeMlR5Large      InstanceType = "ml.r5.large"
	InstanceTypeMlR5Xlarge     InstanceType = "ml.r5.xlarge"
	InstanceTypeMlR52xlarge    InstanceType = "ml.r5.2xlarge"
	InstanceTypeMlR54xlarge    InstanceType = "ml.r5.4xlarge"
	InstanceTypeMlR58xlarge    InstanceType = "ml.r5.8xlarge"
	InstanceTypeMlR512xlarge   InstanceType = "ml.r5.12xlarge"
	InstanceTypeMlR516xlarge   InstanceType = "ml.r5.16xlarge"
	InstanceTypeMlR524xlarge   InstanceType = "ml.r5.24xlarge"
	InstanceTypeMlG5Xlarge     InstanceType = "ml.g5.xlarge"
	InstanceTypeMlG52xlarge    InstanceType = "ml.g5.2xlarge"
	InstanceTypeMlG54xlarge    InstanceType = "ml.g5.4xlarge"
	InstanceTypeMlG58xlarge    InstanceType = "ml.g5.8xlarge"
	InstanceTypeMlG516xlarge   InstanceType = "ml.g5.16xlarge"
	InstanceTypeMlG512xlarge   InstanceType = "ml.g5.12xlarge"
	InstanceTypeMlG524xlarge   InstanceType = "ml.g5.24xlarge"
	InstanceTypeMlG548xlarge   InstanceType = "ml.g5.48xlarge"
	InstanceTypeMlInf1Xlarge   InstanceType = "ml.inf1.xlarge"
	InstanceTypeMlInf12xlarge  InstanceType = "ml.inf1.2xlarge"
	InstanceTypeMlInf16xlarge  InstanceType = "ml.inf1.6xlarge"
	InstanceTypeMlInf124xlarge InstanceType = "ml.inf1.24xlarge"
	InstanceTypeMlP4d24xlarge  InstanceType = "ml.p4d.24xlarge"
	InstanceTypeMlP4de24xlarge InstanceType = "ml.p4de.24xlarge"
)

Enum values for InstanceType

func (InstanceType) Values added in v0.29.0

func (InstanceType) Values() []InstanceType

Values returns all known values for InstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type IntegerParameterRange

type IntegerParameterRange struct {

	// The maximum value of the hyperparameter to search.
	//
	// This member is required.
	MaxValue *string

	// The minimum value of the hyperparameter to search.
	//
	// This member is required.
	MinValue *string

	// The name of the hyperparameter to search.
	//
	// This member is required.
	Name *string

	// The scale that hyperparameter tuning uses to search the hyperparameter range.
	// For information about choosing a hyperparameter scale, see Hyperparameter
	// Scaling (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type)
	// . One of the following values: Auto SageMaker hyperparameter tuning chooses the
	// best scale for the hyperparameter. Linear Hyperparameter tuning searches the
	// values in the hyperparameter range by using a linear scale. Logarithmic
	// Hyperparameter tuning searches the values in the hyperparameter range by using a
	// logarithmic scale. Logarithmic scaling works only for ranges that have only
	// values greater than 0.
	ScalingType HyperParameterScalingType
	// contains filtered or unexported fields
}

For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

type IntegerParameterRangeSpecification

type IntegerParameterRangeSpecification struct {

	// The maximum integer value allowed.
	//
	// This member is required.
	MaxValue *string

	// The minimum integer value allowed.
	//
	// This member is required.
	MinValue *string
	// contains filtered or unexported fields
}

Defines the possible values for an integer hyperparameter.

type JobType added in v1.59.0

type JobType string
const (
	JobTypeTraining       JobType = "TRAINING"
	JobTypeInference      JobType = "INFERENCE"
	JobTypeNotebookKernel JobType = "NOTEBOOK_KERNEL"
)

Enum values for JobType

func (JobType) Values added in v1.59.0

func (JobType) Values() []JobType

Values returns all known values for JobType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type JoinSource

type JoinSource string
const (
	JoinSourceInput JoinSource = "Input"
	JoinSourceNone  JoinSource = "None"
)

Enum values for JoinSource

func (JoinSource) Values added in v0.29.0

func (JoinSource) Values() []JoinSource

Values returns all known values for JoinSource. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type JupyterLabAppImageConfig added in v1.120.0

type JupyterLabAppImageConfig struct {

	// The configuration used to run the application image container.
	ContainerConfig *ContainerConfig
	// contains filtered or unexported fields
}

The configuration for the file system and kernels in a SageMaker image running as a JupyterLab app.

type JupyterLabAppSettings added in v1.120.0

type JupyterLabAppSettings struct {

	// A list of Git repositories that SageMaker automatically displays to users for
	// cloning in the JupyterLab application.
	CodeRepositories []CodeRepository

	// A list of custom SageMaker images that are configured to run as a JupyterLab
	// app.
	CustomImages []CustomImage

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the lifecycle configurations attached to the
	// user profile or domain. To remove a lifecycle config, you must set
	// LifecycleConfigArns to an empty list.
	LifecycleConfigArns []string
	// contains filtered or unexported fields
}

The settings for the JupyterLab application.

type JupyterServerAppSettings

type JupyterServerAppSettings struct {

	// A list of Git repositories that SageMaker automatically displays to users for
	// cloning in the JupyterServer application.
	CodeRepositories []CodeRepository

	// The default instance type and the Amazon Resource Name (ARN) of the default
	// SageMaker image used by the JupyterServer app. If you use the
	// LifecycleConfigArns parameter, then this parameter is also required.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the
	// JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter
	// is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns
	// to an empty list.
	LifecycleConfigArns []string
	// contains filtered or unexported fields
}

The JupyterServer app settings.

type KendraSettings added in v1.111.0

type KendraSettings struct {

	// Describes whether the document querying feature is enabled or disabled in the
	// Canvas application.
	Status FeatureStatus
	// contains filtered or unexported fields
}

The Amazon SageMaker Canvas application setting where you configure document querying.

type KernelGatewayAppSettings

type KernelGatewayAppSettings struct {

	// A list of custom SageMaker images that are configured to run as a KernelGateway
	// app.
	CustomImages []CustomImage

	// The default instance type and the Amazon Resource Name (ARN) of the default
	// SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI
	// does not use the default instance type value set here. The default instance type
	// set here is used when Apps are created using the Amazon Web Services Command
	// Line Interface or Amazon Web Services CloudFormation and the instance type
	// parameter value is not passed.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the
	// the user profile or domain. To remove a Lifecycle Config, you must set
	// LifecycleConfigArns to an empty list.
	LifecycleConfigArns []string
	// contains filtered or unexported fields
}

The KernelGateway app settings.

type KernelGatewayImageConfig added in v0.29.0

type KernelGatewayImageConfig struct {

	// The specification of the Jupyter kernels in the image.
	//
	// This member is required.
	KernelSpecs []KernelSpec

	// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
	// image.
	FileSystemConfig *FileSystemConfig
	// contains filtered or unexported fields
}

The configuration for the file system and kernels in a SageMaker image running as a KernelGateway app.

type KernelSpec added in v0.29.0

type KernelSpec struct {

	// The name of the Jupyter kernel in the image. This value is case sensitive.
	//
	// This member is required.
	Name *string

	// The display name of the kernel.
	DisplayName *string
	// contains filtered or unexported fields
}

The specification of a Jupyter kernel.

type LabelCounters

type LabelCounters struct {

	// The total number of objects that could not be labeled due to an error.
	FailedNonRetryableError *int32

	// The total number of objects labeled by a human worker.
	HumanLabeled *int32

	// The total number of objects labeled by automated data labeling.
	MachineLabeled *int32

	// The total number of objects labeled.
	TotalLabeled *int32

	// The total number of objects not yet labeled.
	Unlabeled *int32
	// contains filtered or unexported fields
}

Provides a breakdown of the number of objects labeled.

type LabelCountersForWorkteam

type LabelCountersForWorkteam struct {

	// The total number of data objects labeled by a human worker.
	HumanLabeled *int32

	// The total number of data objects that need to be labeled by a human worker.
	PendingHuman *int32

	// The total number of tasks in the labeling job.
	Total *int32
	// contains filtered or unexported fields
}

Provides counts for human-labeled tasks in the labeling job.

type LabelingJobAlgorithmsConfig

type LabelingJobAlgorithmsConfig struct {

	// Specifies the Amazon Resource Name (ARN) of the algorithm used for
	// auto-labeling. You must select one of the following ARNs:
	//   - Image classification
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
	//   - Text classification
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
	//   - Object detection
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
	//   - Semantic Segmentation
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
	//
	// This member is required.
	LabelingJobAlgorithmSpecificationArn *string

	// At the end of an auto-label job Ground Truth sends the Amazon Resource Name
	// (ARN) of the final model used for auto-labeling. You can use this model as the
	// starting point for subsequent similar jobs by providing the ARN of the model
	// here.
	InitialActiveLearningModelArn *string

	// Provides configuration information for a labeling job.
	LabelingJobResourceConfig *LabelingJobResourceConfig
	// contains filtered or unexported fields
}

Provides configuration information for auto-labeling of your data objects. A LabelingJobAlgorithmsConfig object must be supplied in order to use auto-labeling.

type LabelingJobDataAttributes

type LabelingJobDataAttributes struct {

	// Declares that your content is free of personally identifiable information or
	// adult content. SageMaker may restrict the Amazon Mechanical Turk workers that
	// can view your task based on this information.
	ContentClassifiers []ContentClassifier
	// contains filtered or unexported fields
}

Attributes of the data specified by the customer. Use these to describe the data to be labeled.

type LabelingJobDataSource

type LabelingJobDataSource struct {

	// The Amazon S3 location of the input data objects.
	S3DataSource *LabelingJobS3DataSource

	// An Amazon SNS data source used for streaming labeling jobs. To learn more, see
	// Send Data to a Streaming Labeling Job (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data)
	// .
	SnsDataSource *LabelingJobSnsDataSource
	// contains filtered or unexported fields
}

Provides information about the location of input data. You must specify at least one of the following: S3DataSource or SnsDataSource . Use SnsDataSource to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job. Use S3DataSource to specify an input manifest file for both streaming and one-time labeling jobs. Adding an S3DataSource is optional if you use SnsDataSource to create a streaming labeling job.

type LabelingJobForWorkteamSummary

type LabelingJobForWorkteamSummary struct {

	// The date and time that the labeling job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A unique identifier for a labeling job. You can use this to refer to a specific
	// labeling job.
	//
	// This member is required.
	JobReferenceCode *string

	// The Amazon Web Services account ID of the account used to start the labeling
	// job.
	//
	// This member is required.
	WorkRequesterAccountId *string

	// Provides information about the progress of a labeling job.
	LabelCounters *LabelCountersForWorkteam

	// The name of the labeling job that the work team is assigned to.
	LabelingJobName *string

	// The configured number of workers per data object.
	NumberOfHumanWorkersPerDataObject *int32
	// contains filtered or unexported fields
}

Provides summary information for a work team.

type LabelingJobInputConfig

type LabelingJobInputConfig struct {

	// The location of the input data.
	//
	// This member is required.
	DataSource *LabelingJobDataSource

	// Attributes of the data specified by the customer.
	DataAttributes *LabelingJobDataAttributes
	// contains filtered or unexported fields
}

Input configuration information for a labeling job.

type LabelingJobOutput

type LabelingJobOutput struct {

	// The Amazon S3 bucket location of the manifest file for labeled data.
	//
	// This member is required.
	OutputDatasetS3Uri *string

	// The Amazon Resource Name (ARN) for the most recent SageMaker model trained as
	// part of automated data labeling.
	FinalActiveLearningModelArn *string
	// contains filtered or unexported fields
}

Specifies the location of the output produced by the labeling job.

type LabelingJobOutputConfig

type LabelingJobOutputConfig struct {

	// The Amazon S3 location to write output data.
	//
	// This member is required.
	S3OutputPath *string

	// The Amazon Web Services Key Management Service ID of the key used to encrypt
	// the output data, if any. If you provide your own KMS key ID, you must add the
	// required permissions to your KMS key described in Encrypt Output Data and
	// Storage Volume with Amazon Web Services KMS (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions)
	// . If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon
	// Web Services KMS key for Amazon S3 for your role's account to encrypt your
	// output data. If you use a bucket policy with an s3:PutObject permission that
	// only allows objects with server-side encryption, set the condition key of
	// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
	// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide.
	KmsKeyId *string

	// An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a
	// SnsTopicArn if you want to do real time chaining to another streaming job and
	// receive an Amazon SNS notifications each time a data object is submitted by a
	// worker. If you provide an SnsTopicArn in OutputConfig , when workers complete
	// labeling tasks, Ground Truth will send labeling task output data to the SNS
	// output topic you specify here. To learn more, see Receive Output Data from a
	// Streaming Labeling Job (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data)
	// .
	SnsTopicArn *string
	// contains filtered or unexported fields
}

Output configuration information for a labeling job.

type LabelingJobResourceConfig

type LabelingJobResourceConfig struct {

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
	// ML compute instance(s) that run the training and inference jobs used for
	// automated data labeling. You can only specify a VolumeKmsKeyId when you create
	// a labeling job with automated data labeling enabled using the API operation
	// CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt
	// the storage volume used for automated data labeling model training and inference
	// when you create a labeling job using the console. To learn more, see Output
	// Data and Storage Volume Encryption (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html)
	// . The VolumeKmsKeyId can be any of the following formats:
	//   - KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	VolumeKmsKeyId *string

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

Configure encryption on the storage volume attached to the ML compute instance used to run automated data labeling model training and inference.

type LabelingJobS3DataSource

type LabelingJobS3DataSource struct {

	// The Amazon S3 location of the manifest file that describes the input data
	// objects. The input manifest file referenced in ManifestS3Uri must contain one
	// of the following keys: source-ref or source . The value of the keys are
	// interpreted as follows:
	//   - source-ref : The source of the object is the Amazon S3 object specified in
	//   the value. Use this value when the object is a binary object, such as an image.
	//   - source : The source of the object is the value. Use this value when the
	//   object is a text value.
	// If you are a new user of Ground Truth, it is recommended you review Use an
	// Input Manifest File  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html)
	// in the Amazon SageMaker Developer Guide to learn how to create an input manifest
	// file.
	//
	// This member is required.
	ManifestS3Uri *string
	// contains filtered or unexported fields
}

The Amazon S3 location of the input data objects.

type LabelingJobSnsDataSource added in v0.29.0

type LabelingJobSnsDataSource struct {

	// The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the
	// input topic you will use to send new data objects to a streaming labeling job.
	//
	// This member is required.
	SnsTopicArn *string
	// contains filtered or unexported fields
}

An Amazon SNS data source used for streaming labeling jobs.

type LabelingJobStatus

type LabelingJobStatus string
const (
	LabelingJobStatusInitializing LabelingJobStatus = "Initializing"
	LabelingJobStatusInProgress   LabelingJobStatus = "InProgress"
	LabelingJobStatusCompleted    LabelingJobStatus = "Completed"
	LabelingJobStatusFailed       LabelingJobStatus = "Failed"
	LabelingJobStatusStopping     LabelingJobStatus = "Stopping"
	LabelingJobStatusStopped      LabelingJobStatus = "Stopped"
)

Enum values for LabelingJobStatus

func (LabelingJobStatus) Values added in v0.29.0

Values returns all known values for LabelingJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type LabelingJobStoppingConditions

type LabelingJobStoppingConditions struct {

	// The maximum number of objects that can be labeled by human workers.
	MaxHumanLabeledObjectCount *int32

	// The maximum number of input data objects that should be labeled.
	MaxPercentageOfInputDatasetLabeled *int32
	// contains filtered or unexported fields
}

A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling. Labeling jobs fail after 30 days with an appropriate client error message.

type LabelingJobSummary

type LabelingJobSummary struct {

	// The date and time that the job was created (timestamp).
	//
	// This member is required.
	CreationTime *time.Time

	// Counts showing the progress of the labeling job.
	//
	// This member is required.
	LabelCounters *LabelCounters

	// The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
	//
	// This member is required.
	LabelingJobArn *string

	// The name of the labeling job.
	//
	// This member is required.
	LabelingJobName *string

	// The current status of the labeling job.
	//
	// This member is required.
	LabelingJobStatus LabelingJobStatus

	// The date and time that the job was last modified (timestamp).
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of a Lambda function. The function is run before
	// each data object is sent to a worker.
	//
	// This member is required.
	PreHumanTaskLambdaArn *string

	// The Amazon Resource Name (ARN) of the work team assigned to the job.
	//
	// This member is required.
	WorkteamArn *string

	// The Amazon Resource Name (ARN) of the Lambda function used to consolidate the
	// annotations from individual workers into a label for a data object. For more
	// information, see Annotation Consolidation (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
	// .
	AnnotationConsolidationLambdaArn *string

	// If the LabelingJobStatus field is Failed , this field contains a description of
	// the error.
	FailureReason *string

	// Input configuration for the labeling job.
	InputConfig *LabelingJobInputConfig

	// The location of the output produced by the labeling job.
	LabelingJobOutput *LabelingJobOutput
	// contains filtered or unexported fields
}

Provides summary information about a labeling job.

type LambdaStepMetadata added in v1.11.0

type LambdaStepMetadata struct {

	// The Amazon Resource Name (ARN) of the Lambda function that was run by this step
	// execution.
	Arn *string

	// A list of the output parameters of the Lambda step.
	OutputParameters []OutputParameter
	// contains filtered or unexported fields
}

Metadata for a Lambda step.

type LastUpdateStatus added in v1.34.0

type LastUpdateStatus struct {

	// A value that indicates whether the update was made successful.
	//
	// This member is required.
	Status LastUpdateStatusValue

	// If the update wasn't successful, indicates the reason why it failed.
	FailureReason *string
	// contains filtered or unexported fields
}

A value that indicates whether the update was successful.

type LastUpdateStatusValue added in v1.34.0

type LastUpdateStatusValue string
const (
	LastUpdateStatusValueSuccessful LastUpdateStatusValue = "Successful"
	LastUpdateStatusValueFailed     LastUpdateStatusValue = "Failed"
	LastUpdateStatusValueInProgress LastUpdateStatusValue = "InProgress"
)

Enum values for LastUpdateStatusValue

func (LastUpdateStatusValue) Values added in v1.34.0

Values returns all known values for LastUpdateStatusValue. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type LineageGroupSummary added in v1.20.0

type LineageGroupSummary struct {

	// The creation time of the lineage group summary.
	CreationTime *time.Time

	// The display name of the lineage group summary.
	DisplayName *string

	// The last modified time of the lineage group summary.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the lineage group resource.
	LineageGroupArn *string

	// The name or Amazon Resource Name (ARN) of the lineage group.
	LineageGroupName *string
	// contains filtered or unexported fields
}

Lists a summary of the properties of a lineage group. A lineage group provides a group of shareable lineage entity resources.

type LineageType added in v1.20.0

type LineageType string
const (
	LineageTypeTrialComponent LineageType = "TrialComponent"
	LineageTypeArtifact       LineageType = "Artifact"
	LineageTypeContext        LineageType = "Context"
	LineageTypeAction         LineageType = "Action"
)

Enum values for LineageType

func (LineageType) Values added in v1.20.0

func (LineageType) Values() []LineageType

Values returns all known values for LineageType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListCompilationJobsSortBy

type ListCompilationJobsSortBy string
const (
	ListCompilationJobsSortByName         ListCompilationJobsSortBy = "Name"
	ListCompilationJobsSortByCreationTime ListCompilationJobsSortBy = "CreationTime"
	ListCompilationJobsSortByStatus       ListCompilationJobsSortBy = "Status"
)

Enum values for ListCompilationJobsSortBy

func (ListCompilationJobsSortBy) Values added in v0.29.0

Values returns all known values for ListCompilationJobsSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListDeviceFleetsSortBy added in v0.31.0

type ListDeviceFleetsSortBy string
const (
	ListDeviceFleetsSortByName             ListDeviceFleetsSortBy = "NAME"
	ListDeviceFleetsSortByCreationTime     ListDeviceFleetsSortBy = "CREATION_TIME"
	ListDeviceFleetsSortByLastModifiedTime ListDeviceFleetsSortBy = "LAST_MODIFIED_TIME"
)

Enum values for ListDeviceFleetsSortBy

func (ListDeviceFleetsSortBy) Values added in v0.31.0

Values returns all known values for ListDeviceFleetsSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListEdgeDeploymentPlansSortBy added in v1.37.0

type ListEdgeDeploymentPlansSortBy string
const (
	ListEdgeDeploymentPlansSortByName             ListEdgeDeploymentPlansSortBy = "NAME"
	ListEdgeDeploymentPlansSortByDeviceFleetName  ListEdgeDeploymentPlansSortBy = "DEVICE_FLEET_NAME"
	ListEdgeDeploymentPlansSortByCreationTime     ListEdgeDeploymentPlansSortBy = "CREATION_TIME"
	ListEdgeDeploymentPlansSortByLastModifiedTime ListEdgeDeploymentPlansSortBy = "LAST_MODIFIED_TIME"
)

Enum values for ListEdgeDeploymentPlansSortBy

func (ListEdgeDeploymentPlansSortBy) Values added in v1.37.0

Values returns all known values for ListEdgeDeploymentPlansSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListEdgePackagingJobsSortBy added in v0.31.0

type ListEdgePackagingJobsSortBy string
const (
	ListEdgePackagingJobsSortByName                   ListEdgePackagingJobsSortBy = "NAME"
	ListEdgePackagingJobsSortByModelName              ListEdgePackagingJobsSortBy = "MODEL_NAME"
	ListEdgePackagingJobsSortByCreationTime           ListEdgePackagingJobsSortBy = "CREATION_TIME"
	ListEdgePackagingJobsSortByLastModifiedTime       ListEdgePackagingJobsSortBy = "LAST_MODIFIED_TIME"
	ListEdgePackagingJobsSortByEdgePackagingJobStatus ListEdgePackagingJobsSortBy = "STATUS"
)

Enum values for ListEdgePackagingJobsSortBy

func (ListEdgePackagingJobsSortBy) Values added in v0.31.0

Values returns all known values for ListEdgePackagingJobsSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListInferenceRecommendationsJobsSortBy added in v1.20.0

type ListInferenceRecommendationsJobsSortBy string
const (
	ListInferenceRecommendationsJobsSortByName         ListInferenceRecommendationsJobsSortBy = "Name"
	ListInferenceRecommendationsJobsSortByCreationTime ListInferenceRecommendationsJobsSortBy = "CreationTime"
	ListInferenceRecommendationsJobsSortByStatus       ListInferenceRecommendationsJobsSortBy = "Status"
)

Enum values for ListInferenceRecommendationsJobsSortBy

func (ListInferenceRecommendationsJobsSortBy) Values added in v1.20.0

Values returns all known values for ListInferenceRecommendationsJobsSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListLabelingJobsForWorkteamSortByOptions

type ListLabelingJobsForWorkteamSortByOptions string
const (
	ListLabelingJobsForWorkteamSortByOptionsCreationTime ListLabelingJobsForWorkteamSortByOptions = "CreationTime"
)

Enum values for ListLabelingJobsForWorkteamSortByOptions

func (ListLabelingJobsForWorkteamSortByOptions) Values added in v0.29.0

Values returns all known values for ListLabelingJobsForWorkteamSortByOptions. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListWorkforcesSortByOptions

type ListWorkforcesSortByOptions string
const (
	ListWorkforcesSortByOptionsName       ListWorkforcesSortByOptions = "Name"
	ListWorkforcesSortByOptionsCreateDate ListWorkforcesSortByOptions = "CreateDate"
)

Enum values for ListWorkforcesSortByOptions

func (ListWorkforcesSortByOptions) Values added in v0.29.0

Values returns all known values for ListWorkforcesSortByOptions. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ListWorkteamsSortByOptions

type ListWorkteamsSortByOptions string
const (
	ListWorkteamsSortByOptionsName       ListWorkteamsSortByOptions = "Name"
	ListWorkteamsSortByOptionsCreateDate ListWorkteamsSortByOptions = "CreateDate"
)

Enum values for ListWorkteamsSortByOptions

func (ListWorkteamsSortByOptions) Values added in v0.29.0

Values returns all known values for ListWorkteamsSortByOptions. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ManagedInstanceScalingStatus added in v1.119.0

type ManagedInstanceScalingStatus string
const (
	ManagedInstanceScalingStatusEnabled  ManagedInstanceScalingStatus = "ENABLED"
	ManagedInstanceScalingStatusDisabled ManagedInstanceScalingStatus = "DISABLED"
)

Enum values for ManagedInstanceScalingStatus

func (ManagedInstanceScalingStatus) Values added in v1.119.0

Values returns all known values for ManagedInstanceScalingStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MemberDefinition

type MemberDefinition struct {

	// The Amazon Cognito user group that is part of the work team.
	CognitoMemberDefinition *CognitoMemberDefinition

	// A list user groups that exist in your OIDC Identity Provider (IdP). One to ten
	// groups can be used to create a single private work team. When you add a user
	// group to the list of Groups , you can add that user group to one or more private
	// work teams. If you add a user group to a private work team, all workers in that
	// user group are added to the work team.
	OidcMemberDefinition *OidcMemberDefinition
	// contains filtered or unexported fields
}

Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

type MetadataProperties added in v0.31.0

type MetadataProperties struct {

	// The commit ID.
	CommitId *string

	// The entity this entity was generated by.
	GeneratedBy *string

	// The project ID.
	ProjectId *string

	// The repository.
	Repository *string
	// contains filtered or unexported fields
}

Metadata properties of the tracking entity, trial, or trial component.

type MetricData

type MetricData struct {

	// The name of the metric.
	MetricName *string

	// The date and time that the algorithm emitted the metric.
	Timestamp *time.Time

	// The value of the metric.
	Value *float32
	// contains filtered or unexported fields
}

The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.

type MetricDatum added in v1.12.0

type MetricDatum struct {

	// The name of the metric.
	MetricName AutoMLMetricEnum

	// The dataset split from which the AutoML job produced the metric.
	Set MetricSetSource

	// The name of the standard metric. For definitions of the standard metrics, see
	// Autopilot candidate metrics (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-metrics)
	// .
	StandardMetricName AutoMLMetricExtendedEnum

	// The value of the metric.
	Value *float32
	// contains filtered or unexported fields
}

Information about the metric for a candidate produced by an AutoML job.

type MetricDefinition

type MetricDefinition struct {

	// The name of the metric.
	//
	// This member is required.
	Name *string

	// A regular expression that searches the output of a training job and gets the
	// value of the metric. For more information about using regular expressions to
	// define metrics, see Defining metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// .
	//
	// This member is required.
	Regex *string
	// contains filtered or unexported fields
}

Specifies a metric that the training algorithm writes to stderr or stdout . You can view these logs to understand how your training job performs and check for any errors encountered during training. SageMaker hyperparameter tuning captures all defined metrics. Specify one of the defined metrics to use as an objective metric using the TuningObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective) parameter in the HyperParameterTrainingJobDefinition API to evaluate job performance during hyperparameter tuning.

type MetricSetSource added in v1.12.0

type MetricSetSource string
const (
	MetricSetSourceTrain      MetricSetSource = "Train"
	MetricSetSourceValidation MetricSetSource = "Validation"
	MetricSetSourceTest       MetricSetSource = "Test"
)

Enum values for MetricSetSource

func (MetricSetSource) Values added in v1.12.0

func (MetricSetSource) Values() []MetricSetSource

Values returns all known values for MetricSetSource. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MetricSpecification added in v1.98.0

type MetricSpecification interface {
	// contains filtered or unexported methods
}

An object containing information about a metric.

The following types satisfy this interface:

MetricSpecificationMemberCustomized
MetricSpecificationMemberPredefined
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.MetricSpecification
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.MetricSpecificationMemberCustomized:
		_ = v.Value // Value is types.CustomizedMetricSpecification

	case *types.MetricSpecificationMemberPredefined:
		_ = v.Value // Value is types.PredefinedMetricSpecification

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type MetricSpecificationMemberCustomized added in v1.98.0

type MetricSpecificationMemberCustomized struct {
	Value CustomizedMetricSpecification
	// contains filtered or unexported fields
}

Information about a customized metric.

type MetricSpecificationMemberPredefined added in v1.98.0

type MetricSpecificationMemberPredefined struct {
	Value PredefinedMetricSpecification
	// contains filtered or unexported fields
}

Information about a predefined metric.

type MetricsSource added in v0.31.0

type MetricsSource struct {

	// The metric source content type.
	//
	// This member is required.
	ContentType *string

	// The S3 URI for the metrics source.
	//
	// This member is required.
	S3Uri *string

	// The hash key used for the metrics source.
	ContentDigest *string
	// contains filtered or unexported fields
}

Details about the metrics source.

type Model added in v1.56.0

type Model struct {

	// The containers in the inference pipeline.
	Containers []ContainerDefinition

	// A timestamp that indicates when the model was created.
	CreationTime *time.Time

	// A set of recommended deployment configurations for the model.
	DeploymentRecommendation *DeploymentRecommendation

	// Isolates the model container. No inbound or outbound network calls can be made
	// to or from the model container.
	EnableNetworkIsolation *bool

	// The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
	ExecutionRoleArn *string

	// Specifies details about how containers in a multi-container endpoint are run.
	InferenceExecutionConfig *InferenceExecutionConfig

	// The Amazon Resource Name (ARN) of the model.
	ModelArn *string

	// The name of the model.
	ModelName *string

	// Describes the container, as part of model definition.
	PrimaryContainer *ContainerDefinition

	// A list of key-value pairs associated with the model. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

The properties of a model as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API.

type ModelAccessConfig added in v1.118.0

type ModelAccessConfig struct {

	// Specifies agreement to the model end-user license agreement (EULA). The
	// AcceptEula value must be explicitly defined as True in order to accept the EULA
	// that this model requires. You are responsible for reviewing and complying with
	// any applicable license terms and making sure they are acceptable for your use
	// case before downloading or using a model.
	//
	// This member is required.
	AcceptEula *bool
	// contains filtered or unexported fields
}

The access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig . For more information, see End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula) .

type ModelApprovalStatus added in v0.31.0

type ModelApprovalStatus string
const (
	ModelApprovalStatusApproved              ModelApprovalStatus = "Approved"
	ModelApprovalStatusRejected              ModelApprovalStatus = "Rejected"
	ModelApprovalStatusPendingManualApproval ModelApprovalStatus = "PendingManualApproval"
)

Enum values for ModelApprovalStatus

func (ModelApprovalStatus) Values added in v0.31.0

Values returns all known values for ModelApprovalStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelArtifacts

type ModelArtifacts struct {

	// The path of the S3 object that contains the model artifacts. For example,
	// s3://bucket-name/keynameprefix/model.tar.gz .
	//
	// This member is required.
	S3ModelArtifacts *string
	// contains filtered or unexported fields
}

Provides information about the location that is configured for storing model artifacts. Model artifacts are the output that results from training a model, and typically consist of trained parameters, a model definition that describes how to compute inferences, and other metadata.

type ModelBiasAppSpecification added in v0.31.0

type ModelBiasAppSpecification struct {

	// JSON formatted S3 file that defines bias parameters. For more information on
	// this JSON configuration file, see Configure bias parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-bias-parameters.html)
	// .
	//
	// This member is required.
	ConfigUri *string

	// The container image to be run by the model bias job.
	//
	// This member is required.
	ImageUri *string

	// Sets the environment variables in the Docker container.
	Environment map[string]string
	// contains filtered or unexported fields
}

Docker container image configuration object for the model bias job.

type ModelBiasBaselineConfig added in v0.31.0

type ModelBiasBaselineConfig struct {

	// The name of the baseline model bias job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource
	// contains filtered or unexported fields
}

The configuration for a baseline model bias job.

type ModelBiasJobInput added in v0.31.0

type ModelBiasJobInput struct {

	// Location of ground truth labels to use in model bias job.
	//
	// This member is required.
	GroundTruthS3Input *MonitoringGroundTruthS3Input

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput
	// contains filtered or unexported fields
}

Inputs for the model bias job.

type ModelCacheSetting added in v1.2.0

type ModelCacheSetting string
const (
	ModelCacheSettingEnabled  ModelCacheSetting = "Enabled"
	ModelCacheSettingDisabled ModelCacheSetting = "Disabled"
)

Enum values for ModelCacheSetting

func (ModelCacheSetting) Values added in v1.2.0

Values returns all known values for ModelCacheSetting. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCard added in v1.56.0

type ModelCard struct {

	// The content of the model card. Content uses the model card JSON schema (https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html#model-cards-json-schema)
	// and provided as a string.
	Content *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The date and time that the model card was created.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// The date and time that the model card was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the model card.
	ModelCardArn *string

	// The unique name of the model card.
	ModelCardName *string

	// The approval status of the model card within your organization. Different
	// organizations might have different criteria for model card review and approval.
	//   - Draft : The model card is a work in progress.
	//   - PendingReview : The model card is pending review.
	//   - Approved : The model card is approved.
	//   - Archived : The model card is archived. No more updates should be made to the
	//   model card, but it can still be exported.
	ModelCardStatus ModelCardStatus

	// The version of the model card.
	ModelCardVersion *int32

	// The unique name (ID) of the model.
	ModelId *string

	// The model package group that contains the model package. Only relevant for
	// model cards created for model packages in the Amazon SageMaker Model Registry.
	ModelPackageGroupName *string

	// The risk rating of the model. Different organizations might have different
	// criteria for model card risk ratings. For more information, see Risk ratings (https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html)
	// .
	RiskRating *string

	// The security configuration used to protect model card data.
	SecurityConfig *ModelCardSecurityConfig

	// Key-value pairs used to manage metadata for the model card.
	Tags []Tag
	// contains filtered or unexported fields
}

An Amazon SageMaker Model Card.

type ModelCardExportArtifacts added in v1.56.0

type ModelCardExportArtifacts struct {

	// The Amazon S3 URI of the exported model artifacts.
	//
	// This member is required.
	S3ExportArtifacts *string
	// contains filtered or unexported fields
}

The artifacts of the model card export job.

type ModelCardExportJobSortBy added in v1.56.0

type ModelCardExportJobSortBy string
const (
	ModelCardExportJobSortByName         ModelCardExportJobSortBy = "Name"
	ModelCardExportJobSortByCreationTime ModelCardExportJobSortBy = "CreationTime"
	ModelCardExportJobSortByStatus       ModelCardExportJobSortBy = "Status"
)

Enum values for ModelCardExportJobSortBy

func (ModelCardExportJobSortBy) Values added in v1.56.0

Values returns all known values for ModelCardExportJobSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardExportJobSortOrder added in v1.56.0

type ModelCardExportJobSortOrder string
const (
	ModelCardExportJobSortOrderAscending  ModelCardExportJobSortOrder = "Ascending"
	ModelCardExportJobSortOrderDescending ModelCardExportJobSortOrder = "Descending"
)

Enum values for ModelCardExportJobSortOrder

func (ModelCardExportJobSortOrder) Values added in v1.56.0

Values returns all known values for ModelCardExportJobSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardExportJobStatus added in v1.56.0

type ModelCardExportJobStatus string
const (
	ModelCardExportJobStatusInProgress ModelCardExportJobStatus = "InProgress"
	ModelCardExportJobStatusCompleted  ModelCardExportJobStatus = "Completed"
	ModelCardExportJobStatusFailed     ModelCardExportJobStatus = "Failed"
)

Enum values for ModelCardExportJobStatus

func (ModelCardExportJobStatus) Values added in v1.56.0

Values returns all known values for ModelCardExportJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardExportJobSummary added in v1.56.0

type ModelCardExportJobSummary struct {

	// The date and time that the model card export job was created.
	//
	// This member is required.
	CreatedAt *time.Time

	// The date and time that the model card export job was last modified..
	//
	// This member is required.
	LastModifiedAt *time.Time

	// The Amazon Resource Name (ARN) of the model card export job.
	//
	// This member is required.
	ModelCardExportJobArn *string

	// The name of the model card export job.
	//
	// This member is required.
	ModelCardExportJobName *string

	// The name of the model card that the export job exports.
	//
	// This member is required.
	ModelCardName *string

	// The version of the model card that the export job exports.
	//
	// This member is required.
	ModelCardVersion *int32

	// The completion status of the model card export job.
	//
	// This member is required.
	Status ModelCardExportJobStatus
	// contains filtered or unexported fields
}

The summary of the Amazon SageMaker Model Card export job.

type ModelCardExportOutputConfig added in v1.56.0

type ModelCardExportOutputConfig struct {

	// The Amazon S3 output path to export your model card PDF.
	//
	// This member is required.
	S3OutputPath *string
	// contains filtered or unexported fields
}

Configure the export output details for an Amazon SageMaker Model Card.

type ModelCardProcessingStatus added in v1.56.0

type ModelCardProcessingStatus string
const (
	ModelCardProcessingStatusDeleteInprogress  ModelCardProcessingStatus = "DeleteInProgress"
	ModelCardProcessingStatusDeletePending     ModelCardProcessingStatus = "DeletePending"
	ModelCardProcessingStatusContentDeleted    ModelCardProcessingStatus = "ContentDeleted"
	ModelCardProcessingStatusExportjobsDeleted ModelCardProcessingStatus = "ExportJobsDeleted"
	ModelCardProcessingStatusDeleteCompleted   ModelCardProcessingStatus = "DeleteCompleted"
	ModelCardProcessingStatusDeleteFailed      ModelCardProcessingStatus = "DeleteFailed"
)

Enum values for ModelCardProcessingStatus

func (ModelCardProcessingStatus) Values added in v1.56.0

Values returns all known values for ModelCardProcessingStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardSecurityConfig added in v1.56.0

type ModelCardSecurityConfig struct {

	// A Key Management Service key ID (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
	// to use for encrypting a model card.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Configure the security settings to protect model card data.

type ModelCardSortBy added in v1.56.0

type ModelCardSortBy string
const (
	ModelCardSortByName         ModelCardSortBy = "Name"
	ModelCardSortByCreationTime ModelCardSortBy = "CreationTime"
)

Enum values for ModelCardSortBy

func (ModelCardSortBy) Values added in v1.56.0

func (ModelCardSortBy) Values() []ModelCardSortBy

Values returns all known values for ModelCardSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardSortOrder added in v1.56.0

type ModelCardSortOrder string
const (
	ModelCardSortOrderAscending  ModelCardSortOrder = "Ascending"
	ModelCardSortOrderDescending ModelCardSortOrder = "Descending"
)

Enum values for ModelCardSortOrder

func (ModelCardSortOrder) Values added in v1.56.0

Values returns all known values for ModelCardSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardStatus added in v1.56.0

type ModelCardStatus string
const (
	ModelCardStatusDraft         ModelCardStatus = "Draft"
	ModelCardStatusPendingreview ModelCardStatus = "PendingReview"
	ModelCardStatusApproved      ModelCardStatus = "Approved"
	ModelCardStatusArchived      ModelCardStatus = "Archived"
)

Enum values for ModelCardStatus

func (ModelCardStatus) Values added in v1.56.0

func (ModelCardStatus) Values() []ModelCardStatus

Values returns all known values for ModelCardStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardSummary added in v1.56.0

type ModelCardSummary struct {

	// The date and time that the model card was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model card.
	//
	// This member is required.
	ModelCardArn *string

	// The name of the model card.
	//
	// This member is required.
	ModelCardName *string

	// The approval status of the model card within your organization. Different
	// organizations might have different criteria for model card review and approval.
	//   - Draft : The model card is a work in progress.
	//   - PendingReview : The model card is pending review.
	//   - Approved : The model card is approved.
	//   - Archived : The model card is archived. No more updates should be made to the
	//   model card, but it can still be exported.
	//
	// This member is required.
	ModelCardStatus ModelCardStatus

	// The date and time that the model card was last modified.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

A summary of the model card.

type ModelCardVersionSortBy added in v1.56.0

type ModelCardVersionSortBy string
const (
	ModelCardVersionSortByVersion ModelCardVersionSortBy = "Version"
)

Enum values for ModelCardVersionSortBy

func (ModelCardVersionSortBy) Values added in v1.56.0

Values returns all known values for ModelCardVersionSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelCardVersionSummary added in v1.56.0

type ModelCardVersionSummary struct {

	// The date and time that the model card version was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model card.
	//
	// This member is required.
	ModelCardArn *string

	// The name of the model card.
	//
	// This member is required.
	ModelCardName *string

	// The approval status of the model card version within your organization.
	// Different organizations might have different criteria for model card review and
	// approval.
	//   - Draft : The model card is a work in progress.
	//   - PendingReview : The model card is pending review.
	//   - Approved : The model card is approved.
	//   - Archived : The model card is archived. No more updates should be made to the
	//   model card, but it can still be exported.
	//
	// This member is required.
	ModelCardStatus ModelCardStatus

	// A version of the model card.
	//
	// This member is required.
	ModelCardVersion *int32

	// The time date and time that the model card version was last modified.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

A summary of a specific version of the model card.

type ModelClientConfig

type ModelClientConfig struct {

	// The maximum number of retries when invocation requests are failing. The default
	// value is 3.
	InvocationsMaxRetries *int32

	// The timeout value in seconds for an invocation request. The default value is
	// 600.
	InvocationsTimeoutInSeconds *int32
	// contains filtered or unexported fields
}

Configures the timeout and maximum number of retries for processing a transform job invocation.

type ModelCompressionType added in v1.86.0

type ModelCompressionType string
const (
	ModelCompressionTypeNone ModelCompressionType = "None"
	ModelCompressionTypeGzip ModelCompressionType = "Gzip"
)

Enum values for ModelCompressionType

func (ModelCompressionType) Values added in v1.86.0

Values returns all known values for ModelCompressionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelConfiguration added in v1.20.0

type ModelConfiguration struct {

	// The name of the compilation job used to create the recommended model artifacts.
	CompilationJobName *string

	// Defines the environment parameters that includes key, value types, and values.
	EnvironmentParameters []EnvironmentParameter

	// The inference specification name in the model package version.
	InferenceSpecificationName *string
	// contains filtered or unexported fields
}

Defines the model configuration. Includes the specification name and environment parameters.

type ModelDashboardEndpoint added in v1.56.0

type ModelDashboardEndpoint struct {

	// A timestamp that indicates when the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The endpoint name.
	//
	// This member is required.
	EndpointName *string

	// The endpoint status.
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// The last time the endpoint was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

An endpoint that hosts a model displayed in the Amazon SageMaker Model Dashboard.

type ModelDashboardIndicatorAction added in v1.56.0

type ModelDashboardIndicatorAction struct {

	// Indicates whether the alert action is turned on.
	Enabled *bool
	// contains filtered or unexported fields
}

An alert action taken to light up an icon on the Amazon SageMaker Model Dashboard when an alert goes into InAlert status.

type ModelDashboardModel added in v1.56.0

type ModelDashboardModel struct {

	// The endpoints that host a model.
	Endpoints []ModelDashboardEndpoint

	// A batch transform job. For information about SageMaker batch transform, see Use
	// Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html)
	// .
	LastBatchTransformJob *TransformJob

	// A model displayed in the Model Dashboard.
	Model *Model

	// The model card for a model.
	ModelCard *ModelDashboardModelCard

	// The monitoring schedules for a model.
	MonitoringSchedules []ModelDashboardMonitoringSchedule
	// contains filtered or unexported fields
}

A model displayed in the Amazon SageMaker Model Dashboard.

type ModelDashboardModelCard added in v1.56.0

type ModelDashboardModelCard struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// A timestamp that indicates when the model card was created.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// A timestamp that indicates when the model card was last updated.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) for a model card.
	ModelCardArn *string

	// The name of a model card.
	ModelCardName *string

	// The model card status.
	ModelCardStatus ModelCardStatus

	// The model card version.
	ModelCardVersion *int32

	// For models created in SageMaker, this is the model ARN. For models created
	// outside of SageMaker, this is a user-customized string.
	ModelId *string

	// A model card's risk rating. Can be low, medium, or high.
	RiskRating *string

	// The KMS Key ID ( KMSKeyId ) for encryption of model card information.
	SecurityConfig *ModelCardSecurityConfig

	// The tags associated with a model card.
	Tags []Tag
	// contains filtered or unexported fields
}

The model card for a model displayed in the Amazon SageMaker Model Dashboard.

type ModelDashboardMonitoringSchedule added in v1.56.0

type ModelDashboardMonitoringSchedule struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// A timestamp that indicates when the monitoring schedule was created.
	CreationTime *time.Time

	// The endpoint which is monitored.
	EndpointName *string

	// If a monitoring job failed, provides the reason.
	FailureReason *string

	// A timestamp that indicates when the monitoring schedule was last updated.
	LastModifiedTime *time.Time

	// Summary of information about the last monitoring job to run.
	LastMonitoringExecutionSummary *MonitoringExecutionSummary

	// A JSON array where each element is a summary for a monitoring alert.
	MonitoringAlertSummaries []MonitoringAlertSummary

	// The Amazon Resource Name (ARN) of a monitoring schedule.
	MonitoringScheduleArn *string

	// Configures the monitoring schedule and defines the monitoring job.
	MonitoringScheduleConfig *MonitoringScheduleConfig

	// The name of a monitoring schedule.
	MonitoringScheduleName *string

	// The status of the monitoring schedule.
	MonitoringScheduleStatus ScheduleStatus

	// The monitor type of a model monitor.
	MonitoringType MonitoringType
	// contains filtered or unexported fields
}

A monitoring schedule for a model displayed in the Amazon SageMaker Model Dashboard.

type ModelDataQuality added in v0.31.0

type ModelDataQuality struct {

	// Data quality constraints for a model.
	Constraints *MetricsSource

	// Data quality statistics for a model.
	Statistics *MetricsSource
	// contains filtered or unexported fields
}

Data quality constraints and statistics for a model.

type ModelDataSource added in v1.86.0

type ModelDataSource struct {

	// Specifies the S3 location of ML model data to deploy.
	//
	// This member is required.
	S3DataSource *S3ModelDataSource
	// contains filtered or unexported fields
}

Specifies the location of ML model data to deploy. If specified, you must specify one and only one of the available data sources.

type ModelDeployConfig added in v1.4.0

type ModelDeployConfig struct {

	// Set to True to automatically generate an endpoint name for a one-click
	// Autopilot model deployment; set to False otherwise. The default value is False .
	// If you set AutoGenerateEndpointName to True , do not specify the EndpointName ;
	// otherwise a 400 error is thrown.
	AutoGenerateEndpointName *bool

	// Specifies the endpoint name to use for a one-click Autopilot model deployment
	// if the endpoint name is not generated automatically. Specify the EndpointName
	// if and only if you set AutoGenerateEndpointName to False ; otherwise a 400 error
	// is thrown.
	EndpointName *string
	// contains filtered or unexported fields
}

Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.

type ModelDeployResult added in v1.4.0

type ModelDeployResult struct {

	// The name of the endpoint to which the model has been deployed. If model
	// deployment fails, this field is omitted from the response.
	EndpointName *string
	// contains filtered or unexported fields
}

Provides information about the endpoint of the model deployment.

type ModelDigests added in v0.31.0

type ModelDigests struct {

	// Provides a hash value that uniquely identifies the stored model artifacts.
	ArtifactDigest *string
	// contains filtered or unexported fields
}

Provides information to verify the integrity of stored model artifacts.

type ModelExplainabilityAppSpecification added in v0.31.0

type ModelExplainabilityAppSpecification struct {

	// JSON formatted Amazon S3 file that defines explainability parameters. For more
	// information on this JSON configuration file, see Configure model explainability
	// parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-model-explainability-parameters.html)
	// .
	//
	// This member is required.
	ConfigUri *string

	// The container image to be run by the model explainability job.
	//
	// This member is required.
	ImageUri *string

	// Sets the environment variables in the Docker container.
	Environment map[string]string
	// contains filtered or unexported fields
}

Docker container image configuration object for the model explainability job.

type ModelExplainabilityBaselineConfig added in v0.31.0

type ModelExplainabilityBaselineConfig struct {

	// The name of the baseline model explainability job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource
	// contains filtered or unexported fields
}

The configuration for a baseline model explainability job.

type ModelExplainabilityJobInput added in v0.31.0

type ModelExplainabilityJobInput struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput
	// contains filtered or unexported fields
}

Inputs for the model explainability job.

type ModelInfrastructureConfig added in v1.56.0

type ModelInfrastructureConfig struct {

	// The inference option to which to deploy your model. Possible values are the
	// following:
	//   - RealTime : Deploy to real-time inference.
	//
	// This member is required.
	InfrastructureType ModelInfrastructureType

	// The infrastructure configuration for deploying the model to real-time inference.
	//
	// This member is required.
	RealTimeInferenceConfig *RealTimeInferenceConfig
	// contains filtered or unexported fields
}

The configuration for the infrastructure that the model will be deployed to.

type ModelInfrastructureType added in v1.56.0

type ModelInfrastructureType string
const (
	ModelInfrastructureTypeRealTimeInference ModelInfrastructureType = "RealTimeInference"
)

Enum values for ModelInfrastructureType

func (ModelInfrastructureType) Values added in v1.56.0

Values returns all known values for ModelInfrastructureType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelInput added in v1.20.0

type ModelInput struct {

	// The input configuration object for the model.
	//
	// This member is required.
	DataInputConfig *string
	// contains filtered or unexported fields
}

Input object for the model.

type ModelLatencyThreshold added in v1.20.0

type ModelLatencyThreshold struct {

	// The model latency percentile threshold. Acceptable values are P95 and P99 . For
	// custom load tests, specify the value as P95 .
	Percentile *string

	// The model latency percentile value in milliseconds.
	ValueInMilliseconds *int32
	// contains filtered or unexported fields
}

The model latency threshold.

type ModelMetadataFilter added in v1.20.0

type ModelMetadataFilter struct {

	// The name of the of the model to filter by.
	//
	// This member is required.
	Name ModelMetadataFilterType

	// The value to filter the model metadata.
	//
	// This member is required.
	Value *string
	// contains filtered or unexported fields
}

Part of the search expression. You can specify the name and value (domain, task, framework, framework version, task, and model).

type ModelMetadataFilterType added in v1.20.0

type ModelMetadataFilterType string
const (
	ModelMetadataFilterTypeDomain           ModelMetadataFilterType = "Domain"
	ModelMetadataFilterTypeFramework        ModelMetadataFilterType = "Framework"
	ModelMetadataFilterTypeTask             ModelMetadataFilterType = "Task"
	ModelMetadataFilterTypeFrameworkversion ModelMetadataFilterType = "FrameworkVersion"
)

Enum values for ModelMetadataFilterType

func (ModelMetadataFilterType) Values added in v1.20.0

Values returns all known values for ModelMetadataFilterType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelMetadataSearchExpression added in v1.20.0

type ModelMetadataSearchExpression struct {

	// A list of filter objects.
	Filters []ModelMetadataFilter
	// contains filtered or unexported fields
}

One or more filters that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results

type ModelMetadataSummary added in v1.20.0

type ModelMetadataSummary struct {

	// The machine learning domain of the model.
	//
	// This member is required.
	Domain *string

	// The machine learning framework of the model.
	//
	// This member is required.
	Framework *string

	// The framework version of the model.
	//
	// This member is required.
	FrameworkVersion *string

	// The name of the model.
	//
	// This member is required.
	Model *string

	// The machine learning task of the model.
	//
	// This member is required.
	Task *string
	// contains filtered or unexported fields
}

A summary of the model metadata.

type ModelMetrics added in v0.31.0

type ModelMetrics struct {

	// Metrics that measure bais in a model.
	Bias *Bias

	// Metrics that help explain a model.
	Explainability *Explainability

	// Metrics that measure the quality of the input data for a model.
	ModelDataQuality *ModelDataQuality

	// Metrics that measure the quality of a model.
	ModelQuality *ModelQuality
	// contains filtered or unexported fields
}

Contains metrics captured from a model.

type ModelPackage added in v0.31.0

type ModelPackage struct {

	// An array of additional Inference Specification objects.
	AdditionalInferenceSpecifications []AdditionalInferenceSpecificationDefinition

	// A description provided when the model approval is set.
	ApprovalDescription *string

	// Whether the model package is to be certified to be listed on Amazon Web
	// Services Marketplace. For information about listing model packages on Amazon Web
	// Services Marketplace, see List Your Algorithm or Model Package on Amazon Web
	// Services Marketplace (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-list.html)
	// .
	CertifyForMarketplace *bool

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, or project.
	CreatedBy *UserContext

	// The time that the model package was created.
	CreationTime *time.Time

	// The metadata properties for the model package.
	CustomerMetadataProperties map[string]string

	// The machine learning domain of your model package and its components. Common
	// machine learning domains include computer vision and natural language
	// processing.
	Domain *string

	// Represents the drift check baselines that can be used when the model monitor is
	// set using the model package.
	DriftCheckBaselines *DriftCheckBaselines

	// Defines how to perform inference generation after a training job is run.
	InferenceSpecification *InferenceSpecification

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, or project.
	LastModifiedBy *UserContext

	// The last time the model package was modified.
	LastModifiedTime *time.Time

	// Metadata properties of the tracking entity, trial, or trial component.
	MetadataProperties *MetadataProperties

	// The approval status of the model. This can be one of the following values.
	//   - APPROVED - The model is approved
	//   - REJECTED - The model is rejected.
	//   - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
	ModelApprovalStatus ModelApprovalStatus

	// Metrics for the model.
	ModelMetrics *ModelMetrics

	// The Amazon Resource Name (ARN) of the model package.
	ModelPackageArn *string

	// The description of the model package.
	ModelPackageDescription *string

	// The model group to which the model belongs.
	ModelPackageGroupName *string

	// The name of the model.
	ModelPackageName *string

	// The status of the model package. This can be one of the following values.
	//   - PENDING - The model package is pending being created.
	//   - IN_PROGRESS - The model package is in the process of being created.
	//   - COMPLETED - The model package was successfully created.
	//   - FAILED - The model package failed.
	//   - DELETING - The model package is in the process of being deleted.
	ModelPackageStatus ModelPackageStatus

	// Specifies the validation and image scan statuses of the model package.
	ModelPackageStatusDetails *ModelPackageStatusDetails

	// The version number of a versioned model.
	ModelPackageVersion *int32

	// The Amazon Simple Storage Service path where the sample payload are stored.
	// This path must point to a single gzip compressed tar archive (.tar.gz suffix).
	SamplePayloadUrl *string

	// Indicates if you want to skip model validation.
	SkipModelValidation SkipModelValidation

	// A list of algorithms that were used to create a model package.
	SourceAlgorithmSpecification *SourceAlgorithmSpecification

	// A list of the tags associated with the model package. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	// The machine learning task your model package accomplishes. Common machine
	// learning tasks include object detection and image classification.
	Task *string

	// Specifies batch transform jobs that SageMaker runs to validate your model
	// package.
	ValidationSpecification *ModelPackageValidationSpecification
	// contains filtered or unexported fields
}

A versioned model that can be deployed for SageMaker inference.

type ModelPackageContainerDefinition

type ModelPackageContainerDefinition struct {

	// The Amazon EC2 Container Registry (Amazon ECR) path where inference code is
	// stored. If you are using your own custom algorithm instead of an algorithm
	// provided by SageMaker, the inference code must meet SageMaker requirements.
	// SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see
	// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// .
	//
	// This member is required.
	Image *string

	// The additional data source that is used during inference in the Docker
	// container for your model package.
	AdditionalS3DataSource *AdditionalS3DataSource

	// The DNS host name for the Docker container.
	ContainerHostname *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string to string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]string

	// The machine learning framework of the model package container image.
	Framework *string

	// The framework version of the Model Package Container Image.
	FrameworkVersion *string

	// An MD5 hash of the training algorithm that identifies the Docker image used for
	// training.
	ImageDigest *string

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive (
	// .tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same
	// region as the model package.
	ModelDataUrl *string

	// A structure with Model Input details.
	ModelInput *ModelInput

	// The name of a pre-trained machine learning benchmarked by Amazon SageMaker
	// Inference Recommender model that matches your model. You can find a list of
	// benchmarked models by calling ListModelMetadata .
	NearestModelName *string

	// The Amazon Web Services Marketplace product ID of the model package.
	ProductId *string
	// contains filtered or unexported fields
}

Describes the Docker container for the model package.

type ModelPackageGroup added in v0.31.0

type ModelPackageGroup struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The time that the model group was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model group.
	ModelPackageGroupArn *string

	// The description for the model group.
	ModelPackageGroupDescription *string

	// The name of the model group.
	ModelPackageGroupName *string

	// The status of the model group. This can be one of the following values.
	//   - PENDING - The model group is pending being created.
	//   - IN_PROGRESS - The model group is in the process of being created.
	//   - COMPLETED - The model group was successfully created.
	//   - FAILED - The model group failed.
	//   - DELETING - The model group is in the process of being deleted.
	//   - DELETE_FAILED - SageMaker failed to delete the model group.
	ModelPackageGroupStatus ModelPackageGroupStatus

	// A list of the tags associated with the model group. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag
	// contains filtered or unexported fields
}

A group of versioned models in the model registry.

type ModelPackageGroupSortBy added in v0.31.0

type ModelPackageGroupSortBy string
const (
	ModelPackageGroupSortByName         ModelPackageGroupSortBy = "Name"
	ModelPackageGroupSortByCreationTime ModelPackageGroupSortBy = "CreationTime"
)

Enum values for ModelPackageGroupSortBy

func (ModelPackageGroupSortBy) Values added in v0.31.0

Values returns all known values for ModelPackageGroupSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelPackageGroupStatus added in v0.31.0

type ModelPackageGroupStatus string
const (
	ModelPackageGroupStatusPending      ModelPackageGroupStatus = "Pending"
	ModelPackageGroupStatusInProgress   ModelPackageGroupStatus = "InProgress"
	ModelPackageGroupStatusCompleted    ModelPackageGroupStatus = "Completed"
	ModelPackageGroupStatusFailed       ModelPackageGroupStatus = "Failed"
	ModelPackageGroupStatusDeleting     ModelPackageGroupStatus = "Deleting"
	ModelPackageGroupStatusDeleteFailed ModelPackageGroupStatus = "DeleteFailed"
)

Enum values for ModelPackageGroupStatus

func (ModelPackageGroupStatus) Values added in v0.31.0

Values returns all known values for ModelPackageGroupStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelPackageGroupSummary added in v0.31.0

type ModelPackageGroupSummary struct {

	// The time that the model group was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model group.
	//
	// This member is required.
	ModelPackageGroupArn *string

	// The name of the model group.
	//
	// This member is required.
	ModelPackageGroupName *string

	// The status of the model group.
	//
	// This member is required.
	ModelPackageGroupStatus ModelPackageGroupStatus

	// A description of the model group.
	ModelPackageGroupDescription *string
	// contains filtered or unexported fields
}

Summary information about a model group.

type ModelPackageSortBy

type ModelPackageSortBy string
const (
	ModelPackageSortByName         ModelPackageSortBy = "Name"
	ModelPackageSortByCreationTime ModelPackageSortBy = "CreationTime"
)

Enum values for ModelPackageSortBy

func (ModelPackageSortBy) Values added in v0.29.0

Values returns all known values for ModelPackageSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelPackageStatus

type ModelPackageStatus string
const (
	ModelPackageStatusPending    ModelPackageStatus = "Pending"
	ModelPackageStatusInProgress ModelPackageStatus = "InProgress"
	ModelPackageStatusCompleted  ModelPackageStatus = "Completed"
	ModelPackageStatusFailed     ModelPackageStatus = "Failed"
	ModelPackageStatusDeleting   ModelPackageStatus = "Deleting"
)

Enum values for ModelPackageStatus

func (ModelPackageStatus) Values added in v0.29.0

Values returns all known values for ModelPackageStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelPackageStatusDetails

type ModelPackageStatusDetails struct {

	// The validation status of the model package.
	//
	// This member is required.
	ValidationStatuses []ModelPackageStatusItem

	// The status of the scan of the Docker image container for the model package.
	ImageScanStatuses []ModelPackageStatusItem
	// contains filtered or unexported fields
}

Specifies the validation and image scan statuses of the model package.

type ModelPackageStatusItem

type ModelPackageStatusItem struct {

	// The name of the model package for which the overall status is being reported.
	//
	// This member is required.
	Name *string

	// The current status.
	//
	// This member is required.
	Status DetailedModelPackageStatus

	// if the overall status is Failed , the reason for the failure.
	FailureReason *string
	// contains filtered or unexported fields
}

Represents the overall status of a model package.

type ModelPackageSummary

type ModelPackageSummary struct {

	// A timestamp that shows when the model package was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model package.
	//
	// This member is required.
	ModelPackageArn *string

	// The overall status of the model package.
	//
	// This member is required.
	ModelPackageStatus ModelPackageStatus

	// The approval status of the model. This can be one of the following values.
	//   - APPROVED - The model is approved
	//   - REJECTED - The model is rejected.
	//   - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
	ModelApprovalStatus ModelApprovalStatus

	// A brief description of the model package.
	ModelPackageDescription *string

	// If the model package is a versioned model, the model group that the versioned
	// model belongs to.
	ModelPackageGroupName *string

	// The name of the model package.
	ModelPackageName *string

	// If the model package is a versioned model, the version of the model.
	ModelPackageVersion *int32
	// contains filtered or unexported fields
}

Provides summary information about a model package.

type ModelPackageType added in v0.31.0

type ModelPackageType string
const (
	ModelPackageTypeVersioned   ModelPackageType = "Versioned"
	ModelPackageTypeUnversioned ModelPackageType = "Unversioned"
	ModelPackageTypeBoth        ModelPackageType = "Both"
)

Enum values for ModelPackageType

func (ModelPackageType) Values added in v0.31.0

Values returns all known values for ModelPackageType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelPackageValidationProfile

type ModelPackageValidationProfile struct {

	// The name of the profile for the model package.
	//
	// This member is required.
	ProfileName *string

	// The TransformJobDefinition object that describes the transform job used for the
	// validation of the model package.
	//
	// This member is required.
	TransformJobDefinition *TransformJobDefinition
	// contains filtered or unexported fields
}

Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package. The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

type ModelPackageValidationSpecification

type ModelPackageValidationSpecification struct {

	// An array of ModelPackageValidationProfile objects, each of which specifies a
	// batch transform job that SageMaker runs to validate your model package.
	//
	// This member is required.
	ValidationProfiles []ModelPackageValidationProfile

	// The IAM roles to be used for the validation of the model package.
	//
	// This member is required.
	ValidationRole *string
	// contains filtered or unexported fields
}

Specifies batch transform jobs that SageMaker runs to validate your model package.

type ModelQuality added in v0.31.0

type ModelQuality struct {

	// Model quality constraints.
	Constraints *MetricsSource

	// Model quality statistics.
	Statistics *MetricsSource
	// contains filtered or unexported fields
}

Model quality statistics and constraints.

type ModelQualityAppSpecification added in v0.31.0

type ModelQualityAppSpecification struct {

	// The address of the container image that the monitoring job runs.
	//
	// This member is required.
	ImageUri *string

	// An array of arguments for the container used to run the monitoring job.
	ContainerArguments []string

	// Specifies the entrypoint for a container that the monitoring job runs.
	ContainerEntrypoint []string

	// Sets the environment variables in the container that the monitoring job runs.
	Environment map[string]string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// The machine learning problem type of the model that the monitoring job monitors.
	ProblemType MonitoringProblemType

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flattened JSON so that
	// the built-in container can use the converted data. Applicable only for the
	// built-in (first party) containers.
	RecordPreprocessorSourceUri *string
	// contains filtered or unexported fields
}

Container image configuration object for the monitoring job.

type ModelQualityBaselineConfig added in v0.31.0

type ModelQualityBaselineConfig struct {

	// The name of the job that performs baselining for the monitoring job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource
	// contains filtered or unexported fields
}

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

type ModelQualityJobInput added in v0.31.0

type ModelQualityJobInput struct {

	// The ground truth label provided for the model.
	//
	// This member is required.
	GroundTruthS3Input *MonitoringGroundTruthS3Input

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput
	// contains filtered or unexported fields
}

The input for the model quality monitoring job. Currently endpoints are supported for input for model quality monitoring jobs.

type ModelRegisterSettings added in v1.74.0

type ModelRegisterSettings struct {

	// The Amazon Resource Name (ARN) of the SageMaker model registry account.
	// Required only to register model versions created by a different SageMaker Canvas
	// Amazon Web Services account than the Amazon Web Services account in which
	// SageMaker model registry is set up.
	CrossAccountModelRegisterRoleArn *string

	// Describes whether the integration to the model registry is enabled or disabled
	// in the Canvas application.
	Status FeatureStatus
	// contains filtered or unexported fields
}

The model registry settings for the SageMaker Canvas application.

type ModelSortKey

type ModelSortKey string
const (
	ModelSortKeyName         ModelSortKey = "Name"
	ModelSortKeyCreationTime ModelSortKey = "CreationTime"
)

Enum values for ModelSortKey

func (ModelSortKey) Values added in v0.29.0

func (ModelSortKey) Values() []ModelSortKey

Values returns all known values for ModelSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelStepMetadata added in v0.31.0

type ModelStepMetadata struct {

	// The Amazon Resource Name (ARN) of the created model.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for Model steps.

type ModelSummary

type ModelSummary struct {

	// A timestamp that indicates when the model was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model.
	//
	// This member is required.
	ModelArn *string

	// The name of the model that you want a summary for.
	//
	// This member is required.
	ModelName *string
	// contains filtered or unexported fields
}

Provides summary information about a model.

type ModelVariantAction added in v1.56.0

type ModelVariantAction string
const (
	ModelVariantActionRetain  ModelVariantAction = "Retain"
	ModelVariantActionRemove  ModelVariantAction = "Remove"
	ModelVariantActionPromote ModelVariantAction = "Promote"
)

Enum values for ModelVariantAction

func (ModelVariantAction) Values added in v1.56.0

Values returns all known values for ModelVariantAction. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ModelVariantConfig added in v1.56.0

type ModelVariantConfig struct {

	// The configuration for the infrastructure that the model will be deployed to.
	//
	// This member is required.
	InfrastructureConfig *ModelInfrastructureConfig

	// The name of the Amazon SageMaker Model entity.
	//
	// This member is required.
	ModelName *string

	// The name of the variant.
	//
	// This member is required.
	VariantName *string
	// contains filtered or unexported fields
}

Contains information about the deployment options of a model.

type ModelVariantConfigSummary added in v1.56.0

type ModelVariantConfigSummary struct {

	// The configuration of the infrastructure that the model has been deployed to.
	//
	// This member is required.
	InfrastructureConfig *ModelInfrastructureConfig

	// The name of the Amazon SageMaker Model entity.
	//
	// This member is required.
	ModelName *string

	// The status of deployment for the model variant on the hosted inference
	// endpoint.
	//   - Creating - Amazon SageMaker is preparing the model variant on the hosted
	//   inference endpoint.
	//   - InService - The model variant is running on the hosted inference endpoint.
	//   - Updating - Amazon SageMaker is updating the model variant on the hosted
	//   inference endpoint.
	//   - Deleting - Amazon SageMaker is deleting the model variant on the hosted
	//   inference endpoint.
	//   - Deleted - The model variant has been deleted on the hosted inference
	//   endpoint. This can only happen after stopping the experiment.
	//
	// This member is required.
	Status ModelVariantStatus

	// The name of the variant.
	//
	// This member is required.
	VariantName *string
	// contains filtered or unexported fields
}

Summary of the deployment configuration of a model.

type ModelVariantStatus added in v1.56.0

type ModelVariantStatus string
const (
	ModelVariantStatusCreating  ModelVariantStatus = "Creating"
	ModelVariantStatusUpdating  ModelVariantStatus = "Updating"
	ModelVariantStatusInService ModelVariantStatus = "InService"
	ModelVariantStatusDeleting  ModelVariantStatus = "Deleting"
	ModelVariantStatusDeleted   ModelVariantStatus = "Deleted"
)

Enum values for ModelVariantStatus

func (ModelVariantStatus) Values added in v1.56.0

Values returns all known values for ModelVariantStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringAlertActions added in v1.56.0

type MonitoringAlertActions struct {

	// An alert action taken to light up an icon on the Model Dashboard when an alert
	// goes into InAlert status.
	ModelDashboardIndicator *ModelDashboardIndicatorAction
	// contains filtered or unexported fields
}

A list of alert actions taken in response to an alert going into InAlert status.

type MonitoringAlertHistorySortKey added in v1.56.0

type MonitoringAlertHistorySortKey string
const (
	MonitoringAlertHistorySortKeyCreationTime MonitoringAlertHistorySortKey = "CreationTime"
	MonitoringAlertHistorySortKeyStatus       MonitoringAlertHistorySortKey = "Status"
)

Enum values for MonitoringAlertHistorySortKey

func (MonitoringAlertHistorySortKey) Values added in v1.56.0

Values returns all known values for MonitoringAlertHistorySortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringAlertHistorySummary added in v1.56.0

type MonitoringAlertHistorySummary struct {

	// The current alert status of an alert.
	//
	// This member is required.
	AlertStatus MonitoringAlertStatus

	// A timestamp that indicates when the first alert transition occurred in an alert
	// history. An alert transition can be from status InAlert to OK , or from OK to
	// InAlert .
	//
	// This member is required.
	CreationTime *time.Time

	// The name of a monitoring alert.
	//
	// This member is required.
	MonitoringAlertName *string

	// The name of a monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string
	// contains filtered or unexported fields
}

Provides summary information of an alert's history.

type MonitoringAlertStatus added in v1.56.0

type MonitoringAlertStatus string
const (
	MonitoringAlertStatusInAlert MonitoringAlertStatus = "InAlert"
	MonitoringAlertStatusOk      MonitoringAlertStatus = "OK"
)

Enum values for MonitoringAlertStatus

func (MonitoringAlertStatus) Values added in v1.56.0

Values returns all known values for MonitoringAlertStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringAlertSummary added in v1.56.0

type MonitoringAlertSummary struct {

	// A list of alert actions taken in response to an alert going into InAlert status.
	//
	// This member is required.
	Actions *MonitoringAlertActions

	// The current status of an alert.
	//
	// This member is required.
	AlertStatus MonitoringAlertStatus

	// A timestamp that indicates when a monitor alert was created.
	//
	// This member is required.
	CreationTime *time.Time

	// Within EvaluationPeriod , how many execution failures will raise an alert.
	//
	// This member is required.
	DatapointsToAlert *int32

	// The number of most recent monitoring executions to consider when evaluating
	// alert status.
	//
	// This member is required.
	EvaluationPeriod *int32

	// A timestamp that indicates when a monitor alert was last updated.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The name of a monitoring alert.
	//
	// This member is required.
	MonitoringAlertName *string
	// contains filtered or unexported fields
}

Provides summary information about a monitor alert.

type MonitoringAppSpecification

type MonitoringAppSpecification struct {

	// The container image to be run by the monitoring job.
	//
	// This member is required.
	ImageUri *string

	// An array of arguments for the container used to run the monitoring job.
	ContainerArguments []string

	// Specifies the entrypoint for a container used to run the monitoring job.
	ContainerEntrypoint []string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flattened JSON so that
	// the built-in container can use the converted data. Applicable only for the
	// built-in (first party) containers.
	RecordPreprocessorSourceUri *string
	// contains filtered or unexported fields
}

Container image configuration object for the monitoring job.

type MonitoringBaselineConfig

type MonitoringBaselineConfig struct {

	// The name of the job that performs baselining for the monitoring job.
	BaseliningJobName *string

	// The baseline constraint file in Amazon S3 that the current monitoring job
	// should validated against.
	ConstraintsResource *MonitoringConstraintsResource

	// The baseline statistics file in Amazon S3 that the current monitoring job
	// should be validated against.
	StatisticsResource *MonitoringStatisticsResource
	// contains filtered or unexported fields
}

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

type MonitoringClusterConfig

type MonitoringClusterConfig struct {

	// The number of ML compute instances to use in the model monitoring job. For
	// distributed processing jobs, specify a value greater than 1. The default value
	// is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the processing job.
	//
	// This member is required.
	InstanceType ProcessingInstanceType

	// The size of the ML storage volume, in gigabytes, that you want to provision.
	// You must specify sufficient ML storage for your scenario.
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data
	// on the storage volume attached to the ML compute instance(s) that run the model
	// monitoring job.
	VolumeKmsKeyId *string
	// contains filtered or unexported fields
}

Configuration for the cluster used to run model monitoring jobs.

type MonitoringConstraintsResource

type MonitoringConstraintsResource struct {

	// The Amazon S3 URI for the constraints resource.
	S3Uri *string
	// contains filtered or unexported fields
}

The constraints resource for a monitoring job.

type MonitoringCsvDatasetFormat added in v1.48.0

type MonitoringCsvDatasetFormat struct {

	// Indicates if the CSV data has a header.
	Header *bool
	// contains filtered or unexported fields
}

Represents the CSV dataset format used when running a monitoring job.

type MonitoringDatasetFormat added in v1.48.0

type MonitoringDatasetFormat struct {

	// The CSV dataset used in the monitoring job.
	Csv *MonitoringCsvDatasetFormat

	// The JSON dataset used in the monitoring job
	Json *MonitoringJsonDatasetFormat

	// The Parquet dataset used in the monitoring job
	Parquet *MonitoringParquetDatasetFormat
	// contains filtered or unexported fields
}

Represents the dataset format used when running a monitoring job.

type MonitoringExecutionSortKey

type MonitoringExecutionSortKey string
const (
	MonitoringExecutionSortKeyCreationTime  MonitoringExecutionSortKey = "CreationTime"
	MonitoringExecutionSortKeyScheduledTime MonitoringExecutionSortKey = "ScheduledTime"
	MonitoringExecutionSortKeyStatus        MonitoringExecutionSortKey = "Status"
)

Enum values for MonitoringExecutionSortKey

func (MonitoringExecutionSortKey) Values added in v0.29.0

Values returns all known values for MonitoringExecutionSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringExecutionSummary

type MonitoringExecutionSummary struct {

	// The time at which the monitoring job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A timestamp that indicates the last time the monitoring job was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The status of the monitoring job.
	//
	// This member is required.
	MonitoringExecutionStatus ExecutionStatus

	// The name of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	// The time the monitoring job was scheduled.
	//
	// This member is required.
	ScheduledTime *time.Time

	// The name of the endpoint used to run the monitoring job.
	EndpointName *string

	// Contains the reason a monitoring job failed, if it failed.
	FailureReason *string

	// The name of the monitoring job.
	MonitoringJobDefinitionName *string

	// The type of the monitoring job.
	MonitoringType MonitoringType

	// The Amazon Resource Name (ARN) of the monitoring job.
	ProcessingJobArn *string
	// contains filtered or unexported fields
}

Summary of information about the last monitoring job to run.

type MonitoringGroundTruthS3Input added in v0.31.0

type MonitoringGroundTruthS3Input struct {

	// The address of the Amazon S3 location of the ground truth labels.
	S3Uri *string
	// contains filtered or unexported fields
}

The ground truth labels for the dataset used for the monitoring job.

type MonitoringInput

type MonitoringInput struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// The endpoint for a monitoring job.
	EndpointInput *EndpointInput
	// contains filtered or unexported fields
}

The inputs for a monitoring job.

type MonitoringJobDefinition

type MonitoringJobDefinition struct {

	// Configures the monitoring job to run a specified Docker container image.
	//
	// This member is required.
	MonitoringAppSpecification *MonitoringAppSpecification

	// The array of inputs for the monitoring job. Currently we support monitoring an
	// Amazon SageMaker Endpoint.
	//
	// This member is required.
	MonitoringInputs []MonitoringInput

	// The array of outputs from the monitoring job to be uploaded to Amazon S3.
	//
	// This member is required.
	MonitoringOutputConfig *MonitoringOutputConfig

	// Identifies the resources, ML compute instances, and ML storage volumes to
	// deploy for a monitoring job. In distributed processing, you specify more than
	// one instance.
	//
	// This member is required.
	MonitoringResources *MonitoringResources

	// The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume
	// to perform tasks on your behalf.
	//
	// This member is required.
	RoleArn *string

	// Baseline configuration used to validate that the data conforms to the specified
	// constraints and statistics
	BaselineConfig *MonitoringBaselineConfig

	// Sets the environment variables in the Docker container.
	Environment map[string]string

	// Specifies networking options for an monitoring job.
	NetworkConfig *NetworkConfig

	// Specifies a time limit for how long the monitoring job is allowed to run.
	StoppingCondition *MonitoringStoppingCondition
	// contains filtered or unexported fields
}

Defines the monitoring job.

type MonitoringJobDefinitionSortKey added in v0.31.0

type MonitoringJobDefinitionSortKey string
const (
	MonitoringJobDefinitionSortKeyName         MonitoringJobDefinitionSortKey = "Name"
	MonitoringJobDefinitionSortKeyCreationTime MonitoringJobDefinitionSortKey = "CreationTime"
)

Enum values for MonitoringJobDefinitionSortKey

func (MonitoringJobDefinitionSortKey) Values added in v0.31.0

Values returns all known values for MonitoringJobDefinitionSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringJobDefinitionSummary added in v0.31.0

type MonitoringJobDefinitionSummary struct {

	// The time that the monitoring job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The name of the endpoint that the job monitors.
	//
	// This member is required.
	EndpointName *string

	// The Amazon Resource Name (ARN) of the monitoring job.
	//
	// This member is required.
	MonitoringJobDefinitionArn *string

	// The name of the monitoring job.
	//
	// This member is required.
	MonitoringJobDefinitionName *string
	// contains filtered or unexported fields
}

Summary information about a monitoring job.

type MonitoringJsonDatasetFormat added in v1.48.0

type MonitoringJsonDatasetFormat struct {

	// Indicates if the file should be read as a JSON object per line.
	Line *bool
	// contains filtered or unexported fields
}

Represents the JSON dataset format used when running a monitoring job.

type MonitoringNetworkConfig added in v0.31.0

type MonitoringNetworkConfig struct {

	// Whether to encrypt all communications between the instances used for the
	// monitoring jobs. Choose True to encrypt communications. Encryption provides
	// greater security for distributed jobs, but the processing might take longer.
	EnableInterContainerTrafficEncryption *bool

	// Whether to allow inbound and outbound network calls to and from the containers
	// used for the monitoring job.
	EnableNetworkIsolation *bool

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

The networking configuration for the monitoring job.

type MonitoringOutput

type MonitoringOutput struct {

	// The Amazon S3 storage location where the results of a monitoring job are saved.
	//
	// This member is required.
	S3Output *MonitoringS3Output
	// contains filtered or unexported fields
}

The output object for a monitoring job.

type MonitoringOutputConfig

type MonitoringOutputConfig struct {

	// Monitoring outputs for monitoring jobs. This is where the output of the
	// periodic monitoring jobs is uploaded.
	//
	// This member is required.
	MonitoringOutputs []MonitoringOutput

	// The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the
	// model artifacts at rest using Amazon S3 server-side encryption.
	KmsKeyId *string
	// contains filtered or unexported fields
}

The output configuration for monitoring jobs.

type MonitoringParquetDatasetFormat added in v1.48.0

type MonitoringParquetDatasetFormat struct {
	// contains filtered or unexported fields
}

Represents the Parquet dataset format used when running a monitoring job.

type MonitoringProblemType added in v0.31.0

type MonitoringProblemType string
const (
	MonitoringProblemTypeBinaryClassification     MonitoringProblemType = "BinaryClassification"
	MonitoringProblemTypeMulticlassClassification MonitoringProblemType = "MulticlassClassification"
	MonitoringProblemTypeRegression               MonitoringProblemType = "Regression"
)

Enum values for MonitoringProblemType

func (MonitoringProblemType) Values added in v0.31.0

Values returns all known values for MonitoringProblemType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringResources

type MonitoringResources struct {

	// The configuration for the cluster resources used to run the processing job.
	//
	// This member is required.
	ClusterConfig *MonitoringClusterConfig
	// contains filtered or unexported fields
}

Identifies the resources to deploy for a monitoring job.

type MonitoringS3Output

type MonitoringS3Output struct {

	// The local path to the Amazon S3 storage location where Amazon SageMaker saves
	// the results of a monitoring job. LocalPath is an absolute path for the output
	// data.
	//
	// This member is required.
	LocalPath *string

	// A URI that identifies the Amazon S3 storage location where Amazon SageMaker
	// saves the results of a monitoring job.
	//
	// This member is required.
	S3Uri *string

	// Whether to upload the results of the monitoring job continuously or after the
	// job completes.
	S3UploadMode ProcessingS3UploadMode
	// contains filtered or unexported fields
}

Information about where and how you want to store the results of a monitoring job.

type MonitoringSchedule added in v0.31.0

type MonitoringSchedule struct {

	// The time that the monitoring schedule was created.
	CreationTime *time.Time

	// The endpoint that hosts the model being monitored.
	EndpointName *string

	// If the monitoring schedule failed, the reason it failed.
	FailureReason *string

	// The last time the monitoring schedule was changed.
	LastModifiedTime *time.Time

	// Summary of information about the last monitoring job to run.
	LastMonitoringExecutionSummary *MonitoringExecutionSummary

	// The Amazon Resource Name (ARN) of the monitoring schedule.
	MonitoringScheduleArn *string

	// Configures the monitoring schedule and defines the monitoring job.
	MonitoringScheduleConfig *MonitoringScheduleConfig

	// The name of the monitoring schedule.
	MonitoringScheduleName *string

	// The status of the monitoring schedule. This can be one of the following values.
	//   - PENDING - The schedule is pending being created.
	//   - FAILED - The schedule failed.
	//   - SCHEDULED - The schedule was successfully created.
	//   - STOPPED - The schedule was stopped.
	MonitoringScheduleStatus ScheduleStatus

	// The type of the monitoring job definition to schedule.
	MonitoringType MonitoringType

	// A list of the tags associated with the monitoring schedlue. For more
	// information, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag
	// contains filtered or unexported fields
}

A schedule for a model monitoring job. For information about model monitor, see Amazon SageMaker Model Monitor (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html) .

type MonitoringScheduleConfig

type MonitoringScheduleConfig struct {

	// Defines the monitoring job.
	MonitoringJobDefinition *MonitoringJobDefinition

	// The name of the monitoring job definition to schedule.
	MonitoringJobDefinitionName *string

	// The type of the monitoring job definition to schedule.
	MonitoringType MonitoringType

	// Configures the monitoring schedule.
	ScheduleConfig *ScheduleConfig
	// contains filtered or unexported fields
}

Configures the monitoring schedule and defines the monitoring job.

type MonitoringScheduleSortKey

type MonitoringScheduleSortKey string
const (
	MonitoringScheduleSortKeyName         MonitoringScheduleSortKey = "Name"
	MonitoringScheduleSortKeyCreationTime MonitoringScheduleSortKey = "CreationTime"
	MonitoringScheduleSortKeyStatus       MonitoringScheduleSortKey = "Status"
)

Enum values for MonitoringScheduleSortKey

func (MonitoringScheduleSortKey) Values added in v0.29.0

Values returns all known values for MonitoringScheduleSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MonitoringScheduleSummary

type MonitoringScheduleSummary struct {

	// The creation time of the monitoring schedule.
	//
	// This member is required.
	CreationTime *time.Time

	// The last time the monitoring schedule was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleArn *string

	// The name of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	// The status of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleStatus ScheduleStatus

	// The name of the endpoint using the monitoring schedule.
	EndpointName *string

	// The name of the monitoring job definition that the schedule is for.
	MonitoringJobDefinitionName *string

	// The type of the monitoring job definition that the schedule is for.
	MonitoringType MonitoringType
	// contains filtered or unexported fields
}

Summarizes the monitoring schedule.

type MonitoringStatisticsResource

type MonitoringStatisticsResource struct {

	// The Amazon S3 URI for the statistics resource.
	S3Uri *string
	// contains filtered or unexported fields
}

The statistics resource for a monitoring job.

type MonitoringStoppingCondition

type MonitoringStoppingCondition struct {

	// The maximum runtime allowed in seconds. The MaxRuntimeInSeconds cannot exceed
	// the frequency of the job. For data quality and model explainability, this can be
	// up to 3600 seconds for an hourly schedule. For model bias and model quality
	// hourly schedules, this can be up to 1800 seconds.
	//
	// This member is required.
	MaxRuntimeInSeconds *int32
	// contains filtered or unexported fields
}

A time limit for how long the monitoring job is allowed to run before stopping.

type MonitoringType added in v0.31.0

type MonitoringType string
const (
	MonitoringTypeDataQuality         MonitoringType = "DataQuality"
	MonitoringTypeModelQuality        MonitoringType = "ModelQuality"
	MonitoringTypeModelBias           MonitoringType = "ModelBias"
	MonitoringTypeModelExplainability MonitoringType = "ModelExplainability"
)

Enum values for MonitoringType

func (MonitoringType) Values added in v0.31.0

func (MonitoringType) Values() []MonitoringType

Values returns all known values for MonitoringType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type MultiModelConfig added in v1.2.0

type MultiModelConfig struct {

	// Whether to cache models for a multi-model endpoint. By default, multi-model
	// endpoints cache models so that a model does not have to be loaded into memory
	// each time it is invoked. Some use cases do not benefit from model caching. For
	// example, if an endpoint hosts a large number of models that are each invoked
	// infrequently, the endpoint might perform better if you disable model caching. To
	// disable model caching, set the value of this parameter to Disabled .
	ModelCacheSetting ModelCacheSetting
	// contains filtered or unexported fields
}

Specifies additional configuration for hosting multi-model endpoints.

type NeoVpcConfig added in v1.9.0

type NeoVpcConfig struct {

	// The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the
	// security groups for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC that you want to connect the compilation job
	// to for accessing the model in Amazon S3.
	//
	// This member is required.
	Subnets []string
	// contains filtered or unexported fields
}

The VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html) configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs Access to Resources in Your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html) .

type NestedFilters

type NestedFilters struct {

	// A list of filters. Each filter acts on a property. Filters must contain at
	// least one Filters value. For example, a NestedFilters call might include a
	// filter on the PropertyName parameter of the InputDataConfig property:
	// InputDataConfig.DataSource.S3DataSource.S3Uri .
	//
	// This member is required.
	Filters []Filter

	// The name of the property to use in the nested filters. The value must match a
	// listed property name, such as InputDataConfig .
	//
	// This member is required.
	NestedPropertyName *string
	// contains filtered or unexported fields
}

A list of nested Filter (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Filter.html) objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API. For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:

  • '{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
  • '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'

type NetworkConfig

type NetworkConfig struct {

	// Whether to encrypt all communications between distributed processing jobs.
	// Choose True to encrypt communications. Encryption provides greater security for
	// distributed processing jobs, but the processing might take longer.
	EnableInterContainerTrafficEncryption *bool

	// Whether to allow inbound and outbound network calls to and from the containers
	// used for the processing job.
	EnableNetworkIsolation *bool

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.

type NotebookInstanceAcceleratorType

type NotebookInstanceAcceleratorType string
const (
	NotebookInstanceAcceleratorTypeMlEia1Medium NotebookInstanceAcceleratorType = "ml.eia1.medium"
	NotebookInstanceAcceleratorTypeMlEia1Large  NotebookInstanceAcceleratorType = "ml.eia1.large"
	NotebookInstanceAcceleratorTypeMlEia1Xlarge NotebookInstanceAcceleratorType = "ml.eia1.xlarge"
	NotebookInstanceAcceleratorTypeMlEia2Medium NotebookInstanceAcceleratorType = "ml.eia2.medium"
	NotebookInstanceAcceleratorTypeMlEia2Large  NotebookInstanceAcceleratorType = "ml.eia2.large"
	NotebookInstanceAcceleratorTypeMlEia2Xlarge NotebookInstanceAcceleratorType = "ml.eia2.xlarge"
)

Enum values for NotebookInstanceAcceleratorType

func (NotebookInstanceAcceleratorType) Values added in v0.29.0

Values returns all known values for NotebookInstanceAcceleratorType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotebookInstanceLifecycleConfigSortKey

type NotebookInstanceLifecycleConfigSortKey string
const (
	NotebookInstanceLifecycleConfigSortKeyName             NotebookInstanceLifecycleConfigSortKey = "Name"
	NotebookInstanceLifecycleConfigSortKeyCreationTime     NotebookInstanceLifecycleConfigSortKey = "CreationTime"
	NotebookInstanceLifecycleConfigSortKeyLastModifiedTime NotebookInstanceLifecycleConfigSortKey = "LastModifiedTime"
)

Enum values for NotebookInstanceLifecycleConfigSortKey

func (NotebookInstanceLifecycleConfigSortKey) Values added in v0.29.0

Values returns all known values for NotebookInstanceLifecycleConfigSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotebookInstanceLifecycleConfigSortOrder

type NotebookInstanceLifecycleConfigSortOrder string
const (
	NotebookInstanceLifecycleConfigSortOrderAscending  NotebookInstanceLifecycleConfigSortOrder = "Ascending"
	NotebookInstanceLifecycleConfigSortOrderDescending NotebookInstanceLifecycleConfigSortOrder = "Descending"
)

Enum values for NotebookInstanceLifecycleConfigSortOrder

func (NotebookInstanceLifecycleConfigSortOrder) Values added in v0.29.0

Values returns all known values for NotebookInstanceLifecycleConfigSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotebookInstanceLifecycleConfigSummary

type NotebookInstanceLifecycleConfigSummary struct {

	// The Amazon Resource Name (ARN) of the lifecycle configuration.
	//
	// This member is required.
	NotebookInstanceLifecycleConfigArn *string

	// The name of the lifecycle configuration.
	//
	// This member is required.
	NotebookInstanceLifecycleConfigName *string

	// A timestamp that tells when the lifecycle configuration was created.
	CreationTime *time.Time

	// A timestamp that tells when the lifecycle configuration was last modified.
	LastModifiedTime *time.Time
	// contains filtered or unexported fields
}

Provides a summary of a notebook instance lifecycle configuration.

type NotebookInstanceLifecycleHook

type NotebookInstanceLifecycleHook struct {

	// A base64-encoded string that contains a shell script for a notebook instance
	// lifecycle configuration.
	Content *string
	// contains filtered or unexported fields
}

Contains the notebook instance lifecycle configuration script. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin . View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook] . Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html) .

type NotebookInstanceSortKey

type NotebookInstanceSortKey string
const (
	NotebookInstanceSortKeyName         NotebookInstanceSortKey = "Name"
	NotebookInstanceSortKeyCreationTime NotebookInstanceSortKey = "CreationTime"
	NotebookInstanceSortKeyStatus       NotebookInstanceSortKey = "Status"
)

Enum values for NotebookInstanceSortKey

func (NotebookInstanceSortKey) Values added in v0.29.0

Values returns all known values for NotebookInstanceSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotebookInstanceSortOrder

type NotebookInstanceSortOrder string
const (
	NotebookInstanceSortOrderAscending  NotebookInstanceSortOrder = "Ascending"
	NotebookInstanceSortOrderDescending NotebookInstanceSortOrder = "Descending"
)

Enum values for NotebookInstanceSortOrder

func (NotebookInstanceSortOrder) Values added in v0.29.0

Values returns all known values for NotebookInstanceSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotebookInstanceStatus

type NotebookInstanceStatus string
const (
	NotebookInstanceStatusPending   NotebookInstanceStatus = "Pending"
	NotebookInstanceStatusInService NotebookInstanceStatus = "InService"
	NotebookInstanceStatusStopping  NotebookInstanceStatus = "Stopping"
	NotebookInstanceStatusStopped   NotebookInstanceStatus = "Stopped"
	NotebookInstanceStatusFailed    NotebookInstanceStatus = "Failed"
	NotebookInstanceStatusDeleting  NotebookInstanceStatus = "Deleting"
	NotebookInstanceStatusUpdating  NotebookInstanceStatus = "Updating"
)

Enum values for NotebookInstanceStatus

func (NotebookInstanceStatus) Values added in v0.29.0

Values returns all known values for NotebookInstanceStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotebookInstanceSummary

type NotebookInstanceSummary struct {

	// The Amazon Resource Name (ARN) of the notebook instance.
	//
	// This member is required.
	NotebookInstanceArn *string

	// The name of the notebook instance that you want a summary for.
	//
	// This member is required.
	NotebookInstanceName *string

	// An array of up to three Git repositories associated with the notebook instance.
	// These can be either the names of Git repositories stored as resources in your
	// account, or the URL of Git repositories in Amazon Web Services CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html)
	// or in any other Git repository. These repositories are cloned at the same level
	// as the default repository of your notebook instance. For more information, see
	// Associating Git Repositories with SageMaker Notebook Instances (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html)
	// .
	AdditionalCodeRepositories []string

	// A timestamp that shows when the notebook instance was created.
	CreationTime *time.Time

	// The Git repository associated with the notebook instance as its default code
	// repository. This can be either the name of a Git repository stored as a resource
	// in your account, or the URL of a Git repository in Amazon Web Services
	// CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html)
	// or in any other Git repository. When you open a notebook instance, it opens in
	// the directory that contains this repository. For more information, see
	// Associating Git Repositories with SageMaker Notebook Instances (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html)
	// .
	DefaultCodeRepository *string

	// The type of ML compute instance that the notebook instance is running on.
	InstanceType InstanceType

	// A timestamp that shows when the notebook instance was last modified.
	LastModifiedTime *time.Time

	// The name of a notebook instance lifecycle configuration associated with this
	// notebook instance. For information about notebook instance lifestyle
	// configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html)
	// .
	NotebookInstanceLifecycleConfigName *string

	// The status of the notebook instance.
	NotebookInstanceStatus NotebookInstanceStatus

	// The URL that you use to connect to the Jupyter notebook running in your
	// notebook instance.
	Url *string
	// contains filtered or unexported fields
}

Provides summary information for an SageMaker notebook instance.

type NotebookOutputOption

type NotebookOutputOption string
const (
	NotebookOutputOptionAllowed  NotebookOutputOption = "Allowed"
	NotebookOutputOptionDisabled NotebookOutputOption = "Disabled"
)

Enum values for NotebookOutputOption

func (NotebookOutputOption) Values added in v0.29.0

Values returns all known values for NotebookOutputOption. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type NotificationConfiguration

type NotificationConfiguration struct {

	// The ARN for the Amazon SNS topic to which notifications should be published.
	NotificationTopicArn *string
	// contains filtered or unexported fields
}

Configures Amazon SNS notifications of available or expiring work items for work teams.

type ObjectiveStatus

type ObjectiveStatus string
const (
	ObjectiveStatusSucceeded ObjectiveStatus = "Succeeded"
	ObjectiveStatusPending   ObjectiveStatus = "Pending"
	ObjectiveStatusFailed    ObjectiveStatus = "Failed"
)

Enum values for ObjectiveStatus

func (ObjectiveStatus) Values added in v0.29.0

func (ObjectiveStatus) Values() []ObjectiveStatus

Values returns all known values for ObjectiveStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ObjectiveStatusCounters

type ObjectiveStatusCounters struct {

	// The number of training jobs whose final objective metric was not evaluated and
	// used in the hyperparameter tuning process. This typically occurs when the
	// training job failed or did not emit an objective metric.
	Failed *int32

	// The number of training jobs that are in progress and pending evaluation of
	// their final objective metric.
	Pending *int32

	// The number of training jobs whose final objective metric was evaluated by the
	// hyperparameter tuning job and used in the hyperparameter tuning process.
	Succeeded *int32
	// contains filtered or unexported fields
}

Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.

type OfflineStoreConfig added in v0.31.0

type OfflineStoreConfig struct {

	// The Amazon Simple Storage (Amazon S3) location of OfflineStore .
	//
	// This member is required.
	S3StorageConfig *S3StorageConfig

	// The meta data of the Glue table that is autogenerated when an OfflineStore is
	// created.
	DataCatalogConfig *DataCatalogConfig

	// Set to True to disable the automatic creation of an Amazon Web Services Glue
	// table when configuring an OfflineStore . If set to False , Feature Store will
	// name the OfflineStore Glue table following Athena's naming recommendations (https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html)
	// . The default value is False .
	DisableGlueTableCreation *bool

	// Format for the offline store table. Supported formats are Glue (Default) and
	// Apache Iceberg (https://iceberg.apache.org/) .
	TableFormat TableFormat
	// contains filtered or unexported fields
}

The configuration of an OfflineStore . Provide an OfflineStoreConfig in a request to CreateFeatureGroup to create an OfflineStore . To encrypt an OfflineStore using at rest data encryption, specify Amazon Web Services Key Management Service (KMS) key ID, or KMSKeyId , in S3StorageConfig .

type OfflineStoreStatus added in v0.31.0

type OfflineStoreStatus struct {

	// An OfflineStore status.
	//
	// This member is required.
	Status OfflineStoreStatusValue

	// The justification for why the OfflineStoreStatus is Blocked (if applicable).
	BlockedReason *string
	// contains filtered or unexported fields
}

The status of OfflineStore .

type OfflineStoreStatusValue added in v0.31.0

type OfflineStoreStatusValue string
const (
	OfflineStoreStatusValueActive   OfflineStoreStatusValue = "Active"
	OfflineStoreStatusValueBlocked  OfflineStoreStatusValue = "Blocked"
	OfflineStoreStatusValueDisabled OfflineStoreStatusValue = "Disabled"
)

Enum values for OfflineStoreStatusValue

func (OfflineStoreStatusValue) Values added in v0.31.0

Values returns all known values for OfflineStoreStatusValue. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type OidcConfig

type OidcConfig struct {

	// The OIDC IdP authorization endpoint used to configure your private workforce.
	//
	// This member is required.
	AuthorizationEndpoint *string

	// The OIDC IdP client ID used to configure your private workforce.
	//
	// This member is required.
	ClientId *string

	// The OIDC IdP client secret used to configure your private workforce.
	//
	// This member is required.
	ClientSecret *string

	// The OIDC IdP issuer used to configure your private workforce.
	//
	// This member is required.
	Issuer *string

	// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
	// workforce.
	//
	// This member is required.
	JwksUri *string

	// The OIDC IdP logout endpoint used to configure your private workforce.
	//
	// This member is required.
	LogoutEndpoint *string

	// The OIDC IdP token endpoint used to configure your private workforce.
	//
	// This member is required.
	TokenEndpoint *string

	// The OIDC IdP user information endpoint used to configure your private workforce.
	//
	// This member is required.
	UserInfoEndpoint *string
	// contains filtered or unexported fields
}

Use this parameter to configure your OIDC Identity Provider (IdP).

type OidcConfigForResponse

type OidcConfigForResponse struct {

	// The OIDC IdP authorization endpoint used to configure your private workforce.
	AuthorizationEndpoint *string

	// The OIDC IdP client ID used to configure your private workforce.
	ClientId *string

	// The OIDC IdP issuer used to configure your private workforce.
	Issuer *string

	// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
	// workforce.
	JwksUri *string

	// The OIDC IdP logout endpoint used to configure your private workforce.
	LogoutEndpoint *string

	// The OIDC IdP token endpoint used to configure your private workforce.
	TokenEndpoint *string

	// The OIDC IdP user information endpoint used to configure your private workforce.
	UserInfoEndpoint *string
	// contains filtered or unexported fields
}

Your OIDC IdP workforce configuration.

type OidcMemberDefinition

type OidcMemberDefinition struct {

	// A list of comma seperated strings that identifies user groups in your OIDC IdP.
	// Each user group is made up of a group of private workers.
	//
	// This member is required.
	Groups []string
	// contains filtered or unexported fields
}

A list of user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups , you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

type OnlineStoreConfig added in v0.31.0

type OnlineStoreConfig struct {

	// Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn
	// OnlineStore on by specifying True for the EnableOnlineStore flag. The default
	// value is False .
	EnableOnlineStore *bool

	// Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your
	// OnlineStore .
	SecurityConfig *OnlineStoreSecurityConfig

	// Option for different tiers of low latency storage for real-time data retrieval.
	//   - Standard : A managed low latency data store for feature groups.
	//   - InMemory : A managed data store for feature groups that supports very low
	//   latency retrieval.
	StorageType StorageType

	// Time to live duration, where the record is hard deleted after the expiration
	// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
	// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
	// API in the Amazon SageMaker API Reference guide.
	TtlDuration *TtlDuration
	// contains filtered or unexported fields
}

Use this to specify the Amazon Web Services Key Management Service (KMS) Key ID, or KMSKeyId , for at rest data encryption. You can turn OnlineStore on or off by specifying the EnableOnlineStore flag at General Assembly. The default value is False .

type OnlineStoreConfigUpdate added in v1.87.0

type OnlineStoreConfigUpdate struct {

	// Time to live duration, where the record is hard deleted after the expiration
	// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
	// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
	// API in the Amazon SageMaker API Reference guide.
	TtlDuration *TtlDuration
	// contains filtered or unexported fields
}

Updates the feature group online store configuration.

type OnlineStoreSecurityConfig added in v0.31.0

type OnlineStoreSecurityConfig struct {

	// The Amazon Web Services Key Management Service (KMS) key ARN that SageMaker
	// Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3
	// server-side encryption. The caller (either user or IAM role) of
	// CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :
	//   - "kms:Encrypt"
	//   - "kms:Decrypt"
	//   - "kms:DescribeKey"
	//   - "kms:CreateGrant"
	//   - "kms:RetireGrant"
	//   - "kms:ReEncryptFrom"
	//   - "kms:ReEncryptTo"
	//   - "kms:GenerateDataKey"
	//   - "kms:ListAliases"
	//   - "kms:ListGrants"
	//   - "kms:RevokeGrant"
	// The caller (either user or IAM role) to all DataPlane operations ( PutRecord ,
	// GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :
	//   - "kms:Decrypt"
	KmsKeyId *string
	// contains filtered or unexported fields
}

The security configuration for OnlineStore .

type Operator

type Operator string
const (
	OperatorEquals               Operator = "Equals"
	OperatorNotEquals            Operator = "NotEquals"
	OperatorGreaterThan          Operator = "GreaterThan"
	OperatorGreaterThanOrEqualTo Operator = "GreaterThanOrEqualTo"
	OperatorLessThan             Operator = "LessThan"
	OperatorLessThanOrEqualTo    Operator = "LessThanOrEqualTo"
	OperatorContains             Operator = "Contains"
	OperatorExists               Operator = "Exists"
	OperatorNotExists            Operator = "NotExists"
	OperatorIn                   Operator = "In"
)

Enum values for Operator

func (Operator) Values added in v0.29.0

func (Operator) Values() []Operator

Values returns all known values for Operator. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type OrderKey

type OrderKey string
const (
	OrderKeyAscending  OrderKey = "Ascending"
	OrderKeyDescending OrderKey = "Descending"
)

Enum values for OrderKey

func (OrderKey) Values added in v0.29.0

func (OrderKey) Values() []OrderKey

Values returns all known values for OrderKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type OutputCompressionType added in v1.86.0

type OutputCompressionType string
const (
	OutputCompressionTypeGzip OutputCompressionType = "GZIP"
	OutputCompressionTypeNone OutputCompressionType = "NONE"
)

Enum values for OutputCompressionType

func (OutputCompressionType) Values added in v1.86.0

Values returns all known values for OutputCompressionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type OutputConfig

type OutputConfig struct {

	// Identifies the S3 bucket where you want Amazon SageMaker to store the model
	// artifacts. For example, s3://bucket-name/key-name-prefix .
	//
	// This member is required.
	S3OutputLocation *string

	// Specifies additional parameters for compiler options in JSON format. The
	// compiler options are TargetPlatform specific. It is required for NVIDIA
	// accelerators and highly recommended for CPU compilations. For any other cases,
	// it is optional to specify CompilerOptions.
	//   - DTYPE : Specifies the data type for the input. When compiling for ml_*
	//   (except for ml_inf ) instances using PyTorch framework, provide the data type
	//   (dtype) of the model's input. "float32" is used if "DTYPE" is not specified.
	//   Options for data type are:
	//   - float32: Use either "float" or "float32" .
	//   - int64: Use either "int64" or "long" . For example, {"dtype" : "float32"} .
	//   - CPU : Compilation for CPU supports the following compiler options.
	//   - mcpu : CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
	//   - mattr : CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
	//   - ARM : Details of ARM CPU compilations.
	//   - NEON : NEON is an implementation of the Advanced SIMD extension used in
	//   ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler
	//   options if compiling for ARM 32-bit platform with the NEON support.
	//   - NVIDIA : Compilation for NVIDIA GPU supports the following compiler options.
	//   - gpu_code : Specifies the targeted architecture.
	//   - trt-ver : Specifies the TensorRT versions in x.y.z. format.
	//   - cuda-ver : Specifies the CUDA version in x.y format. For example,
	//   {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
	//   - ANDROID : Compilation for the Android OS supports the following compiler
	//   options:
	//   - ANDROID_PLATFORM : Specifies the Android API levels. Available levels range
	//   from 21 to 29. For example, {'ANDROID_PLATFORM': 28} .
	//   - mattr : Add {'mattr': ['+neon']} to compiler options if compiling for ARM
	//   32-bit platform with NEON support.
	//   - INFERENTIA : Compilation for target ml_inf1 uses compiler options passed in
	//   as a JSON string. For example, "CompilerOptions": "\"--verbose 1
	//   --num-neuroncores 2 -O2\"" . For information about supported compiler options,
	//   see Neuron Compiler CLI Reference Guide (https://awsdocs-neuron.readthedocs-hosted.com/en/latest/compiler/neuronx-cc/api-reference-guide/neuron-compiler-cli-reference-guide.html)
	//   .
	//   - CoreML : Compilation for the CoreML OutputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html)
	//   TargetDevice supports the following compiler options:
	//   - class_labels : Specifies the classification labels file name inside input
	//   tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"} .
	//   Labels inside the txt file should be separated by newlines.
	//   - EIA : Compilation for the Elastic Inference Accelerator supports the
	//   following compiler options:
	//   - precision_mode : Specifies the precision of compiled artifacts. Supported
	//   values are "FP16" and "FP32" . Default is "FP32" .
	//   - signature_def_key : Specifies the signature to use for models in SavedModel
	//   format. Defaults is TensorFlow's default signature def key.
	//   - output_names : Specifies a list of output tensor names for models in
	//   FrozenGraph format. Set at most one API field, either: signature_def_key or
	//   output_names . For example: {"precision_mode": "FP32", "output_names":
	//   ["output:0"]}
	CompilerOptions *string

	// The Amazon Web Services Key Management Service key (Amazon Web Services KMS)
	// that Amazon SageMaker uses to encrypt your output models with Amazon S3
	// server-side encryption after compilation job. If you don't provide a KMS key ID,
	// Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.
	// For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of
	// the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	KmsKeyId *string

	// Identifies the target device or the machine learning instance that you want to
	// run your model on after the compilation has completed. Alternatively, you can
	// specify OS, architecture, and accelerator using TargetPlatform (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html)
	// fields. It can be used instead of TargetPlatform . Currently ml_trn1 is
	// available only in US East (N. Virginia) Region, and ml_inf2 is available only
	// in US East (Ohio) Region.
	TargetDevice TargetDevice

	// Contains information about a target platform that you want your model to run
	// on, such as OS, architecture, and accelerators. It is an alternative of
	// TargetDevice . The following examples show how to configure the TargetPlatform
	// and CompilerOptions JSON strings for popular target platforms:
	//   - Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch":
	//   "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']}
	//   - Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64",
	//   "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver':
	//   '6.0.1', 'cuda-ver': '10.0'}
	//   - EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch":
	//   "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu':
	//   'skylake-avx512'}
	//   - RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
	//   "MALI"}
	//   - ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
	//   "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
	//   - ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
	//   "CompilerOptions": {'ANDROID_PLATFORM': 29}
	TargetPlatform *TargetPlatform
	// contains filtered or unexported fields
}

Contains information about the output location for the compiled model and the target device that the model runs on. TargetDevice and TargetPlatform are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from the TargetDevice list, use TargetPlatform to describe the platform of your edge device and CompilerOptions if there are specific settings that are required or recommended to use for particular TargetPlatform.

type OutputDataConfig

type OutputDataConfig struct {

	// Identifies the S3 path where you want SageMaker to store the model artifacts.
	// For example, s3://bucket-name/key-name-prefix .
	//
	// This member is required.
	S3OutputPath *string

	// The model output compression type. Select None to output an uncompressed model,
	// recommended for large model outputs. Defaults to gzip.
	CompressionType OutputCompressionType

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that SageMaker uses to encrypt the model artifacts at rest using Amazon S3
	// server-side encryption. The KmsKeyId can be any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias
	//   "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
	// If you use a KMS key ID or an alias of your KMS key, the SageMaker execution
	// role must include permissions to call kms:Encrypt . If you don't provide a KMS
	// key ID, SageMaker uses the default KMS key for Amazon S3 for your role's
	// account. SageMaker uses server-side encryption with KMS-managed keys for
	// OutputDataConfig . If you use a bucket policy with an s3:PutObject permission
	// that only allows objects with server-side encryption, set the condition key of
	// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
	// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
	// grant permission to the IAM role that you specify in your CreateTrainingJob ,
	// CreateTransformJob , or CreateHyperParameterTuningJob requests. For more
	// information, see Using Key Policies in Amazon Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
	// in the Amazon Web Services Key Management Service Developer Guide.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Provides information about how to store model training results (model artifacts).

type OutputParameter added in v1.7.0

type OutputParameter struct {

	// The name of the output parameter.
	//
	// This member is required.
	Name *string

	// The value of the output parameter.
	//
	// This member is required.
	Value *string
	// contains filtered or unexported fields
}

An output parameter of a pipeline step.

type OwnershipSettings added in v1.120.0

type OwnershipSettings struct {

	// The user profile who is the owner of the private space.
	//
	// This member is required.
	OwnerUserProfileName *string
	// contains filtered or unexported fields
}

The collection of ownership settings for a space.

type OwnershipSettingsSummary added in v1.120.0

type OwnershipSettingsSummary struct {

	// The user profile who is the owner of the private space.
	OwnerUserProfileName *string
	// contains filtered or unexported fields
}

Specifies summary information about the ownership settings.

type ParallelismConfiguration added in v1.22.0

type ParallelismConfiguration struct {

	// The max number of steps that can be executed in parallel.
	//
	// This member is required.
	MaxParallelExecutionSteps *int32
	// contains filtered or unexported fields
}

Configuration that controls the parallelism of the pipeline. By default, the parallelism configuration specified applies to all executions of the pipeline unless overridden.

type Parameter added in v0.31.0

type Parameter struct {

	// The name of the parameter to assign a value to. This parameter name must match
	// a named parameter in the pipeline definition.
	//
	// This member is required.
	Name *string

	// The literal value for the parameter.
	//
	// This member is required.
	Value *string
	// contains filtered or unexported fields
}

Assigns a value to a named Pipeline parameter.

type ParameterRange

type ParameterRange struct {

	// A CategoricalParameterRangeSpecification object that defines the possible
	// values for a categorical hyperparameter.
	CategoricalParameterRangeSpecification *CategoricalParameterRangeSpecification

	// A ContinuousParameterRangeSpecification object that defines the possible values
	// for a continuous hyperparameter.
	ContinuousParameterRangeSpecification *ContinuousParameterRangeSpecification

	// A IntegerParameterRangeSpecification object that defines the possible values
	// for an integer hyperparameter.
	IntegerParameterRangeSpecification *IntegerParameterRangeSpecification
	// contains filtered or unexported fields
}

Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an algorithm.

type ParameterRanges

type ParameterRanges struct {

	// A list containing hyperparameter names and example values to be used by
	// Autotune to determine optimal ranges for your tuning job.
	AutoParameters []AutoParameter

	// The array of CategoricalParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CategoricalParameterRange.html)
	// objects that specify ranges of categorical hyperparameters that a hyperparameter
	// tuning job searches.
	CategoricalParameterRanges []CategoricalParameterRange

	// The array of ContinuousParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContinuousParameterRange.html)
	// objects that specify ranges of continuous hyperparameters that a hyperparameter
	// tuning job searches.
	ContinuousParameterRanges []ContinuousParameterRange

	// The array of IntegerParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_IntegerParameterRange.html)
	// objects that specify ranges of integer hyperparameters that a hyperparameter
	// tuning job searches.
	IntegerParameterRanges []IntegerParameterRange
	// contains filtered or unexported fields
}

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job. The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

type ParameterType

type ParameterType string
const (
	ParameterTypeInteger     ParameterType = "Integer"
	ParameterTypeContinuous  ParameterType = "Continuous"
	ParameterTypeCategorical ParameterType = "Categorical"
	ParameterTypeFreeText    ParameterType = "FreeText"
)

Enum values for ParameterType

func (ParameterType) Values added in v0.29.0

func (ParameterType) Values() []ParameterType

Values returns all known values for ParameterType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Parent

type Parent struct {

	// The name of the experiment.
	ExperimentName *string

	// The name of the trial.
	TrialName *string
	// contains filtered or unexported fields
}

The trial that a trial component is associated with and the experiment the trial is part of. A component might not be associated with a trial. A component can be associated with multiple trials.

type ParentHyperParameterTuningJob

type ParentHyperParameterTuningJob struct {

	// The name of the hyperparameter tuning job to be used as a starting point for a
	// new hyperparameter tuning job.
	HyperParameterTuningJobName *string
	// contains filtered or unexported fields
}

A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

type PendingDeploymentSummary added in v1.19.0

type PendingDeploymentSummary struct {

	// The name of the endpoint configuration used in the deployment.
	//
	// This member is required.
	EndpointConfigName *string

	// An array of PendingProductionVariantSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html)
	// objects, one for each model hosted behind this endpoint for the in-progress
	// deployment.
	ProductionVariants []PendingProductionVariantSummary

	// An array of PendingProductionVariantSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html)
	// objects, one for each model hosted behind this endpoint in shadow mode with
	// production traffic replicated from the model specified on ProductionVariants
	// for the in-progress deployment.
	ShadowProductionVariants []PendingProductionVariantSummary

	// The start time of the deployment.
	StartTime *time.Time
	// contains filtered or unexported fields
}

The summary of an in-progress deployment when an endpoint is creating or updating with a new endpoint configuration.

type PendingProductionVariantSummary added in v1.19.0

type PendingProductionVariantSummary struct {

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	// The size of the Elastic Inference (EI) instance to use for the production
	// variant. EI instances provide on-demand GPU computing for inference. For more
	// information, see Using Elastic Inference in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html)
	// .
	AcceleratorType ProductionVariantAcceleratorType

	// The number of instances associated with the variant.
	CurrentInstanceCount *int32

	// The serverless configuration for the endpoint.
	CurrentServerlessConfig *ProductionVariantServerlessConfig

	// The weight associated with the variant.
	CurrentWeight *float32

	// An array of DeployedImage objects that specify the Amazon EC2 Container
	// Registry paths of the inference images deployed on instances of this
	// ProductionVariant .
	DeployedImages []DeployedImage

	// The number of instances requested in this deployment, as specified in the
	// endpoint configuration for the endpoint. The value is taken from the request to
	// the CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	// operation.
	DesiredInstanceCount *int32

	// The serverless configuration requested for this deployment, as specified in the
	// endpoint configuration for the endpoint.
	DesiredServerlessConfig *ProductionVariantServerlessConfig

	// The requested weight for the variant in this deployment, as specified in the
	// endpoint configuration for the endpoint. The value is taken from the request to
	// the CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	// operation.
	DesiredWeight *float32

	// The type of instances associated with the variant.
	InstanceType ProductionVariantInstanceType

	// Settings that control the range in the number of instances that the endpoint
	// provisions as it scales up or down to accommodate traffic.
	ManagedInstanceScaling *ProductionVariantManagedInstanceScaling

	// Settings that control how the endpoint routes incoming traffic to the instances
	// that the endpoint hosts.
	RoutingConfig *ProductionVariantRoutingConfig

	// The endpoint variant status which describes the current deployment stage status
	// or operational status.
	VariantStatus []ProductionVariantStatus
	// contains filtered or unexported fields
}

The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html) or UpdateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html) operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.

type Phase added in v1.20.0

type Phase struct {

	// Specifies how long a traffic phase should be. For custom load tests, the value
	// should be between 120 and 3600. This value should not exceed
	// JobDurationInSeconds .
	DurationInSeconds *int32

	// Specifies how many concurrent users to start with. The value should be between
	// 1 and 3.
	InitialNumberOfUsers *int32

	// Specified how many new users to spawn in a minute.
	SpawnRate *int32
	// contains filtered or unexported fields
}

Defines the traffic pattern.

type Pipeline added in v0.31.0

type Pipeline struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The creation time of the pipeline.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// The time that the pipeline was last modified.
	LastModifiedTime *time.Time

	// The time when the pipeline was last run.
	LastRunTime *time.Time

	// The parallelism configuration applied to the pipeline.
	ParallelismConfiguration *ParallelismConfiguration

	// The Amazon Resource Name (ARN) of the pipeline.
	PipelineArn *string

	// The description of the pipeline.
	PipelineDescription *string

	// The display name of the pipeline.
	PipelineDisplayName *string

	// The name of the pipeline.
	PipelineName *string

	// The status of the pipeline.
	PipelineStatus PipelineStatus

	// The Amazon Resource Name (ARN) of the role that created the pipeline.
	RoleArn *string

	// A list of tags that apply to the pipeline.
	Tags []Tag
	// contains filtered or unexported fields
}

A SageMaker Model Building Pipeline instance.

type PipelineDefinitionS3Location added in v1.22.0

type PipelineDefinitionS3Location struct {

	// Name of the S3 bucket.
	//
	// This member is required.
	Bucket *string

	// The object key (or key name) uniquely identifies the object in an S3 bucket.
	//
	// This member is required.
	ObjectKey *string

	// Version Id of the pipeline definition file. If not specified, Amazon SageMaker
	// will retrieve the latest version.
	VersionId *string
	// contains filtered or unexported fields
}

The location of the pipeline definition stored in Amazon S3.

type PipelineExecution added in v0.31.0

type PipelineExecution struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The creation time of the pipeline execution.
	CreationTime *time.Time

	// If the execution failed, a message describing why.
	FailureReason *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// The time that the pipeline execution was last modified.
	LastModifiedTime *time.Time

	// The parallelism configuration applied to the pipeline execution.
	ParallelismConfiguration *ParallelismConfiguration

	// The Amazon Resource Name (ARN) of the pipeline that was executed.
	PipelineArn *string

	// The Amazon Resource Name (ARN) of the pipeline execution.
	PipelineExecutionArn *string

	// The description of the pipeline execution.
	PipelineExecutionDescription *string

	// The display name of the pipeline execution.
	PipelineExecutionDisplayName *string

	// The status of the pipeline status.
	PipelineExecutionStatus PipelineExecutionStatus

	// Specifies the names of the experiment and trial created by a pipeline.
	PipelineExperimentConfig *PipelineExperimentConfig

	// Contains a list of pipeline parameters. This list can be empty.
	PipelineParameters []Parameter

	// The selective execution configuration applied to the pipeline run.
	SelectiveExecutionConfig *SelectiveExecutionConfig
	// contains filtered or unexported fields
}

An execution of a pipeline.

type PipelineExecutionStatus added in v0.31.0

type PipelineExecutionStatus string
const (
	PipelineExecutionStatusExecuting PipelineExecutionStatus = "Executing"
	PipelineExecutionStatusStopping  PipelineExecutionStatus = "Stopping"
	PipelineExecutionStatusStopped   PipelineExecutionStatus = "Stopped"
	PipelineExecutionStatusFailed    PipelineExecutionStatus = "Failed"
	PipelineExecutionStatusSucceeded PipelineExecutionStatus = "Succeeded"
)

Enum values for PipelineExecutionStatus

func (PipelineExecutionStatus) Values added in v0.31.0

Values returns all known values for PipelineExecutionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type PipelineExecutionStep added in v0.31.0

type PipelineExecutionStep struct {

	// The current attempt of the execution step. For more information, see Retry
	// Policy for SageMaker Pipelines steps (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-retry-policy.html)
	// .
	AttemptCount *int32

	// If this pipeline execution step was cached, details on the cache hit.
	CacheHitResult *CacheHitResult

	// The time that the step stopped executing.
	EndTime *time.Time

	// The reason why the step failed execution. This is only returned if the step
	// failed its execution.
	FailureReason *string

	// Metadata to run the pipeline step.
	Metadata *PipelineExecutionStepMetadata

	// The ARN from an execution of the current pipeline from which results are reused
	// for this step.
	SelectiveExecutionResult *SelectiveExecutionResult

	// The time that the step started executing.
	StartTime *time.Time

	// The description of the step.
	StepDescription *string

	// The display name of the step.
	StepDisplayName *string

	// The name of the step that is executed.
	StepName *string

	// The status of the step execution.
	StepStatus StepStatus
	// contains filtered or unexported fields
}

An execution of a step in a pipeline.

type PipelineExecutionStepMetadata added in v0.31.0

type PipelineExecutionStepMetadata struct {

	// The Amazon Resource Name (ARN) of the AutoML job that was run by this step.
	AutoMLJob *AutoMLJobStepMetadata

	// The URL of the Amazon SQS queue used by this step execution, the pipeline
	// generated token, and a list of output parameters.
	Callback *CallbackStepMetadata

	// Container for the metadata for a Clarify check step. The configurations and
	// outcomes of the check step execution. This includes:
	//   - The type of the check conducted,
	//   - The Amazon S3 URIs of baseline constraints and statistics files to be used
	//   for the drift check.
	//   - The Amazon S3 URIs of newly calculated baseline constraints and statistics.
	//   - The model package group name provided.
	//   - The Amazon S3 URI of the violation report if violations detected.
	//   - The Amazon Resource Name (ARN) of check processing job initiated by the
	//   step execution.
	//   - The boolean flags indicating if the drift check is skipped.
	//   - If step property BaselineUsedForDriftCheck is set the same as
	//   CalculatedBaseline .
	ClarifyCheck *ClarifyCheckStepMetadata

	// The outcome of the condition evaluation that was run by this step execution.
	Condition *ConditionStepMetadata

	// The configurations and outcomes of an Amazon EMR step execution.
	EMR *EMRStepMetadata

	// The configurations and outcomes of a Fail step execution.
	Fail *FailStepMetadata

	// The Amazon Resource Name (ARN) of the Lambda function that was run by this step
	// execution and a list of output parameters.
	Lambda *LambdaStepMetadata

	// The Amazon Resource Name (ARN) of the model that was created by this step
	// execution.
	Model *ModelStepMetadata

	// The Amazon Resource Name (ARN) of the processing job that was run by this step
	// execution.
	ProcessingJob *ProcessingJobStepMetadata

	// The configurations and outcomes of the check step execution. This includes:
	//   - The type of the check conducted.
	//   - The Amazon S3 URIs of baseline constraints and statistics files to be used
	//   for the drift check.
	//   - The Amazon S3 URIs of newly calculated baseline constraints and statistics.
	//   - The model package group name provided.
	//   - The Amazon S3 URI of the violation report if violations detected.
	//   - The Amazon Resource Name (ARN) of check processing job initiated by the
	//   step execution.
	//   - The Boolean flags indicating if the drift check is skipped.
	//   - If step property BaselineUsedForDriftCheck is set the same as
	//   CalculatedBaseline .
	QualityCheck *QualityCheckStepMetadata

	// The Amazon Resource Name (ARN) of the model package that the model was
	// registered to by this step execution.
	RegisterModel *RegisterModelStepMetadata

	// The Amazon Resource Name (ARN) of the training job that was run by this step
	// execution.
	TrainingJob *TrainingJobStepMetadata

	// The Amazon Resource Name (ARN) of the transform job that was run by this step
	// execution.
	TransformJob *TransformJobStepMetadata

	// The Amazon Resource Name (ARN) of the tuning job that was run by this step
	// execution.
	TuningJob *TuningJobStepMetaData
	// contains filtered or unexported fields
}

Metadata for a step execution.

type PipelineExecutionSummary added in v0.31.0

type PipelineExecutionSummary struct {

	// The Amazon Resource Name (ARN) of the pipeline execution.
	PipelineExecutionArn *string

	// The description of the pipeline execution.
	PipelineExecutionDescription *string

	// The display name of the pipeline execution.
	PipelineExecutionDisplayName *string

	// A message generated by SageMaker Pipelines describing why the pipeline
	// execution failed.
	PipelineExecutionFailureReason *string

	// The status of the pipeline execution.
	PipelineExecutionStatus PipelineExecutionStatus

	// The start time of the pipeline execution.
	StartTime *time.Time
	// contains filtered or unexported fields
}

A pipeline execution summary.

type PipelineExperimentConfig added in v1.7.0

type PipelineExperimentConfig struct {

	// The name of the experiment.
	ExperimentName *string

	// The name of the trial.
	TrialName *string
	// contains filtered or unexported fields
}

Specifies the names of the experiment and trial created by a pipeline.

type PipelineStatus added in v0.31.0

type PipelineStatus string
const (
	PipelineStatusActive PipelineStatus = "Active"
)

Enum values for PipelineStatus

func (PipelineStatus) Values added in v0.31.0

func (PipelineStatus) Values() []PipelineStatus

Values returns all known values for PipelineStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type PipelineSummary added in v0.31.0

type PipelineSummary struct {

	// The creation time of the pipeline.
	CreationTime *time.Time

	// The last time that a pipeline execution began.
	LastExecutionTime *time.Time

	// The time that the pipeline was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the pipeline.
	PipelineArn *string

	// The description of the pipeline.
	PipelineDescription *string

	// The display name of the pipeline.
	PipelineDisplayName *string

	// The name of the pipeline.
	PipelineName *string

	// The Amazon Resource Name (ARN) that the pipeline used to execute.
	RoleArn *string
	// contains filtered or unexported fields
}

A summary of a pipeline.

type PredefinedMetricSpecification added in v1.98.0

type PredefinedMetricSpecification struct {

	// The metric type. You can only apply SageMaker metric types to SageMaker
	// endpoints.
	PredefinedMetricType *string
	// contains filtered or unexported fields
}

A specification for a predefined metric.

type ProblemType

type ProblemType string
const (
	ProblemTypeBinaryClassification     ProblemType = "BinaryClassification"
	ProblemTypeMulticlassClassification ProblemType = "MulticlassClassification"
	ProblemTypeRegression               ProblemType = "Regression"
)

Enum values for ProblemType

func (ProblemType) Values added in v0.29.0

func (ProblemType) Values() []ProblemType

Values returns all known values for ProblemType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingClusterConfig

type ProcessingClusterConfig struct {

	// The number of ML compute instances to use in the processing job. For
	// distributed processing jobs, specify a value greater than 1. The default value
	// is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the processing job.
	//
	// This member is required.
	InstanceType ProcessingInstanceType

	// The size of the ML storage volume in gigabytes that you want to provision. You
	// must specify sufficient ML storage for your scenario. Certain Nitro-based
	// instances include local storage with a fixed total size, dependent on the
	// instance type. When using these instances for processing, Amazon SageMaker
	// mounts the local instance storage instead of Amazon EBS gp2 storage. You can't
	// request a VolumeSizeInGB greater than the total size of the local instance
	// storage. For a list of instance types that support local instance storage,
	// including the total size per instance type, see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// .
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
	// ML compute instance(s) that run the processing job. Certain Nitro-based
	// instances include local storage, dependent on the instance type. Local storage
	// volumes are encrypted using a hardware module on the instance. You can't request
	// a VolumeKmsKeyId when using an instance type with local storage. For a list of
	// instance types that support local instance storage, see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// . For more information about local instance storage encryption, see SSD
	// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// .
	VolumeKmsKeyId *string
	// contains filtered or unexported fields
}

Configuration for the cluster used to run a processing job.

type ProcessingFeatureStoreOutput added in v0.31.0

type ProcessingFeatureStoreOutput struct {

	// The name of the Amazon SageMaker FeatureGroup to use as the destination for
	// processing job output. Note that your processing script is responsible for
	// putting records into your Feature Store.
	//
	// This member is required.
	FeatureGroupName *string
	// contains filtered or unexported fields
}

Configuration for processing job outputs in Amazon SageMaker Feature Store.

type ProcessingInput

type ProcessingInput struct {

	// The name for the processing job input.
	//
	// This member is required.
	InputName *string

	// When True , input operations such as data download are managed natively by the
	// processing job application. When False (default), input operations are managed
	// by Amazon SageMaker.
	AppManaged *bool

	// Configuration for a Dataset Definition input.
	DatasetDefinition *DatasetDefinition

	// Configuration for downloading input data from Amazon S3 into the processing
	// container.
	S3Input *ProcessingS3Input
	// contains filtered or unexported fields
}

The inputs for a processing job. The processing input must specify exactly one of either S3Input or DatasetDefinition types.

type ProcessingInstanceType

type ProcessingInstanceType string
const (
	ProcessingInstanceTypeMlT3Medium     ProcessingInstanceType = "ml.t3.medium"
	ProcessingInstanceTypeMlT3Large      ProcessingInstanceType = "ml.t3.large"
	ProcessingInstanceTypeMlT3Xlarge     ProcessingInstanceType = "ml.t3.xlarge"
	ProcessingInstanceTypeMlT32xlarge    ProcessingInstanceType = "ml.t3.2xlarge"
	ProcessingInstanceTypeMlM4Xlarge     ProcessingInstanceType = "ml.m4.xlarge"
	ProcessingInstanceTypeMlM42xlarge    ProcessingInstanceType = "ml.m4.2xlarge"
	ProcessingInstanceTypeMlM44xlarge    ProcessingInstanceType = "ml.m4.4xlarge"
	ProcessingInstanceTypeMlM410xlarge   ProcessingInstanceType = "ml.m4.10xlarge"
	ProcessingInstanceTypeMlM416xlarge   ProcessingInstanceType = "ml.m4.16xlarge"
	ProcessingInstanceTypeMlC4Xlarge     ProcessingInstanceType = "ml.c4.xlarge"
	ProcessingInstanceTypeMlC42xlarge    ProcessingInstanceType = "ml.c4.2xlarge"
	ProcessingInstanceTypeMlC44xlarge    ProcessingInstanceType = "ml.c4.4xlarge"
	ProcessingInstanceTypeMlC48xlarge    ProcessingInstanceType = "ml.c4.8xlarge"
	ProcessingInstanceTypeMlP2Xlarge     ProcessingInstanceType = "ml.p2.xlarge"
	ProcessingInstanceTypeMlP28xlarge    ProcessingInstanceType = "ml.p2.8xlarge"
	ProcessingInstanceTypeMlP216xlarge   ProcessingInstanceType = "ml.p2.16xlarge"
	ProcessingInstanceTypeMlP32xlarge    ProcessingInstanceType = "ml.p3.2xlarge"
	ProcessingInstanceTypeMlP38xlarge    ProcessingInstanceType = "ml.p3.8xlarge"
	ProcessingInstanceTypeMlP316xlarge   ProcessingInstanceType = "ml.p3.16xlarge"
	ProcessingInstanceTypeMlC5Xlarge     ProcessingInstanceType = "ml.c5.xlarge"
	ProcessingInstanceTypeMlC52xlarge    ProcessingInstanceType = "ml.c5.2xlarge"
	ProcessingInstanceTypeMlC54xlarge    ProcessingInstanceType = "ml.c5.4xlarge"
	ProcessingInstanceTypeMlC59xlarge    ProcessingInstanceType = "ml.c5.9xlarge"
	ProcessingInstanceTypeMlC518xlarge   ProcessingInstanceType = "ml.c5.18xlarge"
	ProcessingInstanceTypeMlM5Large      ProcessingInstanceType = "ml.m5.large"
	ProcessingInstanceTypeMlM5Xlarge     ProcessingInstanceType = "ml.m5.xlarge"
	ProcessingInstanceTypeMlM52xlarge    ProcessingInstanceType = "ml.m5.2xlarge"
	ProcessingInstanceTypeMlM54xlarge    ProcessingInstanceType = "ml.m5.4xlarge"
	ProcessingInstanceTypeMlM512xlarge   ProcessingInstanceType = "ml.m5.12xlarge"
	ProcessingInstanceTypeMlM524xlarge   ProcessingInstanceType = "ml.m5.24xlarge"
	ProcessingInstanceTypeMlR5Large      ProcessingInstanceType = "ml.r5.large"
	ProcessingInstanceTypeMlR5Xlarge     ProcessingInstanceType = "ml.r5.xlarge"
	ProcessingInstanceTypeMlR52xlarge    ProcessingInstanceType = "ml.r5.2xlarge"
	ProcessingInstanceTypeMlR54xlarge    ProcessingInstanceType = "ml.r5.4xlarge"
	ProcessingInstanceTypeMlR58xlarge    ProcessingInstanceType = "ml.r5.8xlarge"
	ProcessingInstanceTypeMlR512xlarge   ProcessingInstanceType = "ml.r5.12xlarge"
	ProcessingInstanceTypeMlR516xlarge   ProcessingInstanceType = "ml.r5.16xlarge"
	ProcessingInstanceTypeMlR524xlarge   ProcessingInstanceType = "ml.r5.24xlarge"
	ProcessingInstanceTypeMlG4dnXlarge   ProcessingInstanceType = "ml.g4dn.xlarge"
	ProcessingInstanceTypeMlG4dn2xlarge  ProcessingInstanceType = "ml.g4dn.2xlarge"
	ProcessingInstanceTypeMlG4dn4xlarge  ProcessingInstanceType = "ml.g4dn.4xlarge"
	ProcessingInstanceTypeMlG4dn8xlarge  ProcessingInstanceType = "ml.g4dn.8xlarge"
	ProcessingInstanceTypeMlG4dn12xlarge ProcessingInstanceType = "ml.g4dn.12xlarge"
	ProcessingInstanceTypeMlG4dn16xlarge ProcessingInstanceType = "ml.g4dn.16xlarge"
)

Enum values for ProcessingInstanceType

func (ProcessingInstanceType) Values added in v0.29.0

Values returns all known values for ProcessingInstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingJob

type ProcessingJob struct {

	// Configuration to run a processing job in a specified container image.
	AppSpecification *AppSpecification

	// The Amazon Resource Name (ARN) of the AutoML job associated with this
	// processing job.
	AutoMLJobArn *string

	// The time the processing job was created.
	CreationTime *time.Time

	// Sets the environment variables in the Docker container.
	Environment map[string]string

	// A string, up to one KB in size, that contains metadata from the processing
	// container when the processing job exits.
	ExitMessage *string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
	//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
	ExperimentConfig *ExperimentConfig

	// A string, up to one KB in size, that contains the reason a processing job
	// failed, if it failed.
	FailureReason *string

	// The time the processing job was last modified.
	LastModifiedTime *time.Time

	// The ARN of a monitoring schedule for an endpoint associated with this
	// processing job.
	MonitoringScheduleArn *string

	// Networking options for a job, such as network traffic encryption between
	// containers, whether to allow inbound and outbound network calls to and from
	// containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
	NetworkConfig *NetworkConfig

	// The time that the processing job ended.
	ProcessingEndTime *time.Time

	// List of input configurations for the processing job.
	ProcessingInputs []ProcessingInput

	// The ARN of the processing job.
	ProcessingJobArn *string

	// The name of the processing job.
	ProcessingJobName *string

	// The status of the processing job.
	ProcessingJobStatus ProcessingJobStatus

	// Configuration for uploading output from the processing container.
	ProcessingOutputConfig *ProcessingOutputConfig

	// Identifies the resources, ML compute instances, and ML storage volumes to
	// deploy for a processing job. In distributed training, you specify more than one
	// instance.
	ProcessingResources *ProcessingResources

	// The time that the processing job started.
	ProcessingStartTime *time.Time

	// The ARN of the role used to create the processing job.
	RoleArn *string

	// Configures conditions under which the processing job should be stopped, such as
	// how long the processing job has been running. After the condition is met, the
	// processing job is stopped.
	StoppingCondition *ProcessingStoppingCondition

	// An array of key-value pairs. For more information, see Using Cost Allocation
	// Tags (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
	// in the Amazon Web Services Billing and Cost Management User Guide.
	Tags []Tag

	// The ARN of the training job associated with this processing job.
	TrainingJobArn *string
	// contains filtered or unexported fields
}

An Amazon SageMaker processing job that is used to analyze data and evaluate models. For more information, see Process Data and Evaluate Models (https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html) .

type ProcessingJobStatus

type ProcessingJobStatus string
const (
	ProcessingJobStatusInProgress ProcessingJobStatus = "InProgress"
	ProcessingJobStatusCompleted  ProcessingJobStatus = "Completed"
	ProcessingJobStatusFailed     ProcessingJobStatus = "Failed"
	ProcessingJobStatusStopping   ProcessingJobStatus = "Stopping"
	ProcessingJobStatusStopped    ProcessingJobStatus = "Stopped"
)

Enum values for ProcessingJobStatus

func (ProcessingJobStatus) Values added in v0.29.0

Values returns all known values for ProcessingJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingJobStepMetadata added in v0.31.0

type ProcessingJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the processing job.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for a processing job step.

type ProcessingJobSummary

type ProcessingJobSummary struct {

	// The time at which the processing job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the processing job..
	//
	// This member is required.
	ProcessingJobArn *string

	// The name of the processing job.
	//
	// This member is required.
	ProcessingJobName *string

	// The status of the processing job.
	//
	// This member is required.
	ProcessingJobStatus ProcessingJobStatus

	// An optional string, up to one KB in size, that contains metadata from the
	// processing container when the processing job exits.
	ExitMessage *string

	// A string, up to one KB in size, that contains the reason a processing job
	// failed, if it failed.
	FailureReason *string

	// A timestamp that indicates the last time the processing job was modified.
	LastModifiedTime *time.Time

	// The time at which the processing job completed.
	ProcessingEndTime *time.Time
	// contains filtered or unexported fields
}

Summary of information about a processing job.

type ProcessingOutput

type ProcessingOutput struct {

	// The name for the processing job output.
	//
	// This member is required.
	OutputName *string

	// When True , output operations such as data upload are managed natively by the
	// processing job application. When False (default), output operations are managed
	// by Amazon SageMaker.
	AppManaged *bool

	// Configuration for processing job outputs in Amazon SageMaker Feature Store.
	// This processing output type is only supported when AppManaged is specified.
	FeatureStoreOutput *ProcessingFeatureStoreOutput

	// Configuration for processing job outputs in Amazon S3.
	S3Output *ProcessingS3Output
	// contains filtered or unexported fields
}

Describes the results of a processing job. The processing output must specify exactly one of either S3Output or FeatureStoreOutput types.

type ProcessingOutputConfig

type ProcessingOutputConfig struct {

	// An array of outputs configuring the data to upload from the processing
	// container.
	//
	// This member is required.
	Outputs []ProcessingOutput

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can
	// be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS
	// key. The KmsKeyId is applied to all outputs.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Configuration for uploading output from the processing container.

type ProcessingResources

type ProcessingResources struct {

	// The configuration for the resources in a cluster used to run the processing job.
	//
	// This member is required.
	ClusterConfig *ProcessingClusterConfig
	// contains filtered or unexported fields
}

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

type ProcessingS3CompressionType

type ProcessingS3CompressionType string
const (
	ProcessingS3CompressionTypeNone ProcessingS3CompressionType = "None"
	ProcessingS3CompressionTypeGzip ProcessingS3CompressionType = "Gzip"
)

Enum values for ProcessingS3CompressionType

func (ProcessingS3CompressionType) Values added in v0.29.0

Values returns all known values for ProcessingS3CompressionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingS3DataDistributionType

type ProcessingS3DataDistributionType string
const (
	ProcessingS3DataDistributionTypeFullyreplicated ProcessingS3DataDistributionType = "FullyReplicated"
	ProcessingS3DataDistributionTypeShardedbys3key  ProcessingS3DataDistributionType = "ShardedByS3Key"
)

Enum values for ProcessingS3DataDistributionType

func (ProcessingS3DataDistributionType) Values added in v0.29.0

Values returns all known values for ProcessingS3DataDistributionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingS3DataType

type ProcessingS3DataType string
const (
	ProcessingS3DataTypeManifestFile ProcessingS3DataType = "ManifestFile"
	ProcessingS3DataTypeS3Prefix     ProcessingS3DataType = "S3Prefix"
)

Enum values for ProcessingS3DataType

func (ProcessingS3DataType) Values added in v0.29.0

Values returns all known values for ProcessingS3DataType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingS3Input

type ProcessingS3Input struct {

	// Whether you use an S3Prefix or a ManifestFile for the data type. If you choose
	// S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all
	// objects with the specified key name prefix for the processing job. If you choose
	// ManifestFile , S3Uri identifies an object that is a manifest file containing a
	// list of object keys that you want Amazon SageMaker to use for the processing
	// job.
	//
	// This member is required.
	S3DataType ProcessingS3DataType

	// The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run
	// a processing job.
	//
	// This member is required.
	S3Uri *string

	// The local path in your container where you want Amazon SageMaker to write input
	// data to. LocalPath is an absolute path to the input data and must begin with
	// /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False
	// (default).
	LocalPath *string

	// Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the
	// processing container. Gzip can only be used when Pipe mode is specified as the
	// S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source
	// directly to your container without using the EBS volume.
	S3CompressionType ProcessingS3CompressionType

	// Whether to distribute the data from Amazon S3 to all processing instances with
	// FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key,
	// downloading one shard of data to each processing instance.
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies
	// the data from the input source onto the local ML storage volume before starting
	// your processing container. This is the most commonly used input mode. In Pipe
	// mode, Amazon SageMaker streams input data from the source directly to your
	// processing container into named pipes without using the ML storage volume.
	S3InputMode ProcessingS3InputMode
	// contains filtered or unexported fields
}

Configuration for downloading input data from Amazon S3 into the processing container.

type ProcessingS3InputMode

type ProcessingS3InputMode string
const (
	ProcessingS3InputModePipe ProcessingS3InputMode = "Pipe"
	ProcessingS3InputModeFile ProcessingS3InputMode = "File"
)

Enum values for ProcessingS3InputMode

func (ProcessingS3InputMode) Values added in v0.29.0

Values returns all known values for ProcessingS3InputMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingS3Output

type ProcessingS3Output struct {

	// The local path of a directory where you want Amazon SageMaker to upload its
	// contents to Amazon S3. LocalPath is an absolute path to a directory containing
	// output files. This directory will be created by the platform and exist when your
	// container's entrypoint is invoked.
	//
	// This member is required.
	LocalPath *string

	// Whether to upload the results of the processing job continuously or after the
	// job completes.
	//
	// This member is required.
	S3UploadMode ProcessingS3UploadMode

	// A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to
	// save the results of a processing job.
	//
	// This member is required.
	S3Uri *string
	// contains filtered or unexported fields
}

Configuration for uploading output data to Amazon S3 from the processing container.

type ProcessingS3UploadMode

type ProcessingS3UploadMode string
const (
	ProcessingS3UploadModeContinuous ProcessingS3UploadMode = "Continuous"
	ProcessingS3UploadModeEndOfJob   ProcessingS3UploadMode = "EndOfJob"
)

Enum values for ProcessingS3UploadMode

func (ProcessingS3UploadMode) Values added in v0.29.0

Values returns all known values for ProcessingS3UploadMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProcessingStoppingCondition

type ProcessingStoppingCondition struct {

	// Specifies the maximum runtime in seconds.
	//
	// This member is required.
	MaxRuntimeInSeconds *int32
	// contains filtered or unexported fields
}

Configures conditions under which the processing job should be stopped, such as how long the processing job has been running. After the condition is met, the processing job is stopped.

type Processor added in v1.59.0

type Processor string
const (
	ProcessorCpu Processor = "CPU"
	ProcessorGpu Processor = "GPU"
)

Enum values for Processor

func (Processor) Values added in v1.59.0

func (Processor) Values() []Processor

Values returns all known values for Processor. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProductionVariant

type ProductionVariant struct {

	// The name of the production variant.
	//
	// This member is required.
	VariantName *string

	// The size of the Elastic Inference (EI) instance to use for the production
	// variant. EI instances provide on-demand GPU computing for inference. For more
	// information, see Using Elastic Inference in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html)
	// .
	AcceleratorType ProductionVariantAcceleratorType

	// The timeout value, in seconds, for your inference container to pass health
	// check by SageMaker Hosting. For more information about health check, see How
	// Your Container Should Respond to Health Check (Ping) Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests)
	// .
	ContainerStartupHealthCheckTimeoutInSeconds *int32

	// Specifies configuration for a core dump from the model container when the
	// process crashes.
	CoreDumpConfig *ProductionVariantCoreDumpConfig

	// You can use this parameter to turn on native Amazon Web Services Systems
	// Manager (SSM) access for a production variant behind an endpoint. By default,
	// SSM access is disabled for all production variants behind an endpoint. You can
	// turn on or turn off SSM access for a production variant behind an existing
	// endpoint by creating a new endpoint configuration and calling UpdateEndpoint .
	EnableSSMAccess *bool

	// Number of instances to launch initially.
	InitialInstanceCount *int32

	// Determines initial traffic distribution among all of the models that you
	// specify in the endpoint configuration. The traffic to a production variant is
	// determined by the ratio of the VariantWeight to the sum of all VariantWeight
	// values across all ProductionVariants. If unspecified, it defaults to 1.0.
	InitialVariantWeight *float32

	// The ML compute instance type.
	InstanceType ProductionVariantInstanceType

	// Settings that control the range in the number of instances that the endpoint
	// provisions as it scales up or down to accommodate traffic.
	ManagedInstanceScaling *ProductionVariantManagedInstanceScaling

	// The timeout value, in seconds, to download and extract the model that you want
	// to host from Amazon S3 to the individual inference instance associated with this
	// production variant.
	ModelDataDownloadTimeoutInSeconds *int32

	// The name of the model that you want to host. This is the name that you
	// specified when creating the model.
	ModelName *string

	// Settings that control how the endpoint routes incoming traffic to the instances
	// that the endpoint hosts.
	RoutingConfig *ProductionVariantRoutingConfig

	// The serverless configuration for an endpoint. Specifies a serverless endpoint
	// configuration instead of an instance-based endpoint configuration.
	ServerlessConfig *ProductionVariantServerlessConfig

	// The size, in GB, of the ML storage volume attached to individual inference
	// instance associated with the production variant. Currently only Amazon EBS gp2
	// storage volumes are supported.
	VolumeSizeInGB *int32
	// contains filtered or unexported fields
}

Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check Production variants (https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html) .

type ProductionVariantAcceleratorType

type ProductionVariantAcceleratorType string
const (
	ProductionVariantAcceleratorTypeMlEia1Medium ProductionVariantAcceleratorType = "ml.eia1.medium"
	ProductionVariantAcceleratorTypeMlEia1Large  ProductionVariantAcceleratorType = "ml.eia1.large"
	ProductionVariantAcceleratorTypeMlEia1Xlarge ProductionVariantAcceleratorType = "ml.eia1.xlarge"
	ProductionVariantAcceleratorTypeMlEia2Medium ProductionVariantAcceleratorType = "ml.eia2.medium"
	ProductionVariantAcceleratorTypeMlEia2Large  ProductionVariantAcceleratorType = "ml.eia2.large"
	ProductionVariantAcceleratorTypeMlEia2Xlarge ProductionVariantAcceleratorType = "ml.eia2.xlarge"
)

Enum values for ProductionVariantAcceleratorType

func (ProductionVariantAcceleratorType) Values added in v0.29.0

Values returns all known values for ProductionVariantAcceleratorType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProductionVariantCoreDumpConfig added in v1.2.0

type ProductionVariantCoreDumpConfig struct {

	// The Amazon S3 bucket to send the core dump to.
	//
	// This member is required.
	DestinationS3Uri *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that SageMaker uses to encrypt the core dump data at rest using Amazon S3
	// server-side encryption. The KmsKeyId can be any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias
	//   "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
	// If you use a KMS key ID or an alias of your KMS key, the SageMaker execution
	// role must include permissions to call kms:Encrypt . If you don't provide a KMS
	// key ID, SageMaker uses the default KMS key for Amazon S3 for your role's
	// account. SageMaker uses server-side encryption with KMS-managed keys for
	// OutputDataConfig . If you use a bucket policy with an s3:PutObject permission
	// that only allows objects with server-side encryption, set the condition key of
	// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
	// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
	// grant permission to the IAM role that you specify in your CreateEndpoint and
	// UpdateEndpoint requests. For more information, see Using Key Policies in Amazon
	// Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
	// in the Amazon Web Services Key Management Service Developer Guide.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Specifies configuration for a core dump from the model container when the process crashes.

type ProductionVariantInstanceType

type ProductionVariantInstanceType string
const (
	ProductionVariantInstanceTypeMlT2Medium     ProductionVariantInstanceType = "ml.t2.medium"
	ProductionVariantInstanceTypeMlT2Large      ProductionVariantInstanceType = "ml.t2.large"
	ProductionVariantInstanceTypeMlT2Xlarge     ProductionVariantInstanceType = "ml.t2.xlarge"
	ProductionVariantInstanceTypeMlT22xlarge    ProductionVariantInstanceType = "ml.t2.2xlarge"
	ProductionVariantInstanceTypeMlM4Xlarge     ProductionVariantInstanceType = "ml.m4.xlarge"
	ProductionVariantInstanceTypeMlM42xlarge    ProductionVariantInstanceType = "ml.m4.2xlarge"
	ProductionVariantInstanceTypeMlM44xlarge    ProductionVariantInstanceType = "ml.m4.4xlarge"
	ProductionVariantInstanceTypeMlM410xlarge   ProductionVariantInstanceType = "ml.m4.10xlarge"
	ProductionVariantInstanceTypeMlM416xlarge   ProductionVariantInstanceType = "ml.m4.16xlarge"
	ProductionVariantInstanceTypeMlM5Large      ProductionVariantInstanceType = "ml.m5.large"
	ProductionVariantInstanceTypeMlM5Xlarge     ProductionVariantInstanceType = "ml.m5.xlarge"
	ProductionVariantInstanceTypeMlM52xlarge    ProductionVariantInstanceType = "ml.m5.2xlarge"
	ProductionVariantInstanceTypeMlM54xlarge    ProductionVariantInstanceType = "ml.m5.4xlarge"
	ProductionVariantInstanceTypeMlM512xlarge   ProductionVariantInstanceType = "ml.m5.12xlarge"
	ProductionVariantInstanceTypeMlM524xlarge   ProductionVariantInstanceType = "ml.m5.24xlarge"
	ProductionVariantInstanceTypeMlM5dLarge     ProductionVariantInstanceType = "ml.m5d.large"
	ProductionVariantInstanceTypeMlM5dXlarge    ProductionVariantInstanceType = "ml.m5d.xlarge"
	ProductionVariantInstanceTypeMlM5d2xlarge   ProductionVariantInstanceType = "ml.m5d.2xlarge"
	ProductionVariantInstanceTypeMlM5d4xlarge   ProductionVariantInstanceType = "ml.m5d.4xlarge"
	ProductionVariantInstanceTypeMlM5d12xlarge  ProductionVariantInstanceType = "ml.m5d.12xlarge"
	ProductionVariantInstanceTypeMlM5d24xlarge  ProductionVariantInstanceType = "ml.m5d.24xlarge"
	ProductionVariantInstanceTypeMlC4Large      ProductionVariantInstanceType = "ml.c4.large"
	ProductionVariantInstanceTypeMlC4Xlarge     ProductionVariantInstanceType = "ml.c4.xlarge"
	ProductionVariantInstanceTypeMlC42xlarge    ProductionVariantInstanceType = "ml.c4.2xlarge"
	ProductionVariantInstanceTypeMlC44xlarge    ProductionVariantInstanceType = "ml.c4.4xlarge"
	ProductionVariantInstanceTypeMlC48xlarge    ProductionVariantInstanceType = "ml.c4.8xlarge"
	ProductionVariantInstanceTypeMlP2Xlarge     ProductionVariantInstanceType = "ml.p2.xlarge"
	ProductionVariantInstanceTypeMlP28xlarge    ProductionVariantInstanceType = "ml.p2.8xlarge"
	ProductionVariantInstanceTypeMlP216xlarge   ProductionVariantInstanceType = "ml.p2.16xlarge"
	ProductionVariantInstanceTypeMlP32xlarge    ProductionVariantInstanceType = "ml.p3.2xlarge"
	ProductionVariantInstanceTypeMlP38xlarge    ProductionVariantInstanceType = "ml.p3.8xlarge"
	ProductionVariantInstanceTypeMlP316xlarge   ProductionVariantInstanceType = "ml.p3.16xlarge"
	ProductionVariantInstanceTypeMlC5Large      ProductionVariantInstanceType = "ml.c5.large"
	ProductionVariantInstanceTypeMlC5Xlarge     ProductionVariantInstanceType = "ml.c5.xlarge"
	ProductionVariantInstanceTypeMlC52xlarge    ProductionVariantInstanceType = "ml.c5.2xlarge"
	ProductionVariantInstanceTypeMlC54xlarge    ProductionVariantInstanceType = "ml.c5.4xlarge"
	ProductionVariantInstanceTypeMlC59xlarge    ProductionVariantInstanceType = "ml.c5.9xlarge"
	ProductionVariantInstanceTypeMlC518xlarge   ProductionVariantInstanceType = "ml.c5.18xlarge"
	ProductionVariantInstanceTypeMlC5dLarge     ProductionVariantInstanceType = "ml.c5d.large"
	ProductionVariantInstanceTypeMlC5dXlarge    ProductionVariantInstanceType = "ml.c5d.xlarge"
	ProductionVariantInstanceTypeMlC5d2xlarge   ProductionVariantInstanceType = "ml.c5d.2xlarge"
	ProductionVariantInstanceTypeMlC5d4xlarge   ProductionVariantInstanceType = "ml.c5d.4xlarge"
	ProductionVariantInstanceTypeMlC5d9xlarge   ProductionVariantInstanceType = "ml.c5d.9xlarge"
	ProductionVariantInstanceTypeMlC5d18xlarge  ProductionVariantInstanceType = "ml.c5d.18xlarge"
	ProductionVariantInstanceTypeMlG4dnXlarge   ProductionVariantInstanceType = "ml.g4dn.xlarge"
	ProductionVariantInstanceTypeMlG4dn2xlarge  ProductionVariantInstanceType = "ml.g4dn.2xlarge"
	ProductionVariantInstanceTypeMlG4dn4xlarge  ProductionVariantInstanceType = "ml.g4dn.4xlarge"
	ProductionVariantInstanceTypeMlG4dn8xlarge  ProductionVariantInstanceType = "ml.g4dn.8xlarge"
	ProductionVariantInstanceTypeMlG4dn12xlarge ProductionVariantInstanceType = "ml.g4dn.12xlarge"
	ProductionVariantInstanceTypeMlG4dn16xlarge ProductionVariantInstanceType = "ml.g4dn.16xlarge"
	ProductionVariantInstanceTypeMlR5Large      ProductionVariantInstanceType = "ml.r5.large"
	ProductionVariantInstanceTypeMlR5Xlarge     ProductionVariantInstanceType = "ml.r5.xlarge"
	ProductionVariantInstanceTypeMlR52xlarge    ProductionVariantInstanceType = "ml.r5.2xlarge"
	ProductionVariantInstanceTypeMlR54xlarge    ProductionVariantInstanceType = "ml.r5.4xlarge"
	ProductionVariantInstanceTypeMlR512xlarge   ProductionVariantInstanceType = "ml.r5.12xlarge"
	ProductionVariantInstanceTypeMlR524xlarge   ProductionVariantInstanceType = "ml.r5.24xlarge"
	ProductionVariantInstanceTypeMlR5dLarge     ProductionVariantInstanceType = "ml.r5d.large"
	ProductionVariantInstanceTypeMlR5dXlarge    ProductionVariantInstanceType = "ml.r5d.xlarge"
	ProductionVariantInstanceTypeMlR5d2xlarge   ProductionVariantInstanceType = "ml.r5d.2xlarge"
	ProductionVariantInstanceTypeMlR5d4xlarge   ProductionVariantInstanceType = "ml.r5d.4xlarge"
	ProductionVariantInstanceTypeMlR5d12xlarge  ProductionVariantInstanceType = "ml.r5d.12xlarge"
	ProductionVariantInstanceTypeMlR5d24xlarge  ProductionVariantInstanceType = "ml.r5d.24xlarge"
	ProductionVariantInstanceTypeMlInf1Xlarge   ProductionVariantInstanceType = "ml.inf1.xlarge"
	ProductionVariantInstanceTypeMlInf12xlarge  ProductionVariantInstanceType = "ml.inf1.2xlarge"
	ProductionVariantInstanceTypeMlInf16xlarge  ProductionVariantInstanceType = "ml.inf1.6xlarge"
	ProductionVariantInstanceTypeMlInf124xlarge ProductionVariantInstanceType = "ml.inf1.24xlarge"
	ProductionVariantInstanceTypeMlC6iLarge     ProductionVariantInstanceType = "ml.c6i.large"
	ProductionVariantInstanceTypeMlC6iXlarge    ProductionVariantInstanceType = "ml.c6i.xlarge"
	ProductionVariantInstanceTypeMlC6i2xlarge   ProductionVariantInstanceType = "ml.c6i.2xlarge"
	ProductionVariantInstanceTypeMlC6i4xlarge   ProductionVariantInstanceType = "ml.c6i.4xlarge"
	ProductionVariantInstanceTypeMlC6i8xlarge   ProductionVariantInstanceType = "ml.c6i.8xlarge"
	ProductionVariantInstanceTypeMlC6i12xlarge  ProductionVariantInstanceType = "ml.c6i.12xlarge"
	ProductionVariantInstanceTypeMlC6i16xlarge  ProductionVariantInstanceType = "ml.c6i.16xlarge"
	ProductionVariantInstanceTypeMlC6i24xlarge  ProductionVariantInstanceType = "ml.c6i.24xlarge"
	ProductionVariantInstanceTypeMlC6i32xlarge  ProductionVariantInstanceType = "ml.c6i.32xlarge"
	ProductionVariantInstanceTypeMlG5Xlarge     ProductionVariantInstanceType = "ml.g5.xlarge"
	ProductionVariantInstanceTypeMlG52xlarge    ProductionVariantInstanceType = "ml.g5.2xlarge"
	ProductionVariantInstanceTypeMlG54xlarge    ProductionVariantInstanceType = "ml.g5.4xlarge"
	ProductionVariantInstanceTypeMlG58xlarge    ProductionVariantInstanceType = "ml.g5.8xlarge"
	ProductionVariantInstanceTypeMlG512xlarge   ProductionVariantInstanceType = "ml.g5.12xlarge"
	ProductionVariantInstanceTypeMlG516xlarge   ProductionVariantInstanceType = "ml.g5.16xlarge"
	ProductionVariantInstanceTypeMlG524xlarge   ProductionVariantInstanceType = "ml.g5.24xlarge"
	ProductionVariantInstanceTypeMlG548xlarge   ProductionVariantInstanceType = "ml.g5.48xlarge"
	ProductionVariantInstanceTypeMlP4d24xlarge  ProductionVariantInstanceType = "ml.p4d.24xlarge"
	ProductionVariantInstanceTypeMlC7gLarge     ProductionVariantInstanceType = "ml.c7g.large"
	ProductionVariantInstanceTypeMlC7gXlarge    ProductionVariantInstanceType = "ml.c7g.xlarge"
	ProductionVariantInstanceTypeMlC7g2xlarge   ProductionVariantInstanceType = "ml.c7g.2xlarge"
	ProductionVariantInstanceTypeMlC7g4xlarge   ProductionVariantInstanceType = "ml.c7g.4xlarge"
	ProductionVariantInstanceTypeMlC7g8xlarge   ProductionVariantInstanceType = "ml.c7g.8xlarge"
	ProductionVariantInstanceTypeMlC7g12xlarge  ProductionVariantInstanceType = "ml.c7g.12xlarge"
	ProductionVariantInstanceTypeMlC7g16xlarge  ProductionVariantInstanceType = "ml.c7g.16xlarge"
	ProductionVariantInstanceTypeMlM6gLarge     ProductionVariantInstanceType = "ml.m6g.large"
	ProductionVariantInstanceTypeMlM6gXlarge    ProductionVariantInstanceType = "ml.m6g.xlarge"
	ProductionVariantInstanceTypeMlM6g2xlarge   ProductionVariantInstanceType = "ml.m6g.2xlarge"
	ProductionVariantInstanceTypeMlM6g4xlarge   ProductionVariantInstanceType = "ml.m6g.4xlarge"
	ProductionVariantInstanceTypeMlM6g8xlarge   ProductionVariantInstanceType = "ml.m6g.8xlarge"
	ProductionVariantInstanceTypeMlM6g12xlarge  ProductionVariantInstanceType = "ml.m6g.12xlarge"
	ProductionVariantInstanceTypeMlM6g16xlarge  ProductionVariantInstanceType = "ml.m6g.16xlarge"
	ProductionVariantInstanceTypeMlM6gdLarge    ProductionVariantInstanceType = "ml.m6gd.large"
	ProductionVariantInstanceTypeMlM6gdXlarge   ProductionVariantInstanceType = "ml.m6gd.xlarge"
	ProductionVariantInstanceTypeMlM6gd2xlarge  ProductionVariantInstanceType = "ml.m6gd.2xlarge"
	ProductionVariantInstanceTypeMlM6gd4xlarge  ProductionVariantInstanceType = "ml.m6gd.4xlarge"
	ProductionVariantInstanceTypeMlM6gd8xlarge  ProductionVariantInstanceType = "ml.m6gd.8xlarge"
	ProductionVariantInstanceTypeMlM6gd12xlarge ProductionVariantInstanceType = "ml.m6gd.12xlarge"
	ProductionVariantInstanceTypeMlM6gd16xlarge ProductionVariantInstanceType = "ml.m6gd.16xlarge"
	ProductionVariantInstanceTypeMlC6gLarge     ProductionVariantInstanceType = "ml.c6g.large"
	ProductionVariantInstanceTypeMlC6gXlarge    ProductionVariantInstanceType = "ml.c6g.xlarge"
	ProductionVariantInstanceTypeMlC6g2xlarge   ProductionVariantInstanceType = "ml.c6g.2xlarge"
	ProductionVariantInstanceTypeMlC6g4xlarge   ProductionVariantInstanceType = "ml.c6g.4xlarge"
	ProductionVariantInstanceTypeMlC6g8xlarge   ProductionVariantInstanceType = "ml.c6g.8xlarge"
	ProductionVariantInstanceTypeMlC6g12xlarge  ProductionVariantInstanceType = "ml.c6g.12xlarge"
	ProductionVariantInstanceTypeMlC6g16xlarge  ProductionVariantInstanceType = "ml.c6g.16xlarge"
	ProductionVariantInstanceTypeMlC6gdLarge    ProductionVariantInstanceType = "ml.c6gd.large"
	ProductionVariantInstanceTypeMlC6gdXlarge   ProductionVariantInstanceType = "ml.c6gd.xlarge"
	ProductionVariantInstanceTypeMlC6gd2xlarge  ProductionVariantInstanceType = "ml.c6gd.2xlarge"
	ProductionVariantInstanceTypeMlC6gd4xlarge  ProductionVariantInstanceType = "ml.c6gd.4xlarge"
	ProductionVariantInstanceTypeMlC6gd8xlarge  ProductionVariantInstanceType = "ml.c6gd.8xlarge"
	ProductionVariantInstanceTypeMlC6gd12xlarge ProductionVariantInstanceType = "ml.c6gd.12xlarge"
	ProductionVariantInstanceTypeMlC6gd16xlarge ProductionVariantInstanceType = "ml.c6gd.16xlarge"
	ProductionVariantInstanceTypeMlC6gnLarge    ProductionVariantInstanceType = "ml.c6gn.large"
	ProductionVariantInstanceTypeMlC6gnXlarge   ProductionVariantInstanceType = "ml.c6gn.xlarge"
	ProductionVariantInstanceTypeMlC6gn2xlarge  ProductionVariantInstanceType = "ml.c6gn.2xlarge"
	ProductionVariantInstanceTypeMlC6gn4xlarge  ProductionVariantInstanceType = "ml.c6gn.4xlarge"
	ProductionVariantInstanceTypeMlC6gn8xlarge  ProductionVariantInstanceType = "ml.c6gn.8xlarge"
	ProductionVariantInstanceTypeMlC6gn12xlarge ProductionVariantInstanceType = "ml.c6gn.12xlarge"
	ProductionVariantInstanceTypeMlC6gn16xlarge ProductionVariantInstanceType = "ml.c6gn.16xlarge"
	ProductionVariantInstanceTypeMlR6gLarge     ProductionVariantInstanceType = "ml.r6g.large"
	ProductionVariantInstanceTypeMlR6gXlarge    ProductionVariantInstanceType = "ml.r6g.xlarge"
	ProductionVariantInstanceTypeMlR6g2xlarge   ProductionVariantInstanceType = "ml.r6g.2xlarge"
	ProductionVariantInstanceTypeMlR6g4xlarge   ProductionVariantInstanceType = "ml.r6g.4xlarge"
	ProductionVariantInstanceTypeMlR6g8xlarge   ProductionVariantInstanceType = "ml.r6g.8xlarge"
	ProductionVariantInstanceTypeMlR6g12xlarge  ProductionVariantInstanceType = "ml.r6g.12xlarge"
	ProductionVariantInstanceTypeMlR6g16xlarge  ProductionVariantInstanceType = "ml.r6g.16xlarge"
	ProductionVariantInstanceTypeMlR6gdLarge    ProductionVariantInstanceType = "ml.r6gd.large"
	ProductionVariantInstanceTypeMlR6gdXlarge   ProductionVariantInstanceType = "ml.r6gd.xlarge"
	ProductionVariantInstanceTypeMlR6gd2xlarge  ProductionVariantInstanceType = "ml.r6gd.2xlarge"
	ProductionVariantInstanceTypeMlR6gd4xlarge  ProductionVariantInstanceType = "ml.r6gd.4xlarge"
	ProductionVariantInstanceTypeMlR6gd8xlarge  ProductionVariantInstanceType = "ml.r6gd.8xlarge"
	ProductionVariantInstanceTypeMlR6gd12xlarge ProductionVariantInstanceType = "ml.r6gd.12xlarge"
	ProductionVariantInstanceTypeMlR6gd16xlarge ProductionVariantInstanceType = "ml.r6gd.16xlarge"
	ProductionVariantInstanceTypeMlP4de24xlarge ProductionVariantInstanceType = "ml.p4de.24xlarge"
	ProductionVariantInstanceTypeMlTrn12xlarge  ProductionVariantInstanceType = "ml.trn1.2xlarge"
	ProductionVariantInstanceTypeMlTrn132xlarge ProductionVariantInstanceType = "ml.trn1.32xlarge"
	ProductionVariantInstanceTypeMlInf2Xlarge   ProductionVariantInstanceType = "ml.inf2.xlarge"
	ProductionVariantInstanceTypeMlInf28xlarge  ProductionVariantInstanceType = "ml.inf2.8xlarge"
	ProductionVariantInstanceTypeMlInf224xlarge ProductionVariantInstanceType = "ml.inf2.24xlarge"
	ProductionVariantInstanceTypeMlInf248xlarge ProductionVariantInstanceType = "ml.inf2.48xlarge"
	ProductionVariantInstanceTypeMlP548xlarge   ProductionVariantInstanceType = "ml.p5.48xlarge"
)

Enum values for ProductionVariantInstanceType

func (ProductionVariantInstanceType) Values added in v0.29.0

Values returns all known values for ProductionVariantInstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProductionVariantManagedInstanceScaling added in v1.119.0

type ProductionVariantManagedInstanceScaling struct {

	// The maximum number of instances that the endpoint can provision when it scales
	// up to accommodate an increase in traffic.
	MaxInstanceCount *int32

	// The minimum number of instances that the endpoint must retain when it scales
	// down to accommodate a decrease in traffic.
	MinInstanceCount *int32

	// Indicates whether managed instance scaling is enabled.
	Status ManagedInstanceScalingStatus
	// contains filtered or unexported fields
}

Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.

type ProductionVariantRoutingConfig added in v1.119.0

type ProductionVariantRoutingConfig struct {

	// Sets how the endpoint routes incoming traffic:
	//   - LEAST_OUTSTANDING_REQUESTS : The endpoint routes requests to the specific
	//   instances that have more capacity to process them.
	//   - RANDOM : The endpoint routes each request to a randomly chosen instance.
	//
	// This member is required.
	RoutingStrategy RoutingStrategy
	// contains filtered or unexported fields
}

Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.

type ProductionVariantServerlessConfig added in v1.20.0

type ProductionVariantServerlessConfig struct {

	// The maximum number of concurrent invocations your serverless endpoint can
	// process.
	//
	// This member is required.
	MaxConcurrency *int32

	// The memory size of your serverless endpoint. Valid values are in 1 GB
	// increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
	//
	// This member is required.
	MemorySizeInMB *int32

	// The amount of provisioned concurrency to allocate for the serverless endpoint.
	// Should be less than or equal to MaxConcurrency . This field is not supported for
	// serverless endpoint recommendations for Inference Recommender jobs. For more
	// information about creating an Inference Recommender job, see
	// CreateInferenceRecommendationsJobs (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
	// .
	ProvisionedConcurrency *int32
	// contains filtered or unexported fields
}

Specifies the serverless configuration for an endpoint variant.

type ProductionVariantServerlessUpdateConfig added in v1.78.0

type ProductionVariantServerlessUpdateConfig struct {

	// The updated maximum number of concurrent invocations your serverless endpoint
	// can process.
	MaxConcurrency *int32

	// The updated amount of provisioned concurrency to allocate for the serverless
	// endpoint. Should be less than or equal to MaxConcurrency .
	ProvisionedConcurrency *int32
	// contains filtered or unexported fields
}

Specifies the serverless update concurrency configuration for an endpoint variant.

type ProductionVariantStatus added in v1.19.0

type ProductionVariantStatus struct {

	// The endpoint variant status which describes the current deployment stage status
	// or operational status.
	//   - Creating : Creating inference resources for the production variant.
	//   - Deleting : Terminating inference resources for the production variant.
	//   - Updating : Updating capacity for the production variant.
	//   - ActivatingTraffic : Turning on traffic for the production variant.
	//   - Baking : Waiting period to monitor the CloudWatch alarms in the automatic
	//   rollback configuration.
	//
	// This member is required.
	Status VariantStatus

	// The start time of the current status change.
	StartTime *time.Time

	// A message that describes the status of the production variant.
	StatusMessage *string
	// contains filtered or unexported fields
}

Describes the status of the production variant.

type ProductionVariantSummary

type ProductionVariantSummary struct {

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	// The number of instances associated with the variant.
	CurrentInstanceCount *int32

	// The serverless configuration for the endpoint.
	CurrentServerlessConfig *ProductionVariantServerlessConfig

	// The weight associated with the variant.
	CurrentWeight *float32

	// An array of DeployedImage objects that specify the Amazon EC2 Container
	// Registry paths of the inference images deployed on instances of this
	// ProductionVariant .
	DeployedImages []DeployedImage

	// The number of instances requested in the UpdateEndpointWeightsAndCapacities
	// request.
	DesiredInstanceCount *int32

	// The serverless configuration requested for the endpoint update.
	DesiredServerlessConfig *ProductionVariantServerlessConfig

	// The requested weight, as specified in the UpdateEndpointWeightsAndCapacities
	// request.
	DesiredWeight *float32

	// Settings that control the range in the number of instances that the endpoint
	// provisions as it scales up or down to accommodate traffic.
	ManagedInstanceScaling *ProductionVariantManagedInstanceScaling

	// Settings that control how the endpoint routes incoming traffic to the instances
	// that the endpoint hosts.
	RoutingConfig *ProductionVariantRoutingConfig

	// The endpoint variant status which describes the current deployment stage status
	// or operational status.
	VariantStatus []ProductionVariantStatus
	// contains filtered or unexported fields
}

Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.

type ProfilerConfig added in v0.31.0

type ProfilerConfig struct {

	// Configuration to turn off Amazon SageMaker Debugger's system monitoring and
	// profiling functionality. To turn it off, set to True .
	DisableProfiler *bool

	// A time interval for capturing system metrics in milliseconds. Available values
	// are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute)
	// milliseconds. The default value is 500 milliseconds.
	ProfilingIntervalInMilliseconds *int64

	// Configuration information for capturing framework metrics. Available key
	// strings for different profiling options are DetailedProfilingConfig ,
	// PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are
	// configuration structures for the ProfilingParameters parameter. To learn more
	// about how to configure the ProfilingParameters parameter, see Use the SageMaker
	// and Debugger Configuration API Operations to Create, Update, and Debug Your
	// Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	ProfilingParameters map[string]string

	// Path to Amazon S3 storage location for system and framework metrics.
	S3OutputPath *string
	// contains filtered or unexported fields
}

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

type ProfilerConfigForUpdate added in v0.31.0

type ProfilerConfigForUpdate struct {

	// To turn off Amazon SageMaker Debugger monitoring and profiling while a training
	// job is in progress, set to True .
	DisableProfiler *bool

	// A time interval for capturing system metrics in milliseconds. Available values
	// are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute)
	// milliseconds. The default value is 500 milliseconds.
	ProfilingIntervalInMilliseconds *int64

	// Configuration information for capturing framework metrics. Available key
	// strings for different profiling options are DetailedProfilingConfig ,
	// PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are
	// configuration structures for the ProfilingParameters parameter. To learn more
	// about how to configure the ProfilingParameters parameter, see Use the SageMaker
	// and Debugger Configuration API Operations to Create, Update, and Debug Your
	// Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	ProfilingParameters map[string]string

	// Path to Amazon S3 storage location for system and framework metrics.
	S3OutputPath *string
	// contains filtered or unexported fields
}

Configuration information for updating the Amazon SageMaker Debugger profile parameters, system and framework metrics configurations, and storage paths.

type ProfilerRuleConfiguration added in v0.31.0

type ProfilerRuleConfiguration struct {

	// The name of the rule configuration. It must be unique relative to other rule
	// configuration names.
	//
	// This member is required.
	RuleConfigurationName *string

	// The Amazon Elastic Container Registry Image for the managed rule evaluation.
	//
	// This member is required.
	RuleEvaluatorImage *string

	// The instance type to deploy a custom rule for profiling a training job.
	InstanceType ProcessingInstanceType

	// Path to local storage location for output of rules. Defaults to
	// /opt/ml/processing/output/rule/ .
	LocalPath *string

	// Runtime configuration for rule container.
	RuleParameters map[string]string

	// Path to Amazon S3 storage location for rules.
	S3OutputPath *string

	// The size, in GB, of the ML storage volume attached to the processing instance.
	VolumeSizeInGB *int32
	// contains filtered or unexported fields
}

Configuration information for profiling rules.

type ProfilerRuleEvaluationStatus added in v0.31.0

type ProfilerRuleEvaluationStatus struct {

	// Timestamp when the rule evaluation status was last modified.
	LastModifiedTime *time.Time

	// The name of the rule configuration.
	RuleConfigurationName *string

	// The Amazon Resource Name (ARN) of the rule evaluation job.
	RuleEvaluationJobArn *string

	// Status of the rule evaluation.
	RuleEvaluationStatus RuleEvaluationStatus

	// Details from the rule evaluation.
	StatusDetails *string
	// contains filtered or unexported fields
}

Information about the status of the rule evaluation.

type ProfilingStatus added in v0.31.0

type ProfilingStatus string
const (
	ProfilingStatusEnabled  ProfilingStatus = "Enabled"
	ProfilingStatusDisabled ProfilingStatus = "Disabled"
)

Enum values for ProfilingStatus

func (ProfilingStatus) Values added in v0.31.0

func (ProfilingStatus) Values() []ProfilingStatus

Values returns all known values for ProfilingStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Project added in v1.15.0

type Project struct {

	// Who created the project.
	CreatedBy *UserContext

	// A timestamp specifying when the project was created.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// A timestamp container for when the project was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the project.
	ProjectArn *string

	// The description of the project.
	ProjectDescription *string

	// The ID of the project.
	ProjectId *string

	// The name of the project.
	ProjectName *string

	// The status of the project.
	ProjectStatus ProjectStatus

	// Details of a provisioned service catalog product. For information about service
	// catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
	// .
	ServiceCatalogProvisionedProductDetails *ServiceCatalogProvisionedProductDetails

	// Details that you specify to provision a service catalog product. For
	// information about service catalog, see What is Amazon Web Services Service
	// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
	// .
	ServiceCatalogProvisioningDetails *ServiceCatalogProvisioningDetails

	// An array of key-value pairs. You can use tags to categorize your Amazon Web
	// Services resources in different ways, for example, by purpose, owner, or
	// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// .
	Tags []Tag
	// contains filtered or unexported fields
}

The properties of a project as returned by the Search API.

type ProjectSortBy added in v0.31.0

type ProjectSortBy string
const (
	ProjectSortByName         ProjectSortBy = "Name"
	ProjectSortByCreationTime ProjectSortBy = "CreationTime"
)

Enum values for ProjectSortBy

func (ProjectSortBy) Values added in v0.31.0

func (ProjectSortBy) Values() []ProjectSortBy

Values returns all known values for ProjectSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProjectSortOrder added in v0.31.0

type ProjectSortOrder string
const (
	ProjectSortOrderAscending  ProjectSortOrder = "Ascending"
	ProjectSortOrderDescending ProjectSortOrder = "Descending"
)

Enum values for ProjectSortOrder

func (ProjectSortOrder) Values added in v0.31.0

Values returns all known values for ProjectSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProjectStatus added in v0.31.0

type ProjectStatus string
const (
	ProjectStatusPending          ProjectStatus = "Pending"
	ProjectStatusCreateInProgress ProjectStatus = "CreateInProgress"
	ProjectStatusCreateCompleted  ProjectStatus = "CreateCompleted"
	ProjectStatusCreateFailed     ProjectStatus = "CreateFailed"
	ProjectStatusDeleteInProgress ProjectStatus = "DeleteInProgress"
	ProjectStatusDeleteFailed     ProjectStatus = "DeleteFailed"
	ProjectStatusDeleteCompleted  ProjectStatus = "DeleteCompleted"
	ProjectStatusUpdateInProgress ProjectStatus = "UpdateInProgress"
	ProjectStatusUpdateCompleted  ProjectStatus = "UpdateCompleted"
	ProjectStatusUpdateFailed     ProjectStatus = "UpdateFailed"
)

Enum values for ProjectStatus

func (ProjectStatus) Values added in v0.31.0

func (ProjectStatus) Values() []ProjectStatus

Values returns all known values for ProjectStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ProjectSummary added in v0.31.0

type ProjectSummary struct {

	// The time that the project was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the project.
	//
	// This member is required.
	ProjectArn *string

	// The ID of the project.
	//
	// This member is required.
	ProjectId *string

	// The name of the project.
	//
	// This member is required.
	ProjectName *string

	// The status of the project.
	//
	// This member is required.
	ProjectStatus ProjectStatus

	// The description of the project.
	ProjectDescription *string
	// contains filtered or unexported fields
}

Information about a project.

type PropertyNameQuery

type PropertyNameQuery struct {

	// Text that begins a property's name.
	//
	// This member is required.
	PropertyNameHint *string
	// contains filtered or unexported fields
}

Part of the SuggestionQuery type. Specifies a hint for retrieving property names that begin with the specified text.

type PropertyNameSuggestion

type PropertyNameSuggestion struct {

	// A suggested property name based on what you entered in the search textbox in
	// the SageMaker console.
	PropertyName *string
	// contains filtered or unexported fields
}

A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.

type ProvisioningParameter added in v0.31.0

type ProvisioningParameter struct {

	// The key that identifies a provisioning parameter.
	Key *string

	// The value of the provisioning parameter.
	Value *string
	// contains filtered or unexported fields
}

A key value pair used when you provision a project as a service catalog product. For information, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html) .

type PublicWorkforceTaskPrice

type PublicWorkforceTaskPrice struct {

	// Defines the amount of money paid to an Amazon Mechanical Turk worker in United
	// States dollars.
	AmountInUsd *USD
	// contains filtered or unexported fields
}

Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed. Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

  • 0.036
  • 0.048
  • 0.060
  • 0.072
  • 0.120
  • 0.240
  • 0.360
  • 0.480
  • 0.600
  • 0.720
  • 0.840
  • 0.960
  • 1.080
  • 1.200

Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

  • 0.012
  • 0.024
  • 0.036
  • 0.048
  • 0.060
  • 0.072
  • 0.120
  • 0.240
  • 0.360
  • 0.480
  • 0.600
  • 0.720
  • 0.840
  • 0.960
  • 1.080
  • 1.200

Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

  • 0.840
  • 0.960
  • 1.080
  • 1.200

Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

  • 2.400
  • 2.280
  • 2.160
  • 2.040
  • 1.920
  • 1.800
  • 1.680
  • 1.560
  • 1.440
  • 1.320
  • 1.200
  • 1.080
  • 0.960
  • 0.840
  • 0.720
  • 0.600
  • 0.480
  • 0.360
  • 0.240
  • 0.120
  • 0.072
  • 0.060
  • 0.048
  • 0.036
  • 0.024
  • 0.012

Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

  • 1.200
  • 1.080
  • 0.960
  • 0.840
  • 0.720
  • 0.600
  • 0.480
  • 0.360
  • 0.240
  • 0.120
  • 0.072
  • 0.060
  • 0.048
  • 0.036
  • 0.024
  • 0.012

Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

  • 1.200
  • 1.080
  • 0.960
  • 0.840
  • 0.720
  • 0.600
  • 0.480
  • 0.360
  • 0.240
  • 0.120
  • 0.072
  • 0.060
  • 0.048
  • 0.036
  • 0.024
  • 0.012

type QualityCheckStepMetadata added in v1.20.0

type QualityCheckStepMetadata struct {

	// The Amazon S3 URI of the baseline constraints file used for the drift check.
	BaselineUsedForDriftCheckConstraints *string

	// The Amazon S3 URI of the baseline statistics file used for the drift check.
	BaselineUsedForDriftCheckStatistics *string

	// The Amazon S3 URI of the newly calculated baseline constraints file.
	CalculatedBaselineConstraints *string

	// The Amazon S3 URI of the newly calculated baseline statistics file.
	CalculatedBaselineStatistics *string

	// The Amazon Resource Name (ARN) of the Quality check processing job that was run
	// by this step execution.
	CheckJobArn *string

	// The type of the Quality check step.
	CheckType *string

	// The model package group name.
	ModelPackageGroupName *string

	// This flag indicates if a newly calculated baseline can be accessed through step
	// properties BaselineUsedForDriftCheckConstraints and
	// BaselineUsedForDriftCheckStatistics . If it is set to False , the previous
	// baseline of the configured check type must also be available. These can be
	// accessed through the BaselineUsedForDriftCheckConstraints and
	// BaselineUsedForDriftCheckStatistics properties.
	RegisterNewBaseline *bool

	// This flag indicates if the drift check against the previous baseline will be
	// skipped or not. If it is set to False , the previous baseline of the configured
	// check type must be available.
	SkipCheck *bool

	// The Amazon S3 URI of violation report if violations are detected.
	ViolationReport *string
	// contains filtered or unexported fields
}

Container for the metadata for a Quality check step. For more information, see the topic on QualityCheck step (https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-quality-check) in the Amazon SageMaker Developer Guide.

type QueryFilters added in v1.20.0

type QueryFilters struct {

	// Filter the lineage entities connected to the StartArn (s) after the create date.
	CreatedAfter *time.Time

	// Filter the lineage entities connected to the StartArn (s) by created date.
	CreatedBefore *time.Time

	// Filter the lineage entities connected to the StartArn (s) by the type of the
	// lineage entity.
	LineageTypes []LineageType

	// Filter the lineage entities connected to the StartArn (s) after the last
	// modified date.
	ModifiedAfter *time.Time

	// Filter the lineage entities connected to the StartArn (s) before the last
	// modified date.
	ModifiedBefore *time.Time

	// Filter the lineage entities connected to the StartArn (s) by a set if property
	// key value pairs. If multiple pairs are provided, an entity is included in the
	// results if it matches any of the provided pairs.
	Properties map[string]string

	// Filter the lineage entities connected to the StartArn by type. For example:
	// DataSet , Model , Endpoint , or ModelDeployment .
	Types []string
	// contains filtered or unexported fields
}

A set of filters to narrow the set of lineage entities connected to the StartArn (s) returned by the QueryLineage API action.

type RSessionAppSettings added in v1.18.0

type RSessionAppSettings struct {

	// A list of custom SageMaker images that are configured to run as a RSession app.
	CustomImages []CustomImage

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec
	// contains filtered or unexported fields
}

A collection of settings that apply to an RSessionGateway app.

type RStudioServerProAccessStatus added in v1.18.0

type RStudioServerProAccessStatus string
const (
	RStudioServerProAccessStatusEnabled  RStudioServerProAccessStatus = "ENABLED"
	RStudioServerProAccessStatusDisabled RStudioServerProAccessStatus = "DISABLED"
)

Enum values for RStudioServerProAccessStatus

func (RStudioServerProAccessStatus) Values added in v1.18.0

Values returns all known values for RStudioServerProAccessStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RStudioServerProAppSettings added in v1.18.0

type RStudioServerProAppSettings struct {

	// Indicates whether the current user has access to the RStudioServerPro app.
	AccessStatus RStudioServerProAccessStatus

	// The level of permissions that the user has within the RStudioServerPro app.
	// This value defaults to `User`. The `Admin` value allows the user access to the
	// RStudio Administrative Dashboard.
	UserGroup RStudioServerProUserGroup
	// contains filtered or unexported fields
}

A collection of settings that configure user interaction with the RStudioServerPro app.

type RStudioServerProDomainSettings added in v1.18.0

type RStudioServerProDomainSettings struct {

	// The ARN of the execution role for the RStudioServerPro Domain-level app.
	//
	// This member is required.
	DomainExecutionRoleArn *string

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// A URL pointing to an RStudio Connect server.
	RStudioConnectUrl *string

	// A URL pointing to an RStudio Package Manager server.
	RStudioPackageManagerUrl *string
	// contains filtered or unexported fields
}

A collection of settings that configure the RStudioServerPro Domain-level app.

type RStudioServerProDomainSettingsForUpdate added in v1.18.0

type RStudioServerProDomainSettingsForUpdate struct {

	// The execution role for the RStudioServerPro Domain-level app.
	//
	// This member is required.
	DomainExecutionRoleArn *string

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// A URL pointing to an RStudio Connect server.
	RStudioConnectUrl *string

	// A URL pointing to an RStudio Package Manager server.
	RStudioPackageManagerUrl *string
	// contains filtered or unexported fields
}

A collection of settings that update the current configuration for the RStudioServerPro Domain-level app.

type RStudioServerProUserGroup added in v1.18.0

type RStudioServerProUserGroup string
const (
	RStudioServerProUserGroupAdmin RStudioServerProUserGroup = "R_STUDIO_ADMIN"
	RStudioServerProUserGroupUser  RStudioServerProUserGroup = "R_STUDIO_USER"
)

Enum values for RStudioServerProUserGroup

func (RStudioServerProUserGroup) Values added in v1.18.0

Values returns all known values for RStudioServerProUserGroup. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RealTimeInferenceConfig added in v1.56.0

type RealTimeInferenceConfig struct {

	// The number of instances of the type specified by InstanceType .
	//
	// This member is required.
	InstanceCount *int32

	// The instance type the model is deployed to.
	//
	// This member is required.
	InstanceType InstanceType
	// contains filtered or unexported fields
}

The infrastructure configuration for deploying the model to a real-time inference endpoint.

type RealTimeInferenceRecommendation added in v1.80.0

type RealTimeInferenceRecommendation struct {

	// The recommended instance type for Real-Time Inference.
	//
	// This member is required.
	InstanceType ProductionVariantInstanceType

	// The recommendation ID which uniquely identifies each recommendation.
	//
	// This member is required.
	RecommendationId *string

	// The recommended environment variables to set in the model container for
	// Real-Time Inference.
	Environment map[string]string
	// contains filtered or unexported fields
}

The recommended configuration to use for Real-Time Inference.

type RecommendationJobCompiledOutputConfig added in v1.28.0

type RecommendationJobCompiledOutputConfig struct {

	// Identifies the Amazon S3 bucket where you want SageMaker to store the compiled
	// model artifacts.
	S3OutputUri *string
	// contains filtered or unexported fields
}

Provides information about the output configuration for the compiled model.

type RecommendationJobContainerConfig added in v1.40.0

type RecommendationJobContainerConfig struct {

	// Specifies the name and shape of the expected data inputs for your trained model
	// with a JSON dictionary form. This field is used for optimizing your model using
	// SageMaker Neo. For more information, see DataInputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InputConfig.html#sagemaker-Type-InputConfig-DataInputConfig)
	// .
	DataInputConfig *string

	// The machine learning domain of the model and its components. Valid Values:
	// COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
	Domain *string

	// The machine learning framework of the container image. Valid Values: TENSORFLOW
	// | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
	Framework *string

	// The framework version of the container image.
	FrameworkVersion *string

	// The name of a pre-trained machine learning model benchmarked by Amazon
	// SageMaker Inference Recommender that matches your model. Valid Values:
	// efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 |
	// inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
	// resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
	// | xceptionV1-keras | resnet50 | retinanet
	NearestModelName *string

	// Specifies the SamplePayloadUrl and all other sample payload-related fields.
	PayloadConfig *RecommendationJobPayloadConfig

	// The endpoint type to receive recommendations for. By default this is null, and
	// the results of the inference recommendation job return a combined list of both
	// real-time and serverless benchmarks. By specifying a value for this field, you
	// can receive a longer list of benchmarks for the desired endpoint type.
	SupportedEndpointType RecommendationJobSupportedEndpointType

	// A list of the instance types that are used to generate inferences in real-time.
	SupportedInstanceTypes []string

	// The supported MIME types for the output data.
	SupportedResponseMIMETypes []string

	// The machine learning task that the model accomplishes. Valid Values:
	// IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION |
	// FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
	Task *string
	// contains filtered or unexported fields
}

Specifies mandatory fields for running an Inference Recommender job directly in the CreateInferenceRecommendationsJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html) API. The fields specified in ContainerConfig override the corresponding fields in the model package. Use ContainerConfig if you want to specify these fields for the recommendation job but don't want to edit them in your model package.

type RecommendationJobInferenceBenchmark added in v1.50.0

type RecommendationJobInferenceBenchmark struct {

	// Defines the model configuration. Includes the specification name and
	// environment parameters.
	//
	// This member is required.
	ModelConfiguration *ModelConfiguration

	// The endpoint configuration made by Inference Recommender during a
	// recommendation job.
	EndpointConfiguration *EndpointOutputConfiguration

	// The metrics for an existing endpoint compared in an Inference Recommender job.
	EndpointMetrics *InferenceMetrics

	// The reason why a benchmark failed.
	FailureReason *string

	// A timestamp that shows when the benchmark completed.
	InvocationEndTime *time.Time

	// A timestamp that shows when the benchmark started.
	InvocationStartTime *time.Time

	// The metrics of recommendations.
	Metrics *RecommendationMetrics
	// contains filtered or unexported fields
}

The details for a specific benchmark from an Inference Recommender job.

type RecommendationJobInputConfig added in v1.20.0

type RecommendationJobInputConfig struct {

	// Specifies mandatory fields for running an Inference Recommender job. The fields
	// specified in ContainerConfig override the corresponding fields in the model
	// package.
	ContainerConfig *RecommendationJobContainerConfig

	// Specifies the endpoint configuration to use for a job.
	EndpointConfigurations []EndpointInputConfiguration

	// Existing customer endpoints on which to run an Inference Recommender job.
	Endpoints []EndpointInfo

	// Specifies the maximum duration of the job, in seconds. The maximum value is
	// 18,000 seconds.
	JobDurationInSeconds *int32

	// The name of the created model.
	ModelName *string

	// The Amazon Resource Name (ARN) of a versioned model package.
	ModelPackageVersionArn *string

	// Defines the resource limit of the job.
	ResourceLimit *RecommendationJobResourceLimit

	// Specifies the traffic pattern of the job.
	TrafficPattern *TrafficPattern

	// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
	// (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the
	// storage volume attached to the ML compute instance that hosts the endpoint. This
	// key will be passed to SageMaker Hosting for endpoint creation. The SageMaker
	// execution role must have kms:CreateGrant permission in order to encrypt data on
	// the storage volume of the endpoints created for inference recommendation. The
	// inference recommendation job will fail asynchronously during endpoint
	// configuration creation if the role passed does not have kms:CreateGrant
	// permission. The KmsKeyId can be any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:::key/"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:::alias/"
	// For more information about key identifiers, see Key identifiers (KeyID) (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
	// in the Amazon Web Services Key Management Service (Amazon Web Services KMS)
	// documentation.
	VolumeKmsKeyId *string

	// Inference Recommender provisions SageMaker endpoints with access to VPC in the
	// inference recommendation job.
	VpcConfig *RecommendationJobVpcConfig
	// contains filtered or unexported fields
}

The input configuration of the recommendation job.

type RecommendationJobOutputConfig added in v1.28.0

type RecommendationJobOutputConfig struct {

	// Provides information about the output configuration for the compiled model.
	CompiledOutputConfig *RecommendationJobCompiledOutputConfig

	// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
	// (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output
	// artifacts with Amazon S3 server-side encryption. The SageMaker execution role
	// must have kms:GenerateDataKey permission. The KmsKeyId can be any of the
	// following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:::key/"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:::alias/"
	// For more information about key identifiers, see Key identifiers (KeyID) (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
	// in the Amazon Web Services Key Management Service (Amazon Web Services KMS)
	// documentation.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Provides information about the output configuration for the compiled model.

type RecommendationJobPayloadConfig added in v1.40.0

type RecommendationJobPayloadConfig struct {

	// The Amazon Simple Storage Service (Amazon S3) path where the sample payload is
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	SamplePayloadUrl *string

	// The supported MIME types for the input data.
	SupportedContentTypes []string
	// contains filtered or unexported fields
}

The configuration for the payload for a recommendation job.

type RecommendationJobResourceLimit added in v1.20.0

type RecommendationJobResourceLimit struct {

	// Defines the maximum number of load tests.
	MaxNumberOfTests *int32

	// Defines the maximum number of parallel load tests.
	MaxParallelOfTests *int32
	// contains filtered or unexported fields
}

Specifies the maximum number of jobs that can run in parallel and the maximum number of jobs that can run.

type RecommendationJobStatus added in v1.20.0

type RecommendationJobStatus string
const (
	RecommendationJobStatusPending    RecommendationJobStatus = "PENDING"
	RecommendationJobStatusInProgress RecommendationJobStatus = "IN_PROGRESS"
	RecommendationJobStatusCompleted  RecommendationJobStatus = "COMPLETED"
	RecommendationJobStatusFailed     RecommendationJobStatus = "FAILED"
	RecommendationJobStatusStopping   RecommendationJobStatus = "STOPPING"
	RecommendationJobStatusStopped    RecommendationJobStatus = "STOPPED"
)

Enum values for RecommendationJobStatus

func (RecommendationJobStatus) Values added in v1.20.0

Values returns all known values for RecommendationJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RecommendationJobStoppingConditions added in v1.20.0

type RecommendationJobStoppingConditions struct {

	// Stops a load test when the number of invocations (TPS) peaks and flattens,
	// which means that the instance has reached capacity. The default value is Stop .
	// If you want the load test to continue after invocations have flattened, set the
	// value to Continue .
	FlatInvocations FlatInvocations

	// The maximum number of requests per minute expected for the endpoint.
	MaxInvocations *int32

	// The interval of time taken by a model to respond as viewed from SageMaker. The
	// interval includes the local communication time taken to send the request and to
	// fetch the response from the container of a model and the time taken to complete
	// the inference in the container.
	ModelLatencyThresholds []ModelLatencyThreshold
	// contains filtered or unexported fields
}

Specifies conditions for stopping a job. When a job reaches a stopping condition limit, SageMaker ends the job.

type RecommendationJobSupportedEndpointType added in v1.91.0

type RecommendationJobSupportedEndpointType string
const (
	RecommendationJobSupportedEndpointTypeRealtime   RecommendationJobSupportedEndpointType = "RealTime"
	RecommendationJobSupportedEndpointTypeServerless RecommendationJobSupportedEndpointType = "Serverless"
)

Enum values for RecommendationJobSupportedEndpointType

func (RecommendationJobSupportedEndpointType) Values added in v1.91.0

Values returns all known values for RecommendationJobSupportedEndpointType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RecommendationJobType added in v1.20.0

type RecommendationJobType string
const (
	RecommendationJobTypeDefault  RecommendationJobType = "Default"
	RecommendationJobTypeAdvanced RecommendationJobType = "Advanced"
)

Enum values for RecommendationJobType

func (RecommendationJobType) Values added in v1.20.0

Values returns all known values for RecommendationJobType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RecommendationJobVpcConfig added in v1.57.0

type RecommendationJobVpcConfig struct {

	// The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the
	// security groups for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC to which you want to connect your model.
	//
	// This member is required.
	Subnets []string
	// contains filtered or unexported fields
}

Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

type RecommendationMetrics added in v1.20.0

type RecommendationMetrics struct {

	// Defines the cost per hour for the instance.
	//
	// This member is required.
	CostPerHour *float32

	// Defines the cost per inference for the instance .
	//
	// This member is required.
	CostPerInference *float32

	// The expected maximum number of requests per minute for the instance.
	//
	// This member is required.
	MaxInvocations *int32

	// The expected model latency at maximum invocation per minute for the instance.
	//
	// This member is required.
	ModelLatency *int32

	// The expected CPU utilization at maximum invocations per minute for the
	// instance. NaN indicates that the value is not available.
	CpuUtilization *float32

	// The expected memory utilization at maximum invocations per minute for the
	// instance. NaN indicates that the value is not available.
	MemoryUtilization *float32

	// The time it takes to launch new compute resources for a serverless endpoint.
	// The time can vary depending on the model size, how long it takes to download the
	// model, and the start-up time of the container. NaN indicates that the value is
	// not available.
	ModelSetupTime *int32
	// contains filtered or unexported fields
}

The metrics of recommendations.

type RecommendationStatus added in v1.80.0

type RecommendationStatus string
const (
	RecommendationStatusInProgress    RecommendationStatus = "IN_PROGRESS"
	RecommendationStatusCompleted     RecommendationStatus = "COMPLETED"
	RecommendationStatusFailed        RecommendationStatus = "FAILED"
	RecommendationStatusNotApplicable RecommendationStatus = "NOT_APPLICABLE"
)

Enum values for RecommendationStatus

func (RecommendationStatus) Values added in v1.80.0

Values returns all known values for RecommendationStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RecommendationStepType added in v1.50.0

type RecommendationStepType string
const (
	RecommendationStepTypeBenchmark RecommendationStepType = "BENCHMARK"
)

Enum values for RecommendationStepType

func (RecommendationStepType) Values added in v1.50.0

Values returns all known values for RecommendationStepType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RecordWrapper

type RecordWrapper string
const (
	RecordWrapperNone     RecordWrapper = "None"
	RecordWrapperRecordio RecordWrapper = "RecordIO"
)

Enum values for RecordWrapper

func (RecordWrapper) Values added in v0.29.0

func (RecordWrapper) Values() []RecordWrapper

Values returns all known values for RecordWrapper. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RedshiftDatasetDefinition added in v0.31.0

type RedshiftDatasetDefinition struct {

	// The Redshift cluster Identifier.
	//
	// This member is required.
	ClusterId *string

	// The IAM role attached to your Redshift cluster that Amazon SageMaker uses to
	// generate datasets.
	//
	// This member is required.
	ClusterRoleArn *string

	// The name of the Redshift database used in Redshift query execution.
	//
	// This member is required.
	Database *string

	// The database user name used in Redshift query execution.
	//
	// This member is required.
	DbUser *string

	// The data storage format for Redshift query results.
	//
	// This member is required.
	OutputFormat RedshiftResultFormat

	// The location in Amazon S3 where the Redshift query results are stored.
	//
	// This member is required.
	OutputS3Uri *string

	// The SQL query statements to be executed.
	//
	// This member is required.
	QueryString *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data from a Redshift execution.
	KmsKeyId *string

	// The compression used for Redshift query results.
	OutputCompression RedshiftResultCompressionType
	// contains filtered or unexported fields
}

Configuration for Redshift Dataset Definition input.

type RedshiftResultCompressionType added in v0.31.0

type RedshiftResultCompressionType string
const (
	RedshiftResultCompressionTypeNone   RedshiftResultCompressionType = "None"
	RedshiftResultCompressionTypeGzip   RedshiftResultCompressionType = "GZIP"
	RedshiftResultCompressionTypeBzip2  RedshiftResultCompressionType = "BZIP2"
	RedshiftResultCompressionTypeZstd   RedshiftResultCompressionType = "ZSTD"
	RedshiftResultCompressionTypeSnappy RedshiftResultCompressionType = "SNAPPY"
)

Enum values for RedshiftResultCompressionType

func (RedshiftResultCompressionType) Values added in v0.31.0

Values returns all known values for RedshiftResultCompressionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RedshiftResultFormat added in v0.31.0

type RedshiftResultFormat string
const (
	RedshiftResultFormatParquet RedshiftResultFormat = "PARQUET"
	RedshiftResultFormatCsv     RedshiftResultFormat = "CSV"
)

Enum values for RedshiftResultFormat

func (RedshiftResultFormat) Values added in v0.31.0

Values returns all known values for RedshiftResultFormat. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RegisterModelStepMetadata added in v0.31.0

type RegisterModelStepMetadata struct {

	// The Amazon Resource Name (ARN) of the model package.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for a register model job step.

type RenderableTask

type RenderableTask struct {

	// A JSON object that contains values for the variables defined in the template.
	// It is made available to the template under the substitution variable task.input
	// . For example, if you define a variable task.input.text in your template, you
	// can supply the variable in the JSON object as "text": "sample text" .
	//
	// This member is required.
	Input *string
	// contains filtered or unexported fields
}

Contains input values for a task.

type RenderingError

type RenderingError struct {

	// A unique identifier for a specific class of errors.
	//
	// This member is required.
	Code *string

	// A human-readable message describing the error.
	//
	// This member is required.
	Message *string
	// contains filtered or unexported fields
}

A description of an error that occurred while rendering the template.

type RepositoryAccessMode added in v0.29.0

type RepositoryAccessMode string
const (
	RepositoryAccessModePlatform RepositoryAccessMode = "Platform"
	RepositoryAccessModeVpc      RepositoryAccessMode = "Vpc"
)

Enum values for RepositoryAccessMode

func (RepositoryAccessMode) Values added in v0.29.0

Values returns all known values for RepositoryAccessMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RepositoryAuthConfig added in v1.3.0

type RepositoryAuthConfig struct {

	// The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that
	// provides credentials to authenticate to the private Docker registry where your
	// model image is hosted. For information about how to create an Amazon Web
	// Services Lambda function, see Create a Lambda function with the console (https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html)
	// in the Amazon Web Services Lambda Developer Guide.
	//
	// This member is required.
	RepositoryCredentialsProviderArn *string
	// contains filtered or unexported fields
}

Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field of the ImageConfig object that you passed to a call to CreateModel and the private Docker registry where the model image is hosted requires authentication.

type ResolvedAttributes

type ResolvedAttributes struct {

	// Specifies a metric to minimize or maximize as the objective of an AutoML job.
	AutoMLJobObjective *AutoMLJobObjective

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The problem type.
	ProblemType ProblemType
	// contains filtered or unexported fields
}

The resolved attributes.

type ResourceCatalog added in v1.93.0

type ResourceCatalog struct {

	// The time the ResourceCatalog was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A free form description of the ResourceCatalog .
	//
	// This member is required.
	Description *string

	// The Amazon Resource Name (ARN) of the ResourceCatalog .
	//
	// This member is required.
	ResourceCatalogArn *string

	// The name of the ResourceCatalog .
	//
	// This member is required.
	ResourceCatalogName *string
	// contains filtered or unexported fields
}

A resource catalog containing all of the resources of a specific resource type within a resource owner account. For an example on sharing the Amazon SageMaker Feature Store DefaultFeatureGroupCatalog , see Share Amazon SageMaker Catalog resource type (https://docs.aws.amazon.com/sagemaker/latest/APIReference/feature-store-cross-account-discoverability-share-sagemaker-catalog.html) in the Amazon SageMaker Developer Guide.

type ResourceCatalogSortBy added in v1.93.0

type ResourceCatalogSortBy string
const (
	ResourceCatalogSortByCreationTime ResourceCatalogSortBy = "CreationTime"
)

Enum values for ResourceCatalogSortBy

func (ResourceCatalogSortBy) Values added in v1.93.0

Values returns all known values for ResourceCatalogSortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ResourceCatalogSortOrder added in v1.93.0

type ResourceCatalogSortOrder string
const (
	ResourceCatalogSortOrderAscending  ResourceCatalogSortOrder = "Ascending"
	ResourceCatalogSortOrderDescending ResourceCatalogSortOrder = "Descending"
)

Enum values for ResourceCatalogSortOrder

func (ResourceCatalogSortOrder) Values added in v1.93.0

Values returns all known values for ResourceCatalogSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ResourceConfig

type ResourceConfig struct {

	// The size of the ML storage volume that you want to provision. ML storage
	// volumes store model artifacts and incremental states. Training algorithms might
	// also use the ML storage volume for scratch space. If you want to store the
	// training data in the ML storage volume, choose File as the TrainingInputMode in
	// the algorithm specification. When using an ML instance with NVMe SSD volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes)
	// , SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage.
	// Available storage is fixed to the NVMe-type instance's storage capacity.
	// SageMaker configures storage paths for training datasets, checkpoints, model
	// artifacts, and outputs to use the entire capacity of the instance storage. For
	// example, ML instance families with the NVMe-type instance storage include ml.p4d
	// , ml.g4dn , and ml.g5 . When using an ML instance with the EBS-only storage
	// option and without instance storage, you must define the size of EBS volume
	// through VolumeSizeInGB in the ResourceConfig API. For example, ML instance
	// families that use EBS volumes include ml.c5 and ml.p2 . To look up instance
	// types and their instance storage types and volumes, see Amazon EC2 Instance
	// Types (http://aws.amazon.com/ec2/instance-types/) . To find the default local
	// paths defined by the SageMaker training platform, see Amazon SageMaker Training
	// Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-train-storage.html)
	// .
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The number of ML compute instances to use. For distributed training, provide a
	// value greater than 1.
	InstanceCount *int32

	// The configuration of a heterogeneous cluster in JSON format.
	InstanceGroups []InstanceGroup

	// The ML compute instance type. SageMaker Training on Amazon Elastic Compute
	// Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.
	// Amazon EC2 P4de instances (http://aws.amazon.com/ec2/instance-types/p4/)
	// (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB
	// high-performance HBM2e GPU memory, which accelerate the speed of training ML
	// models that need to be trained on large datasets of high-resolution data. In
	// this preview release, Amazon SageMaker supports ML training jobs on P4de
	// instances ( ml.p4de.24xlarge ) to reduce model training time. The
	// ml.p4de.24xlarge instances are available in the following Amazon Web Services
	// Regions.
	//   - US East (N. Virginia) (us-east-1)
	//   - US West (Oregon) (us-west-2)
	// To request quota limit increase and start using P4de instances, contact the
	// SageMaker Training service team through your account team.
	InstanceType TrainingInstanceType

	// The duration of time in seconds to retain configured resources in a warm pool
	// for subsequent training jobs.
	KeepAlivePeriodInSeconds *int32

	// The Amazon Web Services KMS key that SageMaker uses to encrypt data on the
	// storage volume attached to the ML compute instance(s) that run the training job.
	// Certain Nitro-based instances include local storage, dependent on the instance
	// type. Local storage volumes are encrypted using a hardware module on the
	// instance. You can't request a VolumeKmsKeyId when using an instance type with
	// local storage. For a list of instance types that support local instance storage,
	// see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// . For more information about local instance storage encryption, see SSD
	// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// . The VolumeKmsKeyId can be in any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	VolumeKmsKeyId *string
	// contains filtered or unexported fields
}

Describes the resources, including machine learning (ML) compute instances and ML storage volumes, to use for model training.

type ResourceConfigForUpdate added in v1.45.0

type ResourceConfigForUpdate struct {

	// The KeepAlivePeriodInSeconds value specified in the ResourceConfig to update.
	//
	// This member is required.
	KeepAlivePeriodInSeconds *int32
	// contains filtered or unexported fields
}

The ResourceConfig to update KeepAlivePeriodInSeconds . Other fields in the ResourceConfig cannot be updated.

type ResourceInUse

type ResourceInUse struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

Resource being accessed is in use.

func (*ResourceInUse) Error

func (e *ResourceInUse) Error() string

func (*ResourceInUse) ErrorCode

func (e *ResourceInUse) ErrorCode() string

func (*ResourceInUse) ErrorFault

func (e *ResourceInUse) ErrorFault() smithy.ErrorFault

func (*ResourceInUse) ErrorMessage

func (e *ResourceInUse) ErrorMessage() string

type ResourceLimitExceeded

type ResourceLimitExceeded struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

func (*ResourceLimitExceeded) Error

func (e *ResourceLimitExceeded) Error() string

func (*ResourceLimitExceeded) ErrorCode

func (e *ResourceLimitExceeded) ErrorCode() string

func (*ResourceLimitExceeded) ErrorFault

func (e *ResourceLimitExceeded) ErrorFault() smithy.ErrorFault

func (*ResourceLimitExceeded) ErrorMessage

func (e *ResourceLimitExceeded) ErrorMessage() string

type ResourceLimits

type ResourceLimits struct {

	// The maximum number of concurrent training jobs that a hyperparameter tuning job
	// can launch.
	//
	// This member is required.
	MaxParallelTrainingJobs *int32

	// The maximum number of training jobs that a hyperparameter tuning job can launch.
	MaxNumberOfTrainingJobs *int32

	// The maximum time in seconds that a hyperparameter tuning job can run.
	MaxRuntimeInSeconds *int32
	// contains filtered or unexported fields
}

Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch.

type ResourceNotFound

type ResourceNotFound struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

Resource being access is not found.

func (*ResourceNotFound) Error

func (e *ResourceNotFound) Error() string

func (*ResourceNotFound) ErrorCode

func (e *ResourceNotFound) ErrorCode() string

func (*ResourceNotFound) ErrorFault

func (e *ResourceNotFound) ErrorFault() smithy.ErrorFault

func (*ResourceNotFound) ErrorMessage

func (e *ResourceNotFound) ErrorMessage() string

type ResourceSpec

type ResourceSpec struct {

	// The instance type that the image version runs on. JupyterServer apps only
	// support the system value. For KernelGateway apps, the system value is
	// translated to ml.t3.medium . KernelGateway apps also support all other values
	// for available instance types.
	InstanceType AppInstanceType

	// The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the
	// Resource.
	LifecycleConfigArn *string

	// The ARN of the SageMaker image that the image version belongs to.
	SageMakerImageArn *string

	// The SageMakerImageVersionAlias.
	SageMakerImageVersionAlias *string

	// The ARN of the image version created on the instance.
	SageMakerImageVersionArn *string
	// contains filtered or unexported fields
}

Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.

type ResourceType

type ResourceType string
const (
	ResourceTypeTrainingJob              ResourceType = "TrainingJob"
	ResourceTypeExperiment               ResourceType = "Experiment"
	ResourceTypeExperimentTrial          ResourceType = "ExperimentTrial"
	ResourceTypeExperimentTrialComponent ResourceType = "ExperimentTrialComponent"
	ResourceTypeEndpoint                 ResourceType = "Endpoint"
	ResourceTypeModelPackage             ResourceType = "ModelPackage"
	ResourceTypeModelPackageGroup        ResourceType = "ModelPackageGroup"
	ResourceTypePipeline                 ResourceType = "Pipeline"
	ResourceTypePipelineExecution        ResourceType = "PipelineExecution"
	ResourceTypeFeatureGroup             ResourceType = "FeatureGroup"
	ResourceTypeProject                  ResourceType = "Project"
	ResourceTypeFeatureMetadata          ResourceType = "FeatureMetadata"
	ResourceTypeHyperParameterTuningJob  ResourceType = "HyperParameterTuningJob"
	ResourceTypeModelCard                ResourceType = "ModelCard"
	ResourceTypeModel                    ResourceType = "Model"
)

Enum values for ResourceType

func (ResourceType) Values added in v0.29.0

func (ResourceType) Values() []ResourceType

Values returns all known values for ResourceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RetentionPolicy

type RetentionPolicy struct {

	// The default is Retain , which specifies to keep the data stored on the EFS
	// volume. Specify Delete to delete the data stored on the EFS volume.
	HomeEfsFileSystem RetentionType
	// contains filtered or unexported fields
}

The retention policy for data stored on an Amazon Elastic File System (EFS) volume.

type RetentionType

type RetentionType string
const (
	RetentionTypeRetain RetentionType = "Retain"
	RetentionTypeDelete RetentionType = "Delete"
)

Enum values for RetentionType

func (RetentionType) Values added in v0.29.0

func (RetentionType) Values() []RetentionType

Values returns all known values for RetentionType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RetryStrategy added in v1.4.0

type RetryStrategy struct {

	// The number of times to retry the job. When the job is retried, it's
	// SecondaryStatus is changed to STARTING .
	//
	// This member is required.
	MaximumRetryAttempts *int32
	// contains filtered or unexported fields
}

The retry strategy to use when a training job fails due to an InternalServerError . RetryStrategy is specified as part of the CreateTrainingJob and CreateHyperParameterTuningJob requests. You can add the StoppingCondition parameter to the request to limit the training time for the complete job.

type RollingUpdatePolicy added in v1.90.0

type RollingUpdatePolicy struct {

	// Batch size for each rolling step to provision capacity and turn on traffic on
	// the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value
	// must be between 5% to 50% of the variant's total instance count.
	//
	// This member is required.
	MaximumBatchSize *CapacitySize

	// The length of the baking period, during which SageMaker monitors alarms for
	// each batch on the new fleet.
	//
	// This member is required.
	WaitIntervalInSeconds *int32

	// The time limit for the total deployment. Exceeding this limit causes a timeout.
	MaximumExecutionTimeoutInSeconds *int32

	// Batch size for rollback to the old endpoint fleet. Each rolling step to
	// provision capacity and turn on traffic on the old endpoint fleet, and terminate
	// capacity on the new endpoint fleet. If this field is absent, the default value
	// will be set to 100% of total capacity which means to bring up the whole capacity
	// of the old fleet at once during rollback.
	RollbackMaximumBatchSize *CapacitySize
	// contains filtered or unexported fields
}

Specifies a rolling deployment strategy for updating a SageMaker endpoint.

type RootAccess

type RootAccess string
const (
	RootAccessEnabled  RootAccess = "Enabled"
	RootAccessDisabled RootAccess = "Disabled"
)

Enum values for RootAccess

func (RootAccess) Values added in v0.29.0

func (RootAccess) Values() []RootAccess

Values returns all known values for RootAccess. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RoutingStrategy added in v1.119.0

type RoutingStrategy string
const (
	RoutingStrategyLeastOutstandingRequests RoutingStrategy = "LEAST_OUTSTANDING_REQUESTS"
	RoutingStrategyRandom                   RoutingStrategy = "RANDOM"
)

Enum values for RoutingStrategy

func (RoutingStrategy) Values added in v1.119.0

func (RoutingStrategy) Values() []RoutingStrategy

Values returns all known values for RoutingStrategy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type RuleEvaluationStatus

type RuleEvaluationStatus string
const (
	RuleEvaluationStatusInProgress    RuleEvaluationStatus = "InProgress"
	RuleEvaluationStatusNoIssuesFound RuleEvaluationStatus = "NoIssuesFound"
	RuleEvaluationStatusIssuesFound   RuleEvaluationStatus = "IssuesFound"
	RuleEvaluationStatusError         RuleEvaluationStatus = "Error"
	RuleEvaluationStatusStopping      RuleEvaluationStatus = "Stopping"
	RuleEvaluationStatusStopped       RuleEvaluationStatus = "Stopped"
)

Enum values for RuleEvaluationStatus

func (RuleEvaluationStatus) Values added in v0.29.0

Values returns all known values for RuleEvaluationStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type S3DataDistribution

type S3DataDistribution string
const (
	S3DataDistributionFullyReplicated S3DataDistribution = "FullyReplicated"
	S3DataDistributionShardedByS3Key  S3DataDistribution = "ShardedByS3Key"
)

Enum values for S3DataDistribution

func (S3DataDistribution) Values added in v0.29.0

Values returns all known values for S3DataDistribution. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type S3DataSource

type S3DataSource struct {

	// If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all
	// objects that match the specified key name prefix for model training. If you
	// choose ManifestFile , S3Uri identifies an object that is a manifest file
	// containing a list of object keys that you want SageMaker to use for model
	// training. If you choose AugmentedManifestFile , S3Uri identifies an object that
	// is an augmented manifest file in JSON lines format. This file contains the data
	// you want to use for model training. AugmentedManifestFile can only be used if
	// the Channel's input mode is Pipe .
	//
	// This member is required.
	S3DataType S3DataType

	// Depending on the value specified for the S3DataType , identifies either a key
	// name prefix or a manifest. For example:
	//   - A key name prefix might look like this: s3://bucketname/exampleprefix
	//   - A manifest might look like this: s3://bucketname/example.manifest A manifest
	//   is an S3 object which is a JSON file consisting of an array of elements. The
	//   first element is a prefix which is followed by one or more suffixes. SageMaker
	//   appends the suffix elements to the prefix to get a full set of S3Uri . Note
	//   that the prefix must be a valid non-empty S3Uri that precludes users from
	//   specifying a manifest whose individual S3Uri is sourced from different S3
	//   buckets. The following code example shows a valid manifest format: [
	//   {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1",
	//   "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is
	//   equivalent to the following S3Uri list:
	//   s3://customer_bucket/some/prefix/relative/path/to/custdata-1
	//   s3://customer_bucket/some/prefix/relative/path/custdata-2 ...
	//   s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of
	//   S3Uri in this manifest is the input data for the channel for this data source.
	//   The object that each S3Uri points to must be readable by the IAM role that
	//   SageMaker uses to perform tasks on your behalf.
	// Your input bucket must be located in same Amazon Web Services region as your
	// training job.
	//
	// This member is required.
	S3Uri *string

	// A list of one or more attribute names to use that are found in a specified
	// augmented manifest file.
	AttributeNames []string

	// A list of names of instance groups that get data from the S3 data source.
	InstanceGroupNames []string

	// If you want SageMaker to replicate the entire dataset on each ML compute
	// instance that is launched for model training, specify FullyReplicated . If you
	// want SageMaker to replicate a subset of data on each ML compute instance that is
	// launched for model training, specify ShardedByS3Key . If there are n ML compute
	// instances launched for a training job, each instance gets approximately 1/n of
	// the number of S3 objects. In this case, model training on each machine uses only
	// the subset of training data. Don't choose more ML compute instances for training
	// than available S3 objects. If you do, some nodes won't get any data and you will
	// pay for nodes that aren't getting any training data. This applies in both File
	// and Pipe modes. Keep this in mind when developing algorithms. In distributed
	// training, where you use multiple ML compute EC2 instances, you might choose
	// ShardedByS3Key . If the algorithm requires copying training data to the ML
	// storage volume (when TrainingInputMode is set to File ), this copies 1/n of the
	// number of objects.
	S3DataDistributionType S3DataDistribution
	// contains filtered or unexported fields
}

Describes the S3 data source. Your input bucket must be in the same Amazon Web Services region as your training job.

type S3DataType

type S3DataType string
const (
	S3DataTypeManifestFile          S3DataType = "ManifestFile"
	S3DataTypeS3Prefix              S3DataType = "S3Prefix"
	S3DataTypeAugmentedManifestFile S3DataType = "AugmentedManifestFile"
)

Enum values for S3DataType

func (S3DataType) Values added in v0.29.0

func (S3DataType) Values() []S3DataType

Values returns all known values for S3DataType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type S3ModelDataSource added in v1.86.0

type S3ModelDataSource struct {

	// Specifies how the ML model data is prepared. If you choose Gzip and choose
	// S3Object as the value of S3DataType , S3Uri identifies an object that is a
	// gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the
	// object during model deployment. If you choose None and chooose S3Object as the
	// value of S3DataType , S3Uri identifies an object that represents an
	// uncompressed ML model to deploy. If you choose None and choose S3Prefix as the
	// value of S3DataType , S3Uri identifies a key name prefix, under which all
	// objects represents the uncompressed ML model to deploy. If you choose None, then
	// SageMaker will follow rules below when creating model data files under
	// /opt/ml/model directory for use by your inference code:
	//   - If you choose S3Object as the value of S3DataType , then SageMaker will
	//   split the key of the S3 object referenced by S3Uri by slash (/), and use the
	//   last part as the filename of the file holding the content of the S3 object.
	//   - If you choose S3Prefix as the value of S3DataType , then for each S3 object
	//   under the key name pefix referenced by S3Uri , SageMaker will trim its key by
	//   the prefix, and use the remainder as the path (relative to /opt/ml/model ) of
	//   the file holding the content of the S3 object. SageMaker will split the
	//   remainder by slash (/), using intermediate parts as directory names and the last
	//   part as filename of the file holding the content of the S3 object.
	//   - Do not use any of the following as file names or directory names:
	//   - An empty or blank string
	//   - A string which contains null bytes
	//   - A string longer than 255 bytes
	//   - A single dot ( . )
	//   - A double dot ( .. )
	//   - Ambiguous file names will result in model deployment failure. For example,
	//   if your uncompressed ML model consists of two S3 objects
	//   s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you
	//   specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value
	//   of S3DataType , then it will result in name clash between
	//   /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a
	//   directory).
	//   - Do not organize the model artifacts in S3 console using folders (https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html)
	//   . When you create a folder in S3 console, S3 creates a 0-byte object with a key
	//   set to the folder name you provide. They key of the 0-byte object ends with a
	//   slash (/) which violates SageMaker restrictions on model artifact file names,
	//   leading to model deployment failure.
	//
	// This member is required.
	CompressionType ModelCompressionType

	// Specifies the type of ML model data to deploy. If you choose S3Prefix , S3Uri
	// identifies a key name prefix. SageMaker uses all objects that match the
	// specified key name prefix as part of the ML model data to deploy. A valid key
	// name prefix identified by S3Uri always ends with a forward slash (/). If you
	// choose S3Object , S3Uri identifies an object that is the ML model data to
	// deploy.
	//
	// This member is required.
	S3DataType S3ModelDataType

	// Specifies the S3 path of ML model data to deploy.
	//
	// This member is required.
	S3Uri *string

	// Specifies the access configuration file for the ML model. You can explicitly
	// accept the model end-user license agreement (EULA) within the ModelAccessConfig
	// . You are responsible for reviewing and complying with any applicable license
	// terms and making sure they are acceptable for your use case before downloading
	// or using a model.
	ModelAccessConfig *ModelAccessConfig
	// contains filtered or unexported fields
}

Specifies the S3 location of ML model data to deploy.

type S3ModelDataType added in v1.86.0

type S3ModelDataType string
const (
	S3ModelDataTypeS3Prefix S3ModelDataType = "S3Prefix"
	S3ModelDataTypeS3Object S3ModelDataType = "S3Object"
)

Enum values for S3ModelDataType

func (S3ModelDataType) Values added in v1.86.0

func (S3ModelDataType) Values() []S3ModelDataType

Values returns all known values for S3ModelDataType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type S3StorageConfig added in v0.31.0

type S3StorageConfig struct {

	// The S3 URI, or location in Amazon S3, of OfflineStore . S3 URIs have a format
	// similar to the following: s3://example-bucket/prefix/ .
	//
	// This member is required.
	S3Uri *string

	// The Amazon Web Services Key Management Service (KMS) key ARN of the key used to
	// encrypt any objects written into the OfflineStore S3 location. The IAM roleARN
	// that is passed as a parameter to CreateFeatureGroup must have below permissions
	// to the KmsKeyId :
	//   - "kms:GenerateDataKey"
	KmsKeyId *string

	// The S3 path where offline records are written.
	ResolvedOutputS3Uri *string
	// contains filtered or unexported fields
}

The Amazon Simple Storage (Amazon S3) location and and security configuration for OfflineStore .

type SagemakerServicecatalogStatus added in v0.31.0

type SagemakerServicecatalogStatus string
const (
	SagemakerServicecatalogStatusEnabled  SagemakerServicecatalogStatus = "Enabled"
	SagemakerServicecatalogStatusDisabled SagemakerServicecatalogStatus = "Disabled"
)

Enum values for SagemakerServicecatalogStatus

func (SagemakerServicecatalogStatus) Values added in v0.31.0

Values returns all known values for SagemakerServicecatalogStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ScalingPolicy added in v1.98.0

type ScalingPolicy interface {
	// contains filtered or unexported methods
}

An object containing a recommended scaling policy.

The following types satisfy this interface:

ScalingPolicyMemberTargetTracking
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.ScalingPolicy
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.ScalingPolicyMemberTargetTracking:
		_ = v.Value // Value is types.TargetTrackingScalingPolicyConfiguration

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type ScalingPolicyMemberTargetTracking added in v1.98.0

type ScalingPolicyMemberTargetTracking struct {
	Value TargetTrackingScalingPolicyConfiguration
	// contains filtered or unexported fields
}

A target tracking scaling policy. Includes support for predefined or customized metrics.

type ScalingPolicyMetric added in v1.98.0

type ScalingPolicyMetric struct {

	// The number of invocations sent to a model, normalized by InstanceCount in each
	// ProductionVariant. 1/numberOfInstances is sent as the value on each request,
	// where numberOfInstances is the number of active instances for the
	// ProductionVariant behind the endpoint at the time of the request.
	InvocationsPerInstance *int32

	// The interval of time taken by a model to respond as viewed from SageMaker. This
	// interval includes the local communication times taken to send the request and to
	// fetch the response from the container of a model and the time taken to complete
	// the inference in the container.
	ModelLatency *int32
	// contains filtered or unexported fields
}

The metric for a scaling policy.

type ScalingPolicyObjective added in v1.98.0

type ScalingPolicyObjective struct {

	// The maximum number of expected requests to your endpoint per minute.
	MaxInvocationsPerMinute *int32

	// The minimum number of expected requests to your endpoint per minute.
	MinInvocationsPerMinute *int32
	// contains filtered or unexported fields
}

An object where you specify the anticipated traffic pattern for an endpoint.

type ScheduleConfig

type ScheduleConfig struct {

	// A cron expression that describes details about the monitoring schedule. The
	// supported cron expressions are:
	//   - If you want to set the job to start every hour, use the following: Hourly:
	//   cron(0 * ? * * *)
	//   - If you want to start the job daily: cron(0 [00-23] ? * * *)
	//   - If you want to run the job one time, immediately, use the following
	//   keyword: NOW
	// For example, the following are valid cron expressions:
	//   - Daily at noon UTC: cron(0 12 ? * * *)
	//   - Daily at midnight UTC: cron(0 0 ? * * *)
	// To support running every 6, 12 hours, the following are also supported: cron(0
	// [00-23]/[01-24] ? * * *) For example, the following are valid cron expressions:
	//   - Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)
	//   - Every two hours starting at midnight: cron(0 0/2 ? * * *)
	//
	//   - Even though the cron expression is set to start at 5PM UTC, note that there
	//   could be a delay of 0-20 minutes from the actual requested time to run the
	//   execution.
	//   - We recommend that if you would like a daily schedule, you do not provide
	//   this parameter. Amazon SageMaker will pick a time for running every day.
	// You can also specify the keyword NOW to run the monitoring job immediately, one
	// time, without recurring.
	//
	// This member is required.
	ScheduleExpression *string

	// Sets the end time for a monitoring job window. Express this time as an offset
	// to the times that you schedule your monitoring jobs to run. You schedule
	// monitoring jobs with the ScheduleExpression parameter. Specify this offset in
	// ISO 8601 duration format. For example, if you want to end the window one hour
	// before the start of each monitoring job, you would specify: "-PT1H" . The end
	// time that you specify must not follow the start time that you specify by more
	// than 24 hours. You specify the start time with the DataAnalysisStartTime
	// parameter. If you set ScheduleExpression to NOW , this parameter is required.
	DataAnalysisEndTime *string

	// Sets the start time for a monitoring job window. Express this time as an offset
	// to the times that you schedule your monitoring jobs to run. You schedule
	// monitoring jobs with the ScheduleExpression parameter. Specify this offset in
	// ISO 8601 duration format. For example, if you want to monitor the five hours of
	// data in your dataset that precede the start of each monitoring job, you would
	// specify: "-PT5H" . The start time that you specify must not precede the end time
	// that you specify by more than 24 hours. You specify the end time with the
	// DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW , this
	// parameter is required.
	DataAnalysisStartTime *string
	// contains filtered or unexported fields
}

Configuration details about the monitoring schedule.

type ScheduleStatus

type ScheduleStatus string
const (
	ScheduleStatusPending   ScheduleStatus = "Pending"
	ScheduleStatusFailed    ScheduleStatus = "Failed"
	ScheduleStatusScheduled ScheduleStatus = "Scheduled"
	ScheduleStatusStopped   ScheduleStatus = "Stopped"
)

Enum values for ScheduleStatus

func (ScheduleStatus) Values added in v0.29.0

func (ScheduleStatus) Values() []ScheduleStatus

Values returns all known values for ScheduleStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SearchExpression

type SearchExpression struct {

	// A list of filter objects.
	Filters []Filter

	// A list of nested filter objects.
	NestedFilters []NestedFilters

	// A Boolean operator used to evaluate the search expression. If you want every
	// conditional statement in all lists to be satisfied for the entire search
	// expression to be true, specify And . If only a single conditional statement
	// needs to be true for the entire search expression to be true, specify Or . The
	// default value is And .
	Operator BooleanOperator

	// A list of search expression objects.
	SubExpressions []SearchExpression
	// contains filtered or unexported fields
}

A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements. A SearchExpression contains the following components:

  • A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
  • A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
  • A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.
  • A Boolean operator: And or Or .

type SearchRecord

type SearchRecord struct {

	// A hosted endpoint for real-time inference.
	Endpoint *Endpoint

	// The properties of an experiment.
	Experiment *Experiment

	// Amazon SageMaker Feature Store stores features in a collection called Feature
	// Group. A Feature Group can be visualized as a table which has rows, with a
	// unique identifier for each row where each column in the table is a feature. In
	// principle, a Feature Group is composed of features and values per features.
	FeatureGroup *FeatureGroup

	// The feature metadata used to search through the features.
	FeatureMetadata *FeatureMetadata

	// The properties of a hyperparameter tuning job.
	HyperParameterTuningJob *HyperParameterTuningJobSearchEntity

	// A model displayed in the Amazon SageMaker Model Dashboard.
	Model *ModelDashboardModel

	// An Amazon SageMaker Model Card that documents details about a machine learning
	// model.
	ModelCard *ModelCard

	// A versioned model that can be deployed for SageMaker inference.
	ModelPackage *ModelPackage

	// A group of versioned models in the model registry.
	ModelPackageGroup *ModelPackageGroup

	// A SageMaker Model Building Pipeline instance.
	Pipeline *Pipeline

	// An execution of a pipeline.
	PipelineExecution *PipelineExecution

	// The properties of a project.
	Project *Project

	// The properties of a training job.
	TrainingJob *TrainingJob

	// The properties of a trial.
	Trial *Trial

	// The properties of a trial component.
	TrialComponent *TrialComponent
	// contains filtered or unexported fields
}

A single resource returned as part of the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API response.

type SearchSortOrder

type SearchSortOrder string
const (
	SearchSortOrderAscending  SearchSortOrder = "Ascending"
	SearchSortOrderDescending SearchSortOrder = "Descending"
)

Enum values for SearchSortOrder

func (SearchSortOrder) Values added in v0.29.0

func (SearchSortOrder) Values() []SearchSortOrder

Values returns all known values for SearchSortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SecondaryStatus

type SecondaryStatus string
const (
	SecondaryStatusStarting                 SecondaryStatus = "Starting"
	SecondaryStatusLaunchingMlInstances     SecondaryStatus = "LaunchingMLInstances"
	SecondaryStatusPreparingTrainingStack   SecondaryStatus = "PreparingTrainingStack"
	SecondaryStatusDownloading              SecondaryStatus = "Downloading"
	SecondaryStatusDownloadingTrainingImage SecondaryStatus = "DownloadingTrainingImage"
	SecondaryStatusTraining                 SecondaryStatus = "Training"
	SecondaryStatusUploading                SecondaryStatus = "Uploading"
	SecondaryStatusStopping                 SecondaryStatus = "Stopping"
	SecondaryStatusStopped                  SecondaryStatus = "Stopped"
	SecondaryStatusMaxRuntimeExceeded       SecondaryStatus = "MaxRuntimeExceeded"
	SecondaryStatusCompleted                SecondaryStatus = "Completed"
	SecondaryStatusFailed                   SecondaryStatus = "Failed"
	SecondaryStatusInterrupted              SecondaryStatus = "Interrupted"
	SecondaryStatusMaxWaitTimeExceeded      SecondaryStatus = "MaxWaitTimeExceeded"
	SecondaryStatusUpdating                 SecondaryStatus = "Updating"
	SecondaryStatusRestarting               SecondaryStatus = "Restarting"
)

Enum values for SecondaryStatus

func (SecondaryStatus) Values added in v0.29.0

func (SecondaryStatus) Values() []SecondaryStatus

Values returns all known values for SecondaryStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SecondaryStatusTransition

type SecondaryStatusTransition struct {

	// A timestamp that shows when the training job transitioned to the current
	// secondary status state.
	//
	// This member is required.
	StartTime *time.Time

	// Contains a secondary status information from a training job. Status might be
	// one of the following secondary statuses: InProgress
	//   - Starting - Starting the training job.
	//   - Downloading - An optional stage for algorithms that support File training
	//   input mode. It indicates that data is being downloaded to the ML storage
	//   volumes.
	//   - Training - Training is in progress.
	//   - Uploading - Training is complete and the model artifacts are being uploaded
	//   to the S3 location.
	// Completed
	//   - Completed - The training job has completed.
	// Failed
	//   - Failed - The training job has failed. The reason for the failure is returned
	//   in the FailureReason field of DescribeTrainingJobResponse .
	// Stopped
	//   - MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed
	//   runtime.
	//   - Stopped - The training job has stopped.
	// Stopping
	//   - Stopping - Stopping the training job.
	// We no longer support the following secondary statuses:
	//   - LaunchingMLInstances
	//   - PreparingTrainingStack
	//   - DownloadingTrainingImage
	//
	// This member is required.
	Status SecondaryStatus

	// A timestamp that shows when the training job transitioned out of this secondary
	// status state into another secondary status state or when the training job has
	// ended.
	EndTime *time.Time

	// A detailed description of the progress within a secondary status. SageMaker
	// provides secondary statuses and status messages that apply to each of them:
	// Starting
	//   - Starting the training job.
	//   - Launching requested ML instances.
	//   - Insufficient capacity error from EC2 while launching instances, retrying!
	//   - Launched instance was unhealthy, replacing it!
	//   - Preparing the instances for training.
	// Training
	//   - Downloading the training image.
	//   - Training image download completed. Training in progress.
	// Status messages are subject to change. Therefore, we recommend not including
	// them in code that programmatically initiates actions. For examples, don't use
	// status messages in if statements. To have an overview of your training job's
	// progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html)
	// , and StatusMessage together. For example, at the start of a training job, you
	// might see the following:
	//   - TrainingJobStatus - InProgress
	//   - SecondaryStatus - Training
	//   - StatusMessage - Downloading the training image
	StatusMessage *string
	// contains filtered or unexported fields
}

An array element of SecondaryStatusTransitions for DescribeTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html) . It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.

type SelectedStep added in v1.83.0

type SelectedStep struct {

	// The name of the pipeline step.
	//
	// This member is required.
	StepName *string
	// contains filtered or unexported fields
}

A step selected to run in selective execution mode.

type SelectiveExecutionConfig added in v1.83.0

type SelectiveExecutionConfig struct {

	// A list of pipeline steps to run. All step(s) in all path(s) between two
	// selected steps should be included.
	//
	// This member is required.
	SelectedSteps []SelectedStep

	// The ARN from a reference execution of the current pipeline. Used to copy input
	// collaterals needed for the selected steps to run. The execution status of the
	// pipeline can be either Failed or Success . This field is required if the steps
	// you specify for SelectedSteps depend on output collaterals from any
	// non-specified pipeline steps. For more information, see Selective Execution for
	// Pipeline Steps (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-selective-ex.html)
	// .
	SourcePipelineExecutionArn *string
	// contains filtered or unexported fields
}

The selective execution configuration applied to the pipeline run.

type SelectiveExecutionResult added in v1.83.0

type SelectiveExecutionResult struct {

	// The ARN from an execution of the current pipeline.
	SourcePipelineExecutionArn *string
	// contains filtered or unexported fields
}

The ARN from an execution of the current pipeline.

type ServiceCatalogProvisionedProductDetails added in v0.31.0

type ServiceCatalogProvisionedProductDetails struct {

	// The ID of the provisioned product.
	ProvisionedProductId *string

	// The current status of the product.
	//   - AVAILABLE - Stable state, ready to perform any operation. The most recent
	//   operation succeeded and completed.
	//   - UNDER_CHANGE - Transitive state. Operations performed might not have valid
	//   results. Wait for an AVAILABLE status before performing operations.
	//   - TAINTED - Stable state, ready to perform any operation. The stack has
	//   completed the requested operation but is not exactly what was requested. For
	//   example, a request to update to a new version failed and the stack rolled back
	//   to the current version.
	//   - ERROR - An unexpected error occurred. The provisioned product exists but the
	//   stack is not running. For example, CloudFormation received a parameter value
	//   that was not valid and could not launch the stack.
	//   - PLAN_IN_PROGRESS - Transitive state. The plan operations were performed to
	//   provision a new product, but resources have not yet been created. After
	//   reviewing the list of resources to be created, execute the plan. Wait for an
	//   AVAILABLE status before performing operations.
	ProvisionedProductStatusMessage *string
	// contains filtered or unexported fields
}

Details of a provisioned service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html) .

type ServiceCatalogProvisioningDetails added in v0.31.0

type ServiceCatalogProvisioningDetails struct {

	// The ID of the product to provision.
	//
	// This member is required.
	ProductId *string

	// The path identifier of the product. This value is optional if the product has a
	// default path, and required if the product has more than one path.
	PathId *string

	// The ID of the provisioning artifact.
	ProvisioningArtifactId *string

	// A list of key value pairs that you specify when you provision a product.
	ProvisioningParameters []ProvisioningParameter
	// contains filtered or unexported fields
}

Details that you specify to provision a service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html) .

type ServiceCatalogProvisioningUpdateDetails added in v1.18.0

type ServiceCatalogProvisioningUpdateDetails struct {

	// The ID of the provisioning artifact.
	ProvisioningArtifactId *string

	// A list of key value pairs that you specify when you provision a product.
	ProvisioningParameters []ProvisioningParameter
	// contains filtered or unexported fields
}

Details that you specify to provision a service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html) .

type ShadowModeConfig added in v1.56.0

type ShadowModeConfig struct {

	// List of shadow variant configurations.
	//
	// This member is required.
	ShadowModelVariants []ShadowModelVariantConfig

	// The name of the production variant, which takes all the inference requests.
	//
	// This member is required.
	SourceModelVariantName *string
	// contains filtered or unexported fields
}

The configuration of ShadowMode inference experiment type, which specifies a production variant to take all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also specifies the percentage of requests that Amazon SageMaker replicates.

type ShadowModelVariantConfig added in v1.56.0

type ShadowModelVariantConfig struct {

	// The percentage of inference requests that Amazon SageMaker replicates from the
	// production variant to the shadow variant.
	//
	// This member is required.
	SamplingPercentage *int32

	// The name of the shadow variant.
	//
	// This member is required.
	ShadowModelVariantName *string
	// contains filtered or unexported fields
}

The name and sampling percentage of a shadow variant.

type SharingSettings

type SharingSettings struct {

	// Whether to include the notebook cell output when sharing the notebook. The
	// default is Disabled .
	NotebookOutputOption NotebookOutputOption

	// When NotebookOutputOption is Allowed , the Amazon Web Services Key Management
	// Service (KMS) encryption key ID used to encrypt the notebook cell output in the
	// Amazon S3 bucket.
	S3KmsKeyId *string

	// When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the
	// shared notebook snapshots.
	S3OutputPath *string
	// contains filtered or unexported fields
}

Specifies options for sharing Amazon SageMaker Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.

type SharingType added in v1.120.0

type SharingType string
const (
	SharingTypePrivate SharingType = "Private"
	SharingTypeShared  SharingType = "Shared"
)

Enum values for SharingType

func (SharingType) Values added in v1.120.0

func (SharingType) Values() []SharingType

Values returns all known values for SharingType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type ShuffleConfig

type ShuffleConfig struct {

	// Determines the shuffling order in ShuffleConfig value.
	//
	// This member is required.
	Seed *int64
	// contains filtered or unexported fields
}

A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , the results of the S3 key prefix matches are shuffled. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, when ShuffleConfig is specified shuffling is done at the start of every epoch. With large datasets, this ensures that the order of the training data is different for each epoch, and it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

type SkipModelValidation added in v1.106.0

type SkipModelValidation string
const (
	SkipModelValidationAll  SkipModelValidation = "All"
	SkipModelValidationNone SkipModelValidation = "None"
)

Enum values for SkipModelValidation

func (SkipModelValidation) Values added in v1.106.0

Values returns all known values for SkipModelValidation. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortActionsBy added in v0.31.0

type SortActionsBy string
const (
	SortActionsByName         SortActionsBy = "Name"
	SortActionsByCreationTime SortActionsBy = "CreationTime"
)

Enum values for SortActionsBy

func (SortActionsBy) Values added in v0.31.0

func (SortActionsBy) Values() []SortActionsBy

Values returns all known values for SortActionsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortArtifactsBy added in v0.31.0

type SortArtifactsBy string
const (
	SortArtifactsByCreationTime SortArtifactsBy = "CreationTime"
)

Enum values for SortArtifactsBy

func (SortArtifactsBy) Values added in v0.31.0

func (SortArtifactsBy) Values() []SortArtifactsBy

Values returns all known values for SortArtifactsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortAssociationsBy added in v0.31.0

type SortAssociationsBy string
const (
	SortAssociationsBySourceArn       SortAssociationsBy = "SourceArn"
	SortAssociationsByDestinationArn  SortAssociationsBy = "DestinationArn"
	SortAssociationsBySourceType      SortAssociationsBy = "SourceType"
	SortAssociationsByDestinationType SortAssociationsBy = "DestinationType"
	SortAssociationsByCreationTime    SortAssociationsBy = "CreationTime"
)

Enum values for SortAssociationsBy

func (SortAssociationsBy) Values added in v0.31.0

Values returns all known values for SortAssociationsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortBy

type SortBy string
const (
	SortByName         SortBy = "Name"
	SortByCreationTime SortBy = "CreationTime"
	SortByStatus       SortBy = "Status"
)

Enum values for SortBy

func (SortBy) Values added in v0.29.0

func (SortBy) Values() []SortBy

Values returns all known values for SortBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortContextsBy added in v0.31.0

type SortContextsBy string
const (
	SortContextsByName         SortContextsBy = "Name"
	SortContextsByCreationTime SortContextsBy = "CreationTime"
)

Enum values for SortContextsBy

func (SortContextsBy) Values added in v0.31.0

func (SortContextsBy) Values() []SortContextsBy

Values returns all known values for SortContextsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortExperimentsBy

type SortExperimentsBy string
const (
	SortExperimentsByName         SortExperimentsBy = "Name"
	SortExperimentsByCreationTime SortExperimentsBy = "CreationTime"
)

Enum values for SortExperimentsBy

func (SortExperimentsBy) Values added in v0.29.0

Values returns all known values for SortExperimentsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortInferenceExperimentsBy added in v1.56.0

type SortInferenceExperimentsBy string
const (
	SortInferenceExperimentsByName         SortInferenceExperimentsBy = "Name"
	SortInferenceExperimentsByCreationTime SortInferenceExperimentsBy = "CreationTime"
	SortInferenceExperimentsByStatus       SortInferenceExperimentsBy = "Status"
)

Enum values for SortInferenceExperimentsBy

func (SortInferenceExperimentsBy) Values added in v1.56.0

Values returns all known values for SortInferenceExperimentsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortLineageGroupsBy added in v1.20.0

type SortLineageGroupsBy string
const (
	SortLineageGroupsByName         SortLineageGroupsBy = "Name"
	SortLineageGroupsByCreationTime SortLineageGroupsBy = "CreationTime"
)

Enum values for SortLineageGroupsBy

func (SortLineageGroupsBy) Values added in v1.20.0

Values returns all known values for SortLineageGroupsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortOrder

type SortOrder string
const (
	SortOrderAscending  SortOrder = "Ascending"
	SortOrderDescending SortOrder = "Descending"
)

Enum values for SortOrder

func (SortOrder) Values added in v0.29.0

func (SortOrder) Values() []SortOrder

Values returns all known values for SortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortPipelineExecutionsBy added in v0.31.0

type SortPipelineExecutionsBy string
const (
	SortPipelineExecutionsByCreationTime         SortPipelineExecutionsBy = "CreationTime"
	SortPipelineExecutionsByPipelineExecutionArn SortPipelineExecutionsBy = "PipelineExecutionArn"
)

Enum values for SortPipelineExecutionsBy

func (SortPipelineExecutionsBy) Values added in v0.31.0

Values returns all known values for SortPipelineExecutionsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortPipelinesBy added in v0.31.0

type SortPipelinesBy string
const (
	SortPipelinesByName         SortPipelinesBy = "Name"
	SortPipelinesByCreationTime SortPipelinesBy = "CreationTime"
)

Enum values for SortPipelinesBy

func (SortPipelinesBy) Values added in v0.31.0

func (SortPipelinesBy) Values() []SortPipelinesBy

Values returns all known values for SortPipelinesBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortTrialComponentsBy

type SortTrialComponentsBy string
const (
	SortTrialComponentsByName         SortTrialComponentsBy = "Name"
	SortTrialComponentsByCreationTime SortTrialComponentsBy = "CreationTime"
)

Enum values for SortTrialComponentsBy

func (SortTrialComponentsBy) Values added in v0.29.0

Values returns all known values for SortTrialComponentsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SortTrialsBy

type SortTrialsBy string
const (
	SortTrialsByName         SortTrialsBy = "Name"
	SortTrialsByCreationTime SortTrialsBy = "CreationTime"
)

Enum values for SortTrialsBy

func (SortTrialsBy) Values added in v0.29.0

func (SortTrialsBy) Values() []SortTrialsBy

Values returns all known values for SortTrialsBy. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SourceAlgorithm

type SourceAlgorithm struct {

	// The name of an algorithm that was used to create the model package. The
	// algorithm must be either an algorithm resource in your SageMaker account or an
	// algorithm in Amazon Web Services Marketplace that you are subscribed to.
	//
	// This member is required.
	AlgorithmName *string

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive (
	// .tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same
	// Amazon Web Services region as the algorithm.
	ModelDataUrl *string
	// contains filtered or unexported fields
}

Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

type SourceAlgorithmSpecification

type SourceAlgorithmSpecification struct {

	// A list of the algorithms that were used to create a model package.
	//
	// This member is required.
	SourceAlgorithms []SourceAlgorithm
	// contains filtered or unexported fields
}

A list of algorithms that were used to create a model package.

type SourceIpConfig

type SourceIpConfig struct {

	// A list of one to ten Classless Inter-Domain Routing (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
	// (CIDR) values. Maximum: Ten CIDR values The following Length Constraints apply
	// to individual CIDR values in the CIDR value list.
	//
	// This member is required.
	Cidrs []string
	// contains filtered or unexported fields
}

A list of IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html) ). Used to create an allow list of IP addresses for a private workforce. Workers will only be able to login to their worker portal from an IP address within this range. By default, a workforce isn't restricted to specific IP addresses.

type SpaceCodeEditorAppSettings added in v1.120.0

type SpaceCodeEditorAppSettings struct {

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec
	// contains filtered or unexported fields
}

The application settings for a Code Editor space.

type SpaceDetails added in v1.56.0

type SpaceDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The ID of the associated Domain.
	DomainId *string

	// The last modified time.
	LastModifiedTime *time.Time

	// Specifies summary information about the ownership settings.
	OwnershipSettingsSummary *OwnershipSettingsSummary

	// The name of the space that appears in the Studio UI.
	SpaceDisplayName *string

	// The name of the space.
	SpaceName *string

	// Specifies summary information about the space settings.
	SpaceSettingsSummary *SpaceSettingsSummary

	// Specifies summary information about the space sharing settings.
	SpaceSharingSettingsSummary *SpaceSharingSettingsSummary

	// The status.
	Status SpaceStatus
	// contains filtered or unexported fields
}

The space's details.

type SpaceJupyterLabAppSettings added in v1.120.0

type SpaceJupyterLabAppSettings struct {

	// A list of Git repositories that SageMaker automatically displays to users for
	// cloning in the JupyterLab application.
	CodeRepositories []CodeRepository

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec
	// contains filtered or unexported fields
}

The settings for the JupyterLab application within a space.

type SpaceSettings added in v1.56.0

type SpaceSettings struct {

	// The type of app created within the space.
	AppType AppType

	// The Code Editor application settings.
	CodeEditorAppSettings *SpaceCodeEditorAppSettings

	// A file system, created by you, that you assign to a space for an Amazon
	// SageMaker Domain. Permitted users can access this file system in Amazon
	// SageMaker Studio.
	CustomFileSystems []CustomFileSystem

	// The settings for the JupyterLab application.
	JupyterLabAppSettings *SpaceJupyterLabAppSettings

	// The JupyterServer app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The KernelGateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// The storage settings for a private space.
	SpaceStorageSettings *SpaceStorageSettings
	// contains filtered or unexported fields
}

A collection of space settings.

type SpaceSettingsSummary added in v1.120.0

type SpaceSettingsSummary struct {

	// The type of app created within the space.
	AppType AppType

	// The storage settings for a private space.
	SpaceStorageSettings *SpaceStorageSettings
	// contains filtered or unexported fields
}

Specifies summary information about the space settings.

type SpaceSharingSettings added in v1.120.0

type SpaceSharingSettings struct {

	// Specifies the sharing type of the space.
	//
	// This member is required.
	SharingType SharingType
	// contains filtered or unexported fields
}

A collection of space sharing settings.

type SpaceSharingSettingsSummary added in v1.120.0

type SpaceSharingSettingsSummary struct {

	// Specifies the sharing type of the space.
	SharingType SharingType
	// contains filtered or unexported fields
}

Specifies summary information about the space sharing settings.

type SpaceSortKey added in v1.56.0

type SpaceSortKey string
const (
	SpaceSortKeyCreationTime     SpaceSortKey = "CreationTime"
	SpaceSortKeyLastModifiedTime SpaceSortKey = "LastModifiedTime"
)

Enum values for SpaceSortKey

func (SpaceSortKey) Values added in v1.56.0

func (SpaceSortKey) Values() []SpaceSortKey

Values returns all known values for SpaceSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SpaceStatus added in v1.56.0

type SpaceStatus string
const (
	SpaceStatusDeleting     SpaceStatus = "Deleting"
	SpaceStatusFailed       SpaceStatus = "Failed"
	SpaceStatusInService    SpaceStatus = "InService"
	SpaceStatusPending      SpaceStatus = "Pending"
	SpaceStatusUpdating     SpaceStatus = "Updating"
	SpaceStatusUpdateFailed SpaceStatus = "Update_Failed"
	SpaceStatusDeleteFailed SpaceStatus = "Delete_Failed"
)

Enum values for SpaceStatus

func (SpaceStatus) Values added in v1.56.0

func (SpaceStatus) Values() []SpaceStatus

Values returns all known values for SpaceStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SpaceStorageSettings added in v1.120.0

type SpaceStorageSettings struct {

	// A collection of EBS storage settings for a private space.
	EbsStorageSettings *EbsStorageSettings
	// contains filtered or unexported fields
}

The storage settings for a private space.

type SplitType

type SplitType string
const (
	SplitTypeNone     SplitType = "None"
	SplitTypeLine     SplitType = "Line"
	SplitTypeRecordio SplitType = "RecordIO"
	SplitTypeTfrecord SplitType = "TFRecord"
)

Enum values for SplitType

func (SplitType) Values added in v0.29.0

func (SplitType) Values() []SplitType

Values returns all known values for SplitType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type StageStatus added in v1.37.0

type StageStatus string
const (
	StageStatusCreating      StageStatus = "CREATING"
	StageStatusReadyToDeploy StageStatus = "READYTODEPLOY"
	StageStatusStarting      StageStatus = "STARTING"
	StageStatusInProgress    StageStatus = "INPROGRESS"
	StageStatusDeployed      StageStatus = "DEPLOYED"
	StageStatusFailed        StageStatus = "FAILED"
	StageStatusStopping      StageStatus = "STOPPING"
	StageStatusStopped       StageStatus = "STOPPED"
)

Enum values for StageStatus

func (StageStatus) Values added in v1.37.0

func (StageStatus) Values() []StageStatus

Values returns all known values for StageStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Stairs added in v1.97.0

type Stairs struct {

	// Defines how long each traffic step should be.
	DurationInSeconds *int32

	// Specifies how many steps to perform during traffic.
	NumberOfSteps *int32

	// Specifies how many new users to spawn in each step.
	UsersPerStep *int32
	// contains filtered or unexported fields
}

Defines the stairs traffic pattern for an Inference Recommender load test. This pattern type consists of multiple steps where the number of users increases at each step. Specify either the stairs or phases traffic pattern.

type Statistic added in v1.98.0

type Statistic string
const (
	StatisticAverage     Statistic = "Average"
	StatisticMinimum     Statistic = "Minimum"
	StatisticMaximum     Statistic = "Maximum"
	StatisticSampleCount Statistic = "SampleCount"
	StatisticSum         Statistic = "Sum"
)

Enum values for Statistic

func (Statistic) Values added in v1.98.0

func (Statistic) Values() []Statistic

Values returns all known values for Statistic. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type StepStatus added in v0.31.0

type StepStatus string
const (
	StepStatusStarting  StepStatus = "Starting"
	StepStatusExecuting StepStatus = "Executing"
	StepStatusStopping  StepStatus = "Stopping"
	StepStatusStopped   StepStatus = "Stopped"
	StepStatusFailed    StepStatus = "Failed"
	StepStatusSucceeded StepStatus = "Succeeded"
)

Enum values for StepStatus

func (StepStatus) Values added in v0.31.0

func (StepStatus) Values() []StepStatus

Values returns all known values for StepStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type StoppingCondition

type StoppingCondition struct {

	// The maximum length of time, in seconds, that a training or compilation job can
	// be pending before it is stopped.
	MaxPendingTimeInSeconds *int32

	// The maximum length of time, in seconds, that a training or compilation job can
	// run before it is stopped. For compilation jobs, if the job does not complete
	// during this time, a TimeOut error is generated. We recommend starting with 900
	// seconds and increasing as necessary based on your model. For all other jobs, if
	// the job does not complete during this time, SageMaker ends the job. When
	// RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies
	// the maximum time for all of the attempts in total, not each individual attempt.
	// The default value is 1 day. The maximum value is 28 days. The maximum time that
	// a TrainingJob can run in total, including any time spent publishing metrics or
	// archiving and uploading models after it has been stopped, is 30 days.
	MaxRuntimeInSeconds *int32

	// The maximum length of time, in seconds, that a managed Spot training job has to
	// complete. It is the amount of time spent waiting for Spot capacity plus the
	// amount of time the job can run. It must be equal to or greater than
	// MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker
	// ends the job. When RetryStrategy is specified in the job request,
	// MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in
	// total, not each individual attempt.
	MaxWaitTimeInSeconds *int32
	// contains filtered or unexported fields
}

Specifies a limit to how long a model training job or model compilation job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training or compilation job. Use this API to cap model training costs. To stop a training job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with CreateModel . The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.

type StorageType added in v1.108.0

type StorageType string
const (
	StorageTypeStandard StorageType = "Standard"
	StorageTypeInMemory StorageType = "InMemory"
)

Enum values for StorageType

func (StorageType) Values added in v1.108.0

func (StorageType) Values() []StorageType

Values returns all known values for StorageType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type StudioLifecycleConfigAppType added in v1.15.0

type StudioLifecycleConfigAppType string
const (
	StudioLifecycleConfigAppTypeJupyterServer StudioLifecycleConfigAppType = "JupyterServer"
	StudioLifecycleConfigAppTypeKernelGateway StudioLifecycleConfigAppType = "KernelGateway"
	StudioLifecycleConfigAppTypeJupyterLab    StudioLifecycleConfigAppType = "JupyterLab"
	StudioLifecycleConfigAppTypeCodeEditor    StudioLifecycleConfigAppType = "CodeEditor"
)

Enum values for StudioLifecycleConfigAppType

func (StudioLifecycleConfigAppType) Values added in v1.15.0

Values returns all known values for StudioLifecycleConfigAppType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type StudioLifecycleConfigDetails added in v1.15.0

type StudioLifecycleConfigDetails struct {

	// The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
	CreationTime *time.Time

	// This value is equivalent to CreationTime because Amazon SageMaker Studio
	// Lifecycle Configurations are immutable.
	LastModifiedTime *time.Time

	// The App type to which the Lifecycle Configuration is attached.
	StudioLifecycleConfigAppType StudioLifecycleConfigAppType

	// The Amazon Resource Name (ARN) of the Lifecycle Configuration.
	StudioLifecycleConfigArn *string

	// The name of the Amazon SageMaker Studio Lifecycle Configuration.
	StudioLifecycleConfigName *string
	// contains filtered or unexported fields
}

Details of the Amazon SageMaker Studio Lifecycle Configuration.

type StudioLifecycleConfigSortKey added in v1.15.0

type StudioLifecycleConfigSortKey string
const (
	StudioLifecycleConfigSortKeyCreationTime     StudioLifecycleConfigSortKey = "CreationTime"
	StudioLifecycleConfigSortKeyLastModifiedTime StudioLifecycleConfigSortKey = "LastModifiedTime"
	StudioLifecycleConfigSortKeyName             StudioLifecycleConfigSortKey = "Name"
)

Enum values for StudioLifecycleConfigSortKey

func (StudioLifecycleConfigSortKey) Values added in v1.15.0

Values returns all known values for StudioLifecycleConfigSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type StudioWebPortal added in v1.119.0

type StudioWebPortal string
const (
	StudioWebPortalEnabled  StudioWebPortal = "ENABLED"
	StudioWebPortalDisabled StudioWebPortal = "DISABLED"
)

Enum values for StudioWebPortal

func (StudioWebPortal) Values added in v1.119.0

func (StudioWebPortal) Values() []StudioWebPortal

Values returns all known values for StudioWebPortal. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type SubscribedWorkteam

type SubscribedWorkteam struct {

	// The Amazon Resource Name (ARN) of the vendor that you have subscribed.
	//
	// This member is required.
	WorkteamArn *string

	// Marketplace product listing ID.
	ListingId *string

	// The description of the vendor from the Amazon Marketplace.
	MarketplaceDescription *string

	// The title of the service provided by the vendor in the Amazon Marketplace.
	MarketplaceTitle *string

	// The name of the vendor in the Amazon Marketplace.
	SellerName *string
	// contains filtered or unexported fields
}

Describes a work team of a vendor that does the a labelling job.

type SuggestionQuery

type SuggestionQuery struct {

	// Defines a property name hint. Only property names that begin with the specified
	// hint are included in the response.
	PropertyNameQuery *PropertyNameQuery
	// contains filtered or unexported fields
}

Specified in the GetSearchSuggestions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetSearchSuggestions.html) request. Limits the property names that are included in the response.

type TableFormat added in v1.56.0

type TableFormat string
const (
	TableFormatGlue    TableFormat = "Glue"
	TableFormatIceberg TableFormat = "Iceberg"
)

Enum values for TableFormat

func (TableFormat) Values added in v1.56.0

func (TableFormat) Values() []TableFormat

Values returns all known values for TableFormat. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TabularJobConfig added in v1.85.0

type TabularJobConfig struct {

	// The name of the target variable in supervised learning, usually represented by
	// 'y'.
	//
	// This member is required.
	TargetAttributeName *string

	// The configuration information of how model candidates are generated.
	CandidateGenerationConfig *CandidateGenerationConfig

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// A URL to the Amazon S3 data source containing selected features from the input
	// data source to run an Autopilot job V2. You can input FeatureAttributeNames
	// (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1",
	// "col2", ...] } . You can also specify the data type of the feature (optional) in
	// the format shown below: { "FeatureDataTypes":{"col1":"numeric",
	// "col2":"categorical" ... } } These column keys may not include the target
	// column. In ensembling mode, Autopilot only supports the following data types:
	// numeric , categorical , text , and datetime . In HPO mode, Autopilot can support
	// numeric , categorical , text , datetime , and sequence . If only
	// FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a
	// subset of the column names in the input data. If both FeatureDataTypes and
	// FeatureAttributeNames are provided, then the column keys should be a subset of
	// the column names provided in FeatureAttributeNames . The key name
	// FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are
	// case sensitive and should be a list of strings containing unique values that are
	// a subset of the column names in the input data. The list of columns provided
	// must not include the target column.
	FeatureSpecificationS3Uri *string

	// Generates possible candidates without training the models. A model candidate is
	// a combination of data preprocessors, algorithms, and algorithm parameter
	// settings.
	GenerateCandidateDefinitionsOnly *bool

	// The method that Autopilot uses to train the data. You can either specify the
	// mode manually or let Autopilot choose for you based on the dataset size by
	// selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets
	// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING
	// mode uses a multi-stack ensemble model to predict classification and regression
	// tasks directly from your dataset. This machine learning mode combines several
	// base models to produce an optimal predictive model. It then uses a stacking
	// ensemble method to combine predictions from contributing members. A multi-stack
	// ensemble model can provide better performance over a single model by combining
	// the predictive capabilities of multiple models. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING
	// (HPO) mode uses the best hyperparameters to train the best version of a model.
	// HPO automatically selects an algorithm for the type of problem you want to
	// solve. Then HPO finds the best hyperparameters according to your objective
	// metric. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
	Mode AutoMLMode

	// The type of supervised learning problem available for the model candidates of
	// the AutoML job V2. For more information, see Amazon SageMaker Autopilot problem
	// types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
	// . You must either specify the type of supervised learning problem in ProblemType
	// and provide the AutoMLJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective)
	// metric, or none at all.
	ProblemType ProblemType

	// If specified, this column name indicates which column of the dataset should be
	// treated as sample weights for use by the objective metric during the training,
	// evaluation, and the selection of the best model. This column is not considered
	// as a predictive feature. For more information on Autopilot metrics, see Metrics
	// and validation (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html)
	// . Sample weights should be numeric, non-negative, with larger values indicating
	// which rows are more important than others. Data points that have invalid or no
	// weight value are excluded. Support for sample weights is available in Ensembling (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// mode only.
	SampleWeightAttributeName *string
	// contains filtered or unexported fields
}

The collection of settings used by an AutoML job V2 for the tabular problem type.

type TabularResolvedAttributes added in v1.85.0

type TabularResolvedAttributes struct {

	// The type of supervised learning problem available for the model candidates of
	// the AutoML job V2 (Binary Classification, Multiclass Classification,
	// Regression). For more information, see Amazon SageMaker Autopilot problem types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
	// .
	ProblemType ProblemType
	// contains filtered or unexported fields
}

The resolved attributes specific to the tabular problem type.

type Tag

type Tag struct {

	// The tag key. Tag keys must be unique per resource.
	//
	// This member is required.
	Key *string

	// The tag value.
	//
	// This member is required.
	Value *string
	// contains filtered or unexported fields
}

A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html) . For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html) . For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf) .

type TargetDevice

type TargetDevice string
const (
	TargetDeviceLambda        TargetDevice = "lambda"
	TargetDeviceMlM4          TargetDevice = "ml_m4"
	TargetDeviceMlM5          TargetDevice = "ml_m5"
	TargetDeviceMlC4          TargetDevice = "ml_c4"
	TargetDeviceMlC5          TargetDevice = "ml_c5"
	TargetDeviceMlP2          TargetDevice = "ml_p2"
	TargetDeviceMlP3          TargetDevice = "ml_p3"
	TargetDeviceMlG4dn        TargetDevice = "ml_g4dn"
	TargetDeviceMlInf1        TargetDevice = "ml_inf1"
	TargetDeviceMlInf2        TargetDevice = "ml_inf2"
	TargetDeviceMlTrn1        TargetDevice = "ml_trn1"
	TargetDeviceMlEia2        TargetDevice = "ml_eia2"
	TargetDeviceJetsonTx1     TargetDevice = "jetson_tx1"
	TargetDeviceJetsonTx2     TargetDevice = "jetson_tx2"
	TargetDeviceJetsonNano    TargetDevice = "jetson_nano"
	TargetDeviceJetsonXavier  TargetDevice = "jetson_xavier"
	TargetDeviceRasp3b        TargetDevice = "rasp3b"
	TargetDeviceImx8qm        TargetDevice = "imx8qm"
	TargetDeviceDeeplens      TargetDevice = "deeplens"
	TargetDeviceRk3399        TargetDevice = "rk3399"
	TargetDeviceRk3288        TargetDevice = "rk3288"
	TargetDeviceAisage        TargetDevice = "aisage"
	TargetDeviceSbeC          TargetDevice = "sbe_c"
	TargetDeviceQcs605        TargetDevice = "qcs605"
	TargetDeviceQcs603        TargetDevice = "qcs603"
	TargetDeviceSitaraAm57x   TargetDevice = "sitara_am57x"
	TargetDeviceAmbaCv2       TargetDevice = "amba_cv2"
	TargetDeviceAmbaCv22      TargetDevice = "amba_cv22"
	TargetDeviceAmbaCv25      TargetDevice = "amba_cv25"
	TargetDeviceX86Win32      TargetDevice = "x86_win32"
	TargetDeviceX86Win64      TargetDevice = "x86_win64"
	TargetDeviceCoreml        TargetDevice = "coreml"
	TargetDeviceJacintoTda4vm TargetDevice = "jacinto_tda4vm"
	TargetDeviceImx8mplus     TargetDevice = "imx8mplus"
)

Enum values for TargetDevice

func (TargetDevice) Values added in v0.29.0

func (TargetDevice) Values() []TargetDevice

Values returns all known values for TargetDevice. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TargetPlatform

type TargetPlatform struct {

	// Specifies a target platform architecture.
	//   - X86_64 : 64-bit version of the x86 instruction set.
	//   - X86 : 32-bit version of the x86 instruction set.
	//   - ARM64 : ARMv8 64-bit CPU.
	//   - ARM_EABIHF : ARMv7 32-bit, Hard Float.
	//   - ARM_EABI : ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
	//
	// This member is required.
	Arch TargetPlatformArch

	// Specifies a target platform OS.
	//   - LINUX : Linux-based operating systems.
	//   - ANDROID : Android operating systems. Android API level can be specified
	//   using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions":
	//   {'ANDROID_PLATFORM': 28}
	//
	// This member is required.
	Os TargetPlatformOs

	// Specifies a target platform accelerator (optional).
	//   - NVIDIA : Nvidia graphics processing unit. It also requires gpu-code ,
	//   trt-ver , cuda-ver compiler options
	//   - MALI : ARM Mali graphics processor
	//   - INTEL_GRAPHICS : Integrated Intel graphics
	Accelerator TargetPlatformAccelerator
	// contains filtered or unexported fields
}

Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice .

type TargetPlatformAccelerator

type TargetPlatformAccelerator string
const (
	TargetPlatformAcceleratorIntelGraphics TargetPlatformAccelerator = "INTEL_GRAPHICS"
	TargetPlatformAcceleratorMali          TargetPlatformAccelerator = "MALI"
	TargetPlatformAcceleratorNvidia        TargetPlatformAccelerator = "NVIDIA"
	TargetPlatformAcceleratorNna           TargetPlatformAccelerator = "NNA"
)

Enum values for TargetPlatformAccelerator

func (TargetPlatformAccelerator) Values added in v0.29.0

Values returns all known values for TargetPlatformAccelerator. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TargetPlatformArch

type TargetPlatformArch string
const (
	TargetPlatformArchX8664     TargetPlatformArch = "X86_64"
	TargetPlatformArchX86       TargetPlatformArch = "X86"
	TargetPlatformArchArm64     TargetPlatformArch = "ARM64"
	TargetPlatformArchArmEabi   TargetPlatformArch = "ARM_EABI"
	TargetPlatformArchArmEabihf TargetPlatformArch = "ARM_EABIHF"
)

Enum values for TargetPlatformArch

func (TargetPlatformArch) Values added in v0.29.0

Values returns all known values for TargetPlatformArch. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TargetPlatformOs

type TargetPlatformOs string
const (
	TargetPlatformOsAndroid TargetPlatformOs = "ANDROID"
	TargetPlatformOsLinux   TargetPlatformOs = "LINUX"
)

Enum values for TargetPlatformOs

func (TargetPlatformOs) Values added in v0.29.0

Values returns all known values for TargetPlatformOs. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TargetTrackingScalingPolicyConfiguration added in v1.98.0

type TargetTrackingScalingPolicyConfiguration struct {

	// An object containing information about a metric.
	MetricSpecification MetricSpecification

	// The recommended target value to specify for the metric when creating a scaling
	// policy.
	TargetValue *float64
	// contains filtered or unexported fields
}

A target tracking scaling policy. Includes support for predefined or customized metrics. When using the PutScalingPolicy (https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html) API, this parameter is required when you are creating a policy with the policy type TargetTrackingScaling .

type TensorBoardAppSettings

type TensorBoardAppSettings struct {

	// The default instance type and the Amazon Resource Name (ARN) of the SageMaker
	// image created on the instance.
	DefaultResourceSpec *ResourceSpec
	// contains filtered or unexported fields
}

The TensorBoard app settings.

type TensorBoardOutputConfig

type TensorBoardOutputConfig struct {

	// Path to Amazon S3 storage location for TensorBoard output.
	//
	// This member is required.
	S3OutputPath *string

	// Path to local storage location for tensorBoard output. Defaults to
	// /opt/ml/output/tensorboard .
	LocalPath *string
	// contains filtered or unexported fields
}

Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

type TextClassificationJobConfig added in v1.72.0

type TextClassificationJobConfig struct {

	// The name of the column used to provide the sentences to be classified. It
	// should not be the same as the target column.
	//
	// This member is required.
	ContentColumn *string

	// The name of the column used to provide the class labels. It should not be same
	// as the content column.
	//
	// This member is required.
	TargetLabelColumn *string

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria
	// contains filtered or unexported fields
}

The collection of settings used by an AutoML job V2 for the text classification problem type.

type TextGenerationJobConfig added in v1.113.0

type TextGenerationJobConfig struct {

	// The name of the base model to fine-tune. Autopilot supports fine-tuning a
	// variety of large language models. For information on the list of supported
	// models, see Text generation models supporting fine-tuning in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-models.html#autopilot-llms-finetuning-supported-llms)
	// . If no BaseModelName is provided, the default model used is Falcon7BInstruct.
	BaseModelName *string

	// How long a fine-tuning job is allowed to run. For TextGenerationJobConfig
	// problem types, the MaxRuntimePerTrainingJobInSeconds attribute of
	// AutoMLJobCompletionCriteria defaults to 72h (259200s).
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The hyperparameters used to configure and optimize the learning process of the
	// base model. You can set any combination of the following hyperparameters for all
	// base models. For more information on each supported hyperparameter, see
	// Optimize the learning process of your text generation models with
	// hyperparameters (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-set-hyperparameters.html)
	// .
	//   - "epochCount" : The number of times the model goes through the entire
	//   training dataset. Its value should be a string containing an integer value
	//   within the range of "1" to "10".
	//   - "batchSize" : The number of data samples used in each iteration of training.
	//   Its value should be a string containing an integer value within the range of "1"
	//   to "64".
	//   - "learningRate" : The step size at which a model's parameters are updated
	//   during training. Its value should be a string containing a floating-point value
	//   within the range of "0" to "1".
	//   - "learningRateWarmupSteps" : The number of training steps during which the
	//   learning rate gradually increases before reaching its target or maximum value.
	//   Its value should be a string containing an integer value within the range of "0"
	//   to "250".
	// Here is an example where all four hyperparameters are configured. {
	// "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
	// "learningRateWarmupSteps": "10" }
	TextGenerationHyperParameters map[string]string
	// contains filtered or unexported fields
}

The collection of settings used by an AutoML job V2 for the text generation problem type. The text generation models that support fine-tuning in Autopilot are currently accessible exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the full list of its supported Regions (https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html) .

type TextGenerationResolvedAttributes added in v1.113.0

type TextGenerationResolvedAttributes struct {

	// The name of the base model to fine-tune.
	BaseModelName *string
	// contains filtered or unexported fields
}

The resolved attributes specific to the text generation problem type.

type TimeSeriesConfig added in v1.89.0

type TimeSeriesConfig struct {

	// The name of the column that represents the set of item identifiers for which
	// you want to predict the target value.
	//
	// This member is required.
	ItemIdentifierAttributeName *string

	// The name of the column representing the target variable that you want to
	// predict for each item in your dataset. The data type of the target variable must
	// be numerical.
	//
	// This member is required.
	TargetAttributeName *string

	// The name of the column indicating a point in time at which the target value of
	// a given item is recorded.
	//
	// This member is required.
	TimestampAttributeName *string

	// A set of columns names that can be grouped with the item identifier column to
	// create a composite key for which a target value is predicted.
	GroupingAttributeNames []string
	// contains filtered or unexported fields
}

The collection of components that defines the time-series.

type TimeSeriesForecastingJobConfig added in v1.89.0

type TimeSeriesForecastingJobConfig struct {

	// The frequency of predictions in a forecast. Valid intervals are an integer
	// followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute).
	// For example, 1D indicates every day and 15min indicates every 15 minutes. The
	// value of a frequency must not overlap with the next larger frequency. For
	// example, you must use a frequency of 1H instead of 60min . The valid values for
	// each frequency are the following:
	//   - Minute - 1-59
	//   - Hour - 1-23
	//   - Day - 1-6
	//   - Week - 1-4
	//   - Month - 1-11
	//   - Year - 1
	//
	// This member is required.
	ForecastFrequency *string

	// The number of time-steps that the model predicts. The forecast horizon is also
	// called the prediction length. The maximum forecast horizon is the lesser of 500
	// time-steps or 1/4 of the time-steps in the dataset.
	//
	// This member is required.
	ForecastHorizon *int32

	// The collection of components that defines the time-series.
	//
	// This member is required.
	TimeSeriesConfig *TimeSeriesConfig

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// A URL to the Amazon S3 data source containing additional selected features that
	// complement the target, itemID, timestamp, and grouped columns set in
	// TimeSeriesConfig . When not provided, the AutoML job V2 includes all the columns
	// from the original dataset that are not already declared in TimeSeriesConfig . If
	// provided, the AutoML job V2 only considers these additional columns as a
	// complement to the ones declared in TimeSeriesConfig . You can input
	// FeatureAttributeNames (optional) in JSON format as shown below: {
	// "FeatureAttributeNames":["col1", "col2", ...] } . You can also specify the data
	// type of the feature (optional) in the format shown below: {
	// "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } } Autopilot
	// supports the following data types: numeric , categorical , text , and datetime .
	// These column keys must not include any column set in TimeSeriesConfig .
	FeatureSpecificationS3Uri *string

	// The quantiles used to train the model for forecasts at a specified quantile.
	// You can specify quantiles from 0.01 (p1) to 0.99 (p99), by increments of 0.01
	// or higher. Up to five forecast quantiles can be specified. When
	// ForecastQuantiles is not provided, the AutoML job uses the quantiles p10, p50,
	// and p90 as default.
	ForecastQuantiles []string

	// The collection of holiday featurization attributes used to incorporate national
	// holiday information into your forecasting model.
	HolidayConfig []HolidayConfigAttributes

	// The transformations modifying specific attributes of the time-series, such as
	// filling strategies for missing values.
	Transformations *TimeSeriesTransformations
	// contains filtered or unexported fields
}

The collection of settings used by an AutoML job V2 for the time-series forecasting problem type.

type TimeSeriesForecastingSettings added in v1.44.0

type TimeSeriesForecastingSettings struct {

	// The IAM role that Canvas passes to Amazon Forecast for time series forecasting.
	// By default, Canvas uses the execution role specified in the UserProfile that
	// launches the Canvas application. If an execution role is not specified in the
	// UserProfile , Canvas uses the execution role specified in the Domain that owns
	// the UserProfile . To allow time series forecasting, this IAM role should have
	// the AmazonSageMakerCanvasForecastAccess (https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess)
	// policy attached and forecast.amazonaws.com added in the trust relationship as a
	// service principal.
	AmazonForecastRoleArn *string

	// Describes whether time series forecasting is enabled or disabled in the Canvas
	// application.
	Status FeatureStatus
	// contains filtered or unexported fields
}

Time series forecast settings for the SageMaker Canvas application.

type TimeSeriesTransformations added in v1.89.0

type TimeSeriesTransformations struct {

	// A key value pair defining the aggregation method for a column, where the key is
	// the column name and the value is the aggregation method. The supported
	// aggregation methods are sum (default), avg , first , min , max . Aggregation is
	// only supported for the target column.
	Aggregation map[string]AggregationTransformationValue

	// A key value pair defining the filling method for a column, where the key is the
	// column name and the value is an object which defines the filling logic. You can
	// specify multiple filling methods for a single column. The supported filling
	// methods and their corresponding options are:
	//   - frontfill : none (Supported only for target column)
	//   - middlefill : zero , value , median , mean , min , max
	//   - backfill : zero , value , median , mean , min , max
	//   - futurefill : zero , value , median , mean , min , max
	// To set a filling method to a specific value, set the fill parameter to the
	// chosen filling method value (for example "backfill" : "value" ), and define the
	// filling value in an additional parameter prefixed with "_value". For example, to
	// set backfill to a value of 2 , you must include two parameters: "backfill":
	// "value" and "backfill_value":"2" .
	Filling map[string]map[string]string
	// contains filtered or unexported fields
}

Transformations allowed on the dataset. Supported transformations are Filling and Aggregation . Filling specifies how to add values to missing values in the dataset. Aggregation defines how to aggregate data that does not align with forecast frequency.

type TrafficPattern added in v1.20.0

type TrafficPattern struct {

	// Defines the phases traffic specification.
	Phases []Phase

	// Defines the stairs traffic pattern.
	Stairs *Stairs

	// Defines the traffic patterns. Choose either PHASES or STAIRS .
	TrafficType TrafficType
	// contains filtered or unexported fields
}

Defines the traffic pattern of the load test.

type TrafficRoutingConfig added in v0.31.0

type TrafficRoutingConfig struct {

	// Traffic routing strategy type.
	//   - ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
	//   - CANARY : Endpoint traffic shifts to the new fleet in two steps. The first
	//   step is the canary, which is a small portion of the traffic. The second step is
	//   the remainder of the traffic.
	//   - LINEAR : Endpoint traffic shifts to the new fleet in n steps of a
	//   configurable size.
	//
	// This member is required.
	Type TrafficRoutingConfigType

	// The waiting time (in seconds) between incremental steps to turn on traffic on
	// the new endpoint fleet.
	//
	// This member is required.
	WaitIntervalInSeconds *int32

	// Batch size for the first step to turn on traffic on the new endpoint fleet.
	// Value must be less than or equal to 50% of the variant's total instance count.
	CanarySize *CapacitySize

	// Batch size for each step to turn on traffic on the new endpoint fleet. Value
	// must be 10-50% of the variant's total instance count.
	LinearStepSize *CapacitySize
	// contains filtered or unexported fields
}

Defines the traffic routing strategy during an endpoint deployment to shift traffic from the old fleet to the new fleet.

type TrafficRoutingConfigType added in v0.31.0

type TrafficRoutingConfigType string
const (
	TrafficRoutingConfigTypeAllAtOnce TrafficRoutingConfigType = "ALL_AT_ONCE"
	TrafficRoutingConfigTypeCanary    TrafficRoutingConfigType = "CANARY"
	TrafficRoutingConfigTypeLinear    TrafficRoutingConfigType = "LINEAR"
)

Enum values for TrafficRoutingConfigType

func (TrafficRoutingConfigType) Values added in v0.31.0

Values returns all known values for TrafficRoutingConfigType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrafficType added in v1.20.0

type TrafficType string
const (
	TrafficTypePhases TrafficType = "PHASES"
	TrafficTypeStairs TrafficType = "STAIRS"
)

Enum values for TrafficType

func (TrafficType) Values added in v1.20.0

func (TrafficType) Values() []TrafficType

Values returns all known values for TrafficType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingImageConfig added in v1.66.0

type TrainingImageConfig struct {

	// The method that your training job will use to gain access to the images in your
	// private Docker registry. For access to an image in a private Docker registry,
	// set to Vpc .
	//
	// This member is required.
	TrainingRepositoryAccessMode TrainingRepositoryAccessMode

	// An object containing authentication information for a private Docker registry
	// containing your training images.
	TrainingRepositoryAuthConfig *TrainingRepositoryAuthConfig
	// contains filtered or unexported fields
}

The configuration to use an image from a private Docker registry for a training job.

type TrainingInputMode

type TrainingInputMode string
const (
	TrainingInputModePipe     TrainingInputMode = "Pipe"
	TrainingInputModeFile     TrainingInputMode = "File"
	TrainingInputModeFastfile TrainingInputMode = "FastFile"
)

Enum values for TrainingInputMode

func (TrainingInputMode) Values added in v0.29.0

Values returns all known values for TrainingInputMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingInstanceType

type TrainingInstanceType string
const (
	TrainingInstanceTypeMlM4Xlarge      TrainingInstanceType = "ml.m4.xlarge"
	TrainingInstanceTypeMlM42xlarge     TrainingInstanceType = "ml.m4.2xlarge"
	TrainingInstanceTypeMlM44xlarge     TrainingInstanceType = "ml.m4.4xlarge"
	TrainingInstanceTypeMlM410xlarge    TrainingInstanceType = "ml.m4.10xlarge"
	TrainingInstanceTypeMlM416xlarge    TrainingInstanceType = "ml.m4.16xlarge"
	TrainingInstanceTypeMlG4dnXlarge    TrainingInstanceType = "ml.g4dn.xlarge"
	TrainingInstanceTypeMlG4dn2xlarge   TrainingInstanceType = "ml.g4dn.2xlarge"
	TrainingInstanceTypeMlG4dn4xlarge   TrainingInstanceType = "ml.g4dn.4xlarge"
	TrainingInstanceTypeMlG4dn8xlarge   TrainingInstanceType = "ml.g4dn.8xlarge"
	TrainingInstanceTypeMlG4dn12xlarge  TrainingInstanceType = "ml.g4dn.12xlarge"
	TrainingInstanceTypeMlG4dn16xlarge  TrainingInstanceType = "ml.g4dn.16xlarge"
	TrainingInstanceTypeMlM5Large       TrainingInstanceType = "ml.m5.large"
	TrainingInstanceTypeMlM5Xlarge      TrainingInstanceType = "ml.m5.xlarge"
	TrainingInstanceTypeMlM52xlarge     TrainingInstanceType = "ml.m5.2xlarge"
	TrainingInstanceTypeMlM54xlarge     TrainingInstanceType = "ml.m5.4xlarge"
	TrainingInstanceTypeMlM512xlarge    TrainingInstanceType = "ml.m5.12xlarge"
	TrainingInstanceTypeMlM524xlarge    TrainingInstanceType = "ml.m5.24xlarge"
	TrainingInstanceTypeMlC4Xlarge      TrainingInstanceType = "ml.c4.xlarge"
	TrainingInstanceTypeMlC42xlarge     TrainingInstanceType = "ml.c4.2xlarge"
	TrainingInstanceTypeMlC44xlarge     TrainingInstanceType = "ml.c4.4xlarge"
	TrainingInstanceTypeMlC48xlarge     TrainingInstanceType = "ml.c4.8xlarge"
	TrainingInstanceTypeMlP2Xlarge      TrainingInstanceType = "ml.p2.xlarge"
	TrainingInstanceTypeMlP28xlarge     TrainingInstanceType = "ml.p2.8xlarge"
	TrainingInstanceTypeMlP216xlarge    TrainingInstanceType = "ml.p2.16xlarge"
	TrainingInstanceTypeMlP32xlarge     TrainingInstanceType = "ml.p3.2xlarge"
	TrainingInstanceTypeMlP38xlarge     TrainingInstanceType = "ml.p3.8xlarge"
	TrainingInstanceTypeMlP316xlarge    TrainingInstanceType = "ml.p3.16xlarge"
	TrainingInstanceTypeMlP3dn24xlarge  TrainingInstanceType = "ml.p3dn.24xlarge"
	TrainingInstanceTypeMlP4d24xlarge   TrainingInstanceType = "ml.p4d.24xlarge"
	TrainingInstanceTypeMlC5Xlarge      TrainingInstanceType = "ml.c5.xlarge"
	TrainingInstanceTypeMlC52xlarge     TrainingInstanceType = "ml.c5.2xlarge"
	TrainingInstanceTypeMlC54xlarge     TrainingInstanceType = "ml.c5.4xlarge"
	TrainingInstanceTypeMlC59xlarge     TrainingInstanceType = "ml.c5.9xlarge"
	TrainingInstanceTypeMlC518xlarge    TrainingInstanceType = "ml.c5.18xlarge"
	TrainingInstanceTypeMlC5nXlarge     TrainingInstanceType = "ml.c5n.xlarge"
	TrainingInstanceTypeMlC5n2xlarge    TrainingInstanceType = "ml.c5n.2xlarge"
	TrainingInstanceTypeMlC5n4xlarge    TrainingInstanceType = "ml.c5n.4xlarge"
	TrainingInstanceTypeMlC5n9xlarge    TrainingInstanceType = "ml.c5n.9xlarge"
	TrainingInstanceTypeMlC5n18xlarge   TrainingInstanceType = "ml.c5n.18xlarge"
	TrainingInstanceTypeMlG5Xlarge      TrainingInstanceType = "ml.g5.xlarge"
	TrainingInstanceTypeMlG52xlarge     TrainingInstanceType = "ml.g5.2xlarge"
	TrainingInstanceTypeMlG54xlarge     TrainingInstanceType = "ml.g5.4xlarge"
	TrainingInstanceTypeMlG58xlarge     TrainingInstanceType = "ml.g5.8xlarge"
	TrainingInstanceTypeMlG516xlarge    TrainingInstanceType = "ml.g5.16xlarge"
	TrainingInstanceTypeMlG512xlarge    TrainingInstanceType = "ml.g5.12xlarge"
	TrainingInstanceTypeMlG524xlarge    TrainingInstanceType = "ml.g5.24xlarge"
	TrainingInstanceTypeMlG548xlarge    TrainingInstanceType = "ml.g5.48xlarge"
	TrainingInstanceTypeMlTrn12xlarge   TrainingInstanceType = "ml.trn1.2xlarge"
	TrainingInstanceTypeMlTrn132xlarge  TrainingInstanceType = "ml.trn1.32xlarge"
	TrainingInstanceTypeMlTrn1n32xlarge TrainingInstanceType = "ml.trn1n.32xlarge"
	TrainingInstanceTypeMlP548xlarge    TrainingInstanceType = "ml.p5.48xlarge"
)

Enum values for TrainingInstanceType

func (TrainingInstanceType) Values added in v0.29.0

Values returns all known values for TrainingInstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingJob

type TrainingJob struct {

	// Information about the algorithm used for training, and algorithm metadata.
	AlgorithmSpecification *AlgorithmSpecification

	// The Amazon Resource Name (ARN) of the job.
	AutoMLJobArn *string

	// The billable time in seconds.
	BillableTimeInSeconds *int32

	// Contains information about the output location for managed spot training
	// checkpoint data.
	CheckpointConfig *CheckpointConfig

	// A timestamp that indicates when the training job was created.
	CreationTime *time.Time

	// Configuration information for the Amazon SageMaker Debugger hook parameters,
	// metric and tensor collections, and storage paths. To learn more about how to
	// configure the DebugHookConfig parameter, see Use the SageMaker and Debugger
	// Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	DebugHookConfig *DebugHookConfig

	// Information about the debug rule configuration.
	DebugRuleConfigurations []DebugRuleConfiguration

	// Information about the evaluation status of the rules for the training job.
	DebugRuleEvaluationStatuses []DebugRuleEvaluationStatus

	// To encrypt all communications between ML compute instances in distributed
	// training, choose True . Encryption provides greater security for distributed
	// training, but training might take longer. How long it takes depends on the
	// amount of communication between compute instances, especially if you use a deep
	// learning algorithm in distributed training.
	EnableInterContainerTrafficEncryption *bool

	// When true, enables managed spot training using Amazon EC2 Spot instances to run
	// training jobs instead of on-demand instances. For more information, see Managed
	// Spot Training (https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html)
	// .
	EnableManagedSpotTraining *bool

	// If the TrainingJob was created with network isolation, the value is set to true
	// . If network isolation is enabled, nodes can't communicate beyond the VPC they
	// run in.
	EnableNetworkIsolation *bool

	// The environment variables to set in the Docker container.
	Environment map[string]string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
	//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
	ExperimentConfig *ExperimentConfig

	// If the training job failed, the reason it failed.
	FailureReason *string

	// A list of final metric values that are set when the training job completes.
	// Used only if the training job was configured to use metrics.
	FinalMetricDataList []MetricData

	// Algorithm-specific parameters.
	HyperParameters map[string]string

	// An array of Channel objects that describes each data input channel. Your input
	// must be in the same Amazon Web Services region as your training job.
	InputDataConfig []Channel

	// The Amazon Resource Name (ARN) of the labeling job.
	LabelingJobArn *string

	// A timestamp that indicates when the status of the training job was last
	// modified.
	LastModifiedTime *time.Time

	// Information about the Amazon S3 location that is configured for storing model
	// artifacts.
	ModelArtifacts *ModelArtifacts

	// The S3 path where model artifacts that you configured when creating the job are
	// stored. SageMaker creates subfolders for model artifacts.
	OutputDataConfig *OutputDataConfig

	// Configuration information for Amazon SageMaker Debugger system monitoring,
	// framework profiling, and storage paths.
	ProfilerConfig *ProfilerConfig

	// Resources, including ML compute instances and ML storage volumes, that are
	// configured for model training.
	ResourceConfig *ResourceConfig

	// The number of times to retry the job when the job fails due to an
	// InternalServerError .
	RetryStrategy *RetryStrategy

	// The Amazon Web Services Identity and Access Management (IAM) role configured
	// for the training job.
	RoleArn *string

	// Provides detailed information about the state of the training job. For detailed
	// information about the secondary status of the training job, see StatusMessage
	// under SecondaryStatusTransition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html)
	// . SageMaker provides primary statuses and secondary statuses that apply to each
	// of them: InProgress
	//   - Starting - Starting the training job.
	//   - Downloading - An optional stage for algorithms that support File training
	//   input mode. It indicates that data is being downloaded to the ML storage
	//   volumes.
	//   - Training - Training is in progress.
	//   - Uploading - Training is complete and the model artifacts are being uploaded
	//   to the S3 location.
	// Completed
	//   - Completed - The training job has completed.
	// Failed
	//   - Failed - The training job has failed. The reason for the failure is returned
	//   in the FailureReason field of DescribeTrainingJobResponse .
	// Stopped
	//   - MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed
	//   runtime.
	//   - Stopped - The training job has stopped.
	// Stopping
	//   - Stopping - Stopping the training job.
	// Valid values for SecondaryStatus are subject to change. We no longer support
	// the following secondary statuses:
	//   - LaunchingMLInstances
	//   - PreparingTrainingStack
	//   - DownloadingTrainingImage
	SecondaryStatus SecondaryStatus

	// A history of all of the secondary statuses that the training job has
	// transitioned through.
	SecondaryStatusTransitions []SecondaryStatusTransition

	// Specifies a limit to how long a model training job can run. It also specifies
	// how long a managed Spot training job has to complete. When the job reaches the
	// time limit, SageMaker ends the training job. Use this API to cap model training
	// costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
	// delays job termination for 120 seconds. Algorithms can use this 120-second
	// window to save the model artifacts, so the results of training are not lost.
	StoppingCondition *StoppingCondition

	// An array of key-value pairs. You can use tags to categorize your Amazon Web
	// Services resources in different ways, for example, by purpose, owner, or
	// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// .
	Tags []Tag

	// Configuration of storage locations for the Amazon SageMaker Debugger
	// TensorBoard output data.
	TensorBoardOutputConfig *TensorBoardOutputConfig

	// Indicates the time when the training job ends on training instances. You are
	// billed for the time interval between the value of TrainingStartTime and this
	// time. For successful jobs and stopped jobs, this is the time after model
	// artifacts are uploaded. For failed jobs, this is the time when SageMaker detects
	// a job failure.
	TrainingEndTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	TrainingJobArn *string

	// The name of the training job.
	TrainingJobName *string

	// The status of the training job. Training job statuses are:
	//   - InProgress - The training is in progress.
	//   - Completed - The training job has completed.
	//   - Failed - The training job has failed. To see the reason for the failure, see
	//   the FailureReason field in the response to a DescribeTrainingJobResponse call.
	//   - Stopping - The training job is stopping.
	//   - Stopped - The training job has stopped.
	// For more detailed information, see SecondaryStatus .
	TrainingJobStatus TrainingJobStatus

	// Indicates the time when the training job starts on training instances. You are
	// billed for the time interval between this time and the value of TrainingEndTime
	// . The start time in CloudWatch Logs might be later than this time. The
	// difference is due to the time it takes to download the training data and to the
	// size of the training container.
	TrainingStartTime *time.Time

	// The training time in seconds.
	TrainingTimeInSeconds *int32

	// The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if
	// the training job was launched by a hyperparameter tuning job.
	TuningJobArn *string

	// A VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
	// object that specifies the VPC that this training job has access to. For more
	// information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html)
	// .
	VpcConfig *VpcConfig
	// contains filtered or unexported fields
}

Contains information about a training job.

type TrainingJobDefinition

type TrainingJobDefinition struct {

	// An array of Channel objects, each of which specifies an input source.
	//
	// This member is required.
	InputDataConfig []Channel

	// the path to the S3 bucket where you want to store model artifacts. SageMaker
	// creates subfolders for the artifacts.
	//
	// This member is required.
	OutputDataConfig *OutputDataConfig

	// The resources, including the ML compute instances and ML storage volumes, to
	// use for model training.
	//
	// This member is required.
	ResourceConfig *ResourceConfig

	// Specifies a limit to how long a model training job can run. It also specifies
	// how long a managed Spot training job has to complete. When the job reaches the
	// time limit, SageMaker ends the training job. Use this API to cap model training
	// costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
	// delays job termination for 120 seconds. Algorithms can use this 120-second
	// window to save the model artifacts.
	//
	// This member is required.
	StoppingCondition *StoppingCondition

	// The training input mode that the algorithm supports. For more information about
	// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
	// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
	// directly from Amazon S3 to the container. File mode If an algorithm supports
	// File mode, SageMaker downloads the training data from S3 to the provisioned ML
	// storage volume, and mounts the directory to the Docker volume for the training
	// container. You must provision the ML storage volume with sufficient capacity to
	// accommodate the data downloaded from S3. In addition to the training data, the
	// ML storage volume also stores the output model. The algorithm container uses the
	// ML storage volume to also store intermediate information, if any. For
	// distributed algorithms, training data is distributed uniformly. Your training
	// duration is predictable if the input data objects sizes are approximately the
	// same. SageMaker does not split the files any further for model training. If the
	// object sizes are skewed, training won't be optimal as the data distribution is
	// also skewed when one host in a training cluster is overloaded, thus becoming a
	// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
	// SageMaker streams data directly from S3 to the container with no code changes,
	// and provides file system access to the data. Users can author their training
	// script to interact with these files as if they were stored on disk. FastFile
	// mode works best when the data is read sequentially. Augmented manifest files
	// aren't supported. The startup time is lower when there are fewer files in the S3
	// bucket provided.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The hyperparameters used for the training job.
	HyperParameters map[string]string
	// contains filtered or unexported fields
}

Defines the input needed to run a training job using the algorithm.

type TrainingJobEarlyStoppingType

type TrainingJobEarlyStoppingType string
const (
	TrainingJobEarlyStoppingTypeOff  TrainingJobEarlyStoppingType = "Off"
	TrainingJobEarlyStoppingTypeAuto TrainingJobEarlyStoppingType = "Auto"
)

Enum values for TrainingJobEarlyStoppingType

func (TrainingJobEarlyStoppingType) Values added in v0.29.0

Values returns all known values for TrainingJobEarlyStoppingType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingJobSortByOptions

type TrainingJobSortByOptions string
const (
	TrainingJobSortByOptionsName                      TrainingJobSortByOptions = "Name"
	TrainingJobSortByOptionsCreationTime              TrainingJobSortByOptions = "CreationTime"
	TrainingJobSortByOptionsStatus                    TrainingJobSortByOptions = "Status"
	TrainingJobSortByOptionsFinalObjectiveMetricValue TrainingJobSortByOptions = "FinalObjectiveMetricValue"
)

Enum values for TrainingJobSortByOptions

func (TrainingJobSortByOptions) Values added in v0.29.0

Values returns all known values for TrainingJobSortByOptions. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingJobStatus

type TrainingJobStatus string
const (
	TrainingJobStatusInProgress TrainingJobStatus = "InProgress"
	TrainingJobStatusCompleted  TrainingJobStatus = "Completed"
	TrainingJobStatusFailed     TrainingJobStatus = "Failed"
	TrainingJobStatusStopping   TrainingJobStatus = "Stopping"
	TrainingJobStatusStopped    TrainingJobStatus = "Stopped"
)

Enum values for TrainingJobStatus

func (TrainingJobStatus) Values added in v0.29.0

Values returns all known values for TrainingJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingJobStatusCounters

type TrainingJobStatusCounters struct {

	// The number of completed training jobs launched by the hyperparameter tuning job.
	Completed *int32

	// The number of in-progress training jobs launched by a hyperparameter tuning job.
	InProgress *int32

	// The number of training jobs that failed and can't be retried. A failed training
	// job can't be retried if it failed because a client error occurred.
	NonRetryableError *int32

	// The number of training jobs that failed, but can be retried. A failed training
	// job can be retried only if it failed because an internal service error occurred.
	RetryableError *int32

	// The number of training jobs launched by a hyperparameter tuning job that were
	// manually stopped.
	Stopped *int32
	// contains filtered or unexported fields
}

The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.

type TrainingJobStepMetadata added in v0.31.0

type TrainingJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the training job that was run by this step
	// execution.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for a training job step.

type TrainingJobSummary

type TrainingJobSummary struct {

	// A timestamp that shows when the training job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	//
	// This member is required.
	TrainingJobArn *string

	// The name of the training job that you want a summary for.
	//
	// This member is required.
	TrainingJobName *string

	// The status of the training job.
	//
	// This member is required.
	TrainingJobStatus TrainingJobStatus

	// Timestamp when the training job was last modified.
	LastModifiedTime *time.Time

	// A timestamp that shows when the training job ended. This field is set only if
	// the training job has one of the terminal statuses ( Completed , Failed , or
	// Stopped ).
	TrainingEndTime *time.Time

	// The status of the warm pool associated with the training job.
	WarmPoolStatus *WarmPoolStatus
	// contains filtered or unexported fields
}

Provides summary information about a training job.

type TrainingRepositoryAccessMode added in v1.66.0

type TrainingRepositoryAccessMode string
const (
	TrainingRepositoryAccessModePlatform TrainingRepositoryAccessMode = "Platform"
	TrainingRepositoryAccessModeVpc      TrainingRepositoryAccessMode = "Vpc"
)

Enum values for TrainingRepositoryAccessMode

func (TrainingRepositoryAccessMode) Values added in v1.66.0

Values returns all known values for TrainingRepositoryAccessMode. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrainingRepositoryAuthConfig added in v1.66.0

type TrainingRepositoryAuthConfig struct {

	// The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function used
	// to give SageMaker access credentials to your private Docker registry.
	//
	// This member is required.
	TrainingRepositoryCredentialsProviderArn *string
	// contains filtered or unexported fields
}

An object containing authentication information for a private Docker registry.

type TrainingSpecification

type TrainingSpecification struct {

	// A list of the instance types that this algorithm can use for training.
	//
	// This member is required.
	SupportedTrainingInstanceTypes []TrainingInstanceType

	// A list of ChannelSpecification objects, which specify the input sources to be
	// used by the algorithm.
	//
	// This member is required.
	TrainingChannels []ChannelSpecification

	// The Amazon ECR registry path of the Docker image that contains the training
	// algorithm.
	//
	// This member is required.
	TrainingImage *string

	// The additional data source used during the training job.
	AdditionalS3DataSource *AdditionalS3DataSource

	// A list of MetricDefinition objects, which are used for parsing metrics
	// generated by the algorithm.
	MetricDefinitions []MetricDefinition

	// A list of the HyperParameterSpecification objects, that define the supported
	// hyperparameters. This is required if the algorithm supports automatic model
	// tuning.>
	SupportedHyperParameters []HyperParameterSpecification

	// A list of the metrics that the algorithm emits that can be used as the
	// objective metric in a hyperparameter tuning job.
	SupportedTuningJobObjectiveMetrics []HyperParameterTuningJobObjective

	// Indicates whether the algorithm supports distributed training. If set to false,
	// buyers can't request more than one instance during training.
	SupportsDistributedTraining *bool

	// An MD5 hash of the training algorithm that identifies the Docker image used for
	// training.
	TrainingImageDigest *string
	// contains filtered or unexported fields
}

Defines how the algorithm is used for a training job.

type TransformDataSource

type TransformDataSource struct {

	// The S3 location of the data source that is associated with a channel.
	//
	// This member is required.
	S3DataSource *TransformS3DataSource
	// contains filtered or unexported fields
}

Describes the location of the channel data.

type TransformInput

type TransformInput struct {

	// Describes the location of the channel data, which is, the S3 location of the
	// input data that the model can consume.
	//
	// This member is required.
	DataSource *TransformDataSource

	// If your transform data is compressed, specify the compression type. Amazon
	// SageMaker automatically decompresses the data for the transform job accordingly.
	// The default value is None .
	CompressionType CompressionType

	// The multipurpose internet mail extension (MIME) type of the data. Amazon
	// SageMaker uses the MIME type with each http call to transfer data to the
	// transform job.
	ContentType *string

	// The method to use to split the transform job's data files into smaller batches.
	// Splitting is necessary when the total size of each object is too large to fit in
	// a single request. You can also use data splitting to improve performance by
	// processing multiple concurrent mini-batches. The default value for SplitType is
	// None , which indicates that input data files are not split, and request payloads
	// contain the entire contents of an input object. Set the value of this parameter
	// to Line to split records on a newline character boundary. SplitType also
	// supports a number of record-oriented binary data formats. Currently, the
	// supported record formats are:
	//   - RecordIO
	//   - TFRecord
	// When splitting is enabled, the size of a mini-batch depends on the values of
	// the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy
	// is MultiRecord , Amazon SageMaker sends the maximum number of records in each
	// request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is
	// SingleRecord , Amazon SageMaker sends individual records in each request. Some
	// data formats represent a record as a binary payload wrapped with extra padding
	// bytes. When splitting is applied to a binary data format, padding is removed if
	// the value of BatchStrategy is set to SingleRecord . Padding is not removed if
	// the value of BatchStrategy is set to MultiRecord . For more information about
	// RecordIO , see Create a Dataset Using RecordIO (https://mxnet.apache.org/api/faq/recordio)
	// in the MXNet documentation. For more information about TFRecord , see Consuming
	// TFRecord data (https://www.tensorflow.org/guide/data#consuming_tfrecord_data) in
	// the TensorFlow documentation.
	SplitType SplitType
	// contains filtered or unexported fields
}

Describes the input source of a transform job and the way the transform job consumes it.

type TransformInstanceType

type TransformInstanceType string
const (
	TransformInstanceTypeMlM4Xlarge     TransformInstanceType = "ml.m4.xlarge"
	TransformInstanceTypeMlM42xlarge    TransformInstanceType = "ml.m4.2xlarge"
	TransformInstanceTypeMlM44xlarge    TransformInstanceType = "ml.m4.4xlarge"
	TransformInstanceTypeMlM410xlarge   TransformInstanceType = "ml.m4.10xlarge"
	TransformInstanceTypeMlM416xlarge   TransformInstanceType = "ml.m4.16xlarge"
	TransformInstanceTypeMlC4Xlarge     TransformInstanceType = "ml.c4.xlarge"
	TransformInstanceTypeMlC42xlarge    TransformInstanceType = "ml.c4.2xlarge"
	TransformInstanceTypeMlC44xlarge    TransformInstanceType = "ml.c4.4xlarge"
	TransformInstanceTypeMlC48xlarge    TransformInstanceType = "ml.c4.8xlarge"
	TransformInstanceTypeMlP2Xlarge     TransformInstanceType = "ml.p2.xlarge"
	TransformInstanceTypeMlP28xlarge    TransformInstanceType = "ml.p2.8xlarge"
	TransformInstanceTypeMlP216xlarge   TransformInstanceType = "ml.p2.16xlarge"
	TransformInstanceTypeMlP32xlarge    TransformInstanceType = "ml.p3.2xlarge"
	TransformInstanceTypeMlP38xlarge    TransformInstanceType = "ml.p3.8xlarge"
	TransformInstanceTypeMlP316xlarge   TransformInstanceType = "ml.p3.16xlarge"
	TransformInstanceTypeMlC5Xlarge     TransformInstanceType = "ml.c5.xlarge"
	TransformInstanceTypeMlC52xlarge    TransformInstanceType = "ml.c5.2xlarge"
	TransformInstanceTypeMlC54xlarge    TransformInstanceType = "ml.c5.4xlarge"
	TransformInstanceTypeMlC59xlarge    TransformInstanceType = "ml.c5.9xlarge"
	TransformInstanceTypeMlC518xlarge   TransformInstanceType = "ml.c5.18xlarge"
	TransformInstanceTypeMlM5Large      TransformInstanceType = "ml.m5.large"
	TransformInstanceTypeMlM5Xlarge     TransformInstanceType = "ml.m5.xlarge"
	TransformInstanceTypeMlM52xlarge    TransformInstanceType = "ml.m5.2xlarge"
	TransformInstanceTypeMlM54xlarge    TransformInstanceType = "ml.m5.4xlarge"
	TransformInstanceTypeMlM512xlarge   TransformInstanceType = "ml.m5.12xlarge"
	TransformInstanceTypeMlM524xlarge   TransformInstanceType = "ml.m5.24xlarge"
	TransformInstanceTypeMlG4dnXlarge   TransformInstanceType = "ml.g4dn.xlarge"
	TransformInstanceTypeMlG4dn2xlarge  TransformInstanceType = "ml.g4dn.2xlarge"
	TransformInstanceTypeMlG4dn4xlarge  TransformInstanceType = "ml.g4dn.4xlarge"
	TransformInstanceTypeMlG4dn8xlarge  TransformInstanceType = "ml.g4dn.8xlarge"
	TransformInstanceTypeMlG4dn12xlarge TransformInstanceType = "ml.g4dn.12xlarge"
	TransformInstanceTypeMlG4dn16xlarge TransformInstanceType = "ml.g4dn.16xlarge"
)

Enum values for TransformInstanceType

func (TransformInstanceType) Values added in v0.29.0

Values returns all known values for TransformInstanceType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TransformJob

type TransformJob struct {

	// The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
	AutoMLJobArn *string

	// Specifies the number of records to include in a mini-batch for an HTTP
	// inference request. A record is a single unit of input data that inference can be
	// made on. For example, a single line in a CSV file is a record.
	BatchStrategy BatchStrategy

	// A timestamp that shows when the transform Job was created.
	CreationTime *time.Time

	// Configuration to control how SageMaker captures inference data for batch
	// transform jobs.
	DataCaptureConfig *BatchDataCaptureConfig

	// The data structure used to specify the data to be used for inference in a batch
	// transform job and to associate the data that is relevant to the prediction
	// results in the output. The input filter provided allows you to exclude input
	// data that is not needed for inference in a batch transform job. The output
	// filter provided allows you to include input data relevant to interpreting the
	// predictions in the output from the job. For more information, see Associate
	// Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html)
	// .
	DataProcessing *DataProcessing

	// The environment variables to set in the Docker container. We support up to 16
	// key and values entries in the map.
	Environment map[string]string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
	//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
	ExperimentConfig *ExperimentConfig

	// If the transform job failed, the reason it failed.
	FailureReason *string

	// The Amazon Resource Name (ARN) of the labeling job that created the transform
	// job.
	LabelingJobArn *string

	// The maximum number of parallel requests that can be sent to each instance in a
	// transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker
	// checks the optional execution-parameters to determine the settings for your
	// chosen algorithm. If the execution-parameters endpoint is not enabled, the
	// default value is 1. For built-in algorithms, you don't need to set a value for
	// MaxConcurrentTransforms .
	MaxConcurrentTransforms *int32

	// The maximum allowed size of the payload, in MB. A payload is the data portion
	// of a record (without metadata). The value in MaxPayloadInMB must be greater
	// than, or equal to, the size of a single record. To estimate the size of a record
	// in MB, divide the size of your dataset by the number of records. To ensure that
	// the records fit within the maximum payload size, we recommend using a slightly
	// larger value. The default value is 6 MB. For cases where the payload might be
	// arbitrarily large and is transmitted using HTTP chunked encoding, set the value
	// to 0. This feature works only in supported algorithms. Currently, SageMaker
	// built-in algorithms do not support HTTP chunked encoding.
	MaxPayloadInMB *int32

	// Configures the timeout and maximum number of retries for processing a transform
	// job invocation.
	ModelClientConfig *ModelClientConfig

	// The name of the model associated with the transform job.
	ModelName *string

	// A list of tags associated with the transform job.
	Tags []Tag

	// Indicates when the transform job has been completed, or has stopped or failed.
	// You are billed for the time interval between this time and the value of
	// TransformStartTime .
	TransformEndTime *time.Time

	// Describes the input source of a transform job and the way the transform job
	// consumes it.
	TransformInput *TransformInput

	// The Amazon Resource Name (ARN) of the transform job.
	TransformJobArn *string

	// The name of the transform job.
	TransformJobName *string

	// The status of the transform job. Transform job statuses are:
	//   - InProgress - The job is in progress.
	//   - Completed - The job has completed.
	//   - Failed - The transform job has failed. To see the reason for the failure,
	//   see the FailureReason field in the response to a DescribeTransformJob call.
	//   - Stopping - The transform job is stopping.
	//   - Stopped - The transform job has stopped.
	TransformJobStatus TransformJobStatus

	// Describes the results of a transform job.
	TransformOutput *TransformOutput

	// Describes the resources, including ML instance types and ML instance count, to
	// use for transform job.
	TransformResources *TransformResources

	// Indicates when the transform job starts on ML instances. You are billed for the
	// time interval between this time and the value of TransformEndTime .
	TransformStartTime *time.Time
	// contains filtered or unexported fields
}

A batch transform job. For information about SageMaker batch transform, see Use Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html) .

type TransformJobDefinition

type TransformJobDefinition struct {

	// A description of the input source and the way the transform job consumes it.
	//
	// This member is required.
	TransformInput *TransformInput

	// Identifies the Amazon S3 location where you want Amazon SageMaker to save the
	// results from the transform job.
	//
	// This member is required.
	TransformOutput *TransformOutput

	// Identifies the ML compute instances for the transform job.
	//
	// This member is required.
	TransformResources *TransformResources

	// A string that determines the number of records included in a single mini-batch.
	// SingleRecord means only one record is used per mini-batch. MultiRecord means a
	// mini-batch is set to contain as many records that can fit within the
	// MaxPayloadInMB limit.
	BatchStrategy BatchStrategy

	// The environment variables to set in the Docker container. We support up to 16
	// key and values entries in the map.
	Environment map[string]string

	// The maximum number of parallel requests that can be sent to each instance in a
	// transform job. The default value is 1.
	MaxConcurrentTransforms *int32

	// The maximum payload size allowed, in MB. A payload is the data portion of a
	// record (without metadata).
	MaxPayloadInMB *int32
	// contains filtered or unexported fields
}

Defines the input needed to run a transform job using the inference specification specified in the algorithm.

type TransformJobStatus

type TransformJobStatus string
const (
	TransformJobStatusInProgress TransformJobStatus = "InProgress"
	TransformJobStatusCompleted  TransformJobStatus = "Completed"
	TransformJobStatusFailed     TransformJobStatus = "Failed"
	TransformJobStatusStopping   TransformJobStatus = "Stopping"
	TransformJobStatusStopped    TransformJobStatus = "Stopped"
)

Enum values for TransformJobStatus

func (TransformJobStatus) Values added in v0.29.0

Values returns all known values for TransformJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TransformJobStepMetadata added in v0.31.0

type TransformJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the transform job that was run by this step
	// execution.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for a transform job step.

type TransformJobSummary

type TransformJobSummary struct {

	// A timestamp that shows when the transform Job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the transform job.
	//
	// This member is required.
	TransformJobArn *string

	// The name of the transform job.
	//
	// This member is required.
	TransformJobName *string

	// The status of the transform job.
	//
	// This member is required.
	TransformJobStatus TransformJobStatus

	// If the transform job failed, the reason it failed.
	FailureReason *string

	// Indicates when the transform job was last modified.
	LastModifiedTime *time.Time

	// Indicates when the transform job ends on compute instances. For successful jobs
	// and stopped jobs, this is the exact time recorded after the results are
	// uploaded. For failed jobs, this is when Amazon SageMaker detected that the job
	// failed.
	TransformEndTime *time.Time
	// contains filtered or unexported fields
}

Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list after in response to a ListTransformJobs (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTransformJobs.html) call.

type TransformOutput

type TransformOutput struct {

	// The Amazon S3 path where you want Amazon SageMaker to store the results of the
	// transform job. For example, s3://bucket-name/key-name-prefix . For every S3
	// object used as input for the transform job, batch transform stores the
	// transformed data with an . out suffix in a corresponding subfolder in the
	// location in the output prefix. For example, for the input data stored at
	// s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores
	// the transformed data at
	// s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch
	// transform doesn't upload partially processed objects. For an input S3 object
	// that contains multiple records, it creates an . out file only if the transform
	// job succeeds on the entire file. When the input contains multiple S3 objects,
	// the batch transform job processes the listed S3 objects and uploads only the
	// output for successfully processed objects. If any object fails in the transform
	// job batch transform marks the job as failed to prompt investigation.
	//
	// This member is required.
	S3OutputPath *string

	// The MIME type used to specify the output data. Amazon SageMaker uses the MIME
	// type with each http call to transfer data from the transform job.
	Accept *string

	// Defines how to assemble the results of the transform job as a single S3 object.
	// Choose a format that is most convenient to you. To concatenate the results in
	// binary format, specify None . To add a newline character at the end of every
	// transformed record, specify Line .
	AssembleWith AssemblyType

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon
	// S3 server-side encryption. The KmsKeyId can be any of the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	// If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key
	// for Amazon S3 for your role's account. For more information, see KMS-Managed
	// Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
	// grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html)
	// request. For more information, see Using Key Policies in Amazon Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
	// in the Amazon Web Services Key Management Service Developer Guide.
	KmsKeyId *string
	// contains filtered or unexported fields
}

Describes the results of a transform job.

type TransformResources

type TransformResources struct {

	// The number of ML compute instances to use in the transform job. The default
	// value is 1 , and the maximum is 100 . For distributed transform jobs, specify a
	// value greater than 1 .
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the transform job. If you are using built-in
	// algorithms to transform moderately sized datasets, we recommend using
	// ml.m4.xlarge or ml.m5.large instance types.
	//
	// This member is required.
	InstanceType TransformInstanceType

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt model data on the storage volume attached
	// to the ML compute instance(s) that run the batch transform job. Certain
	// Nitro-based instances include local storage, dependent on the instance type.
	// Local storage volumes are encrypted using a hardware module on the instance. You
	// can't request a VolumeKmsKeyId when using an instance type with local storage.
	// For a list of instance types that support local instance storage, see Instance
	// Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// . For more information about local instance storage encryption, see SSD
	// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// . The VolumeKmsKeyId can be any of the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	VolumeKmsKeyId *string
	// contains filtered or unexported fields
}

Describes the resources, including ML instance types and ML instance count, to use for transform job.

type TransformS3DataSource

type TransformS3DataSource struct {

	// If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker
	// uses all objects with the specified key name prefix for batch transform. If you
	// choose ManifestFile , S3Uri identifies an object that is a manifest file
	// containing a list of object keys that you want Amazon SageMaker to use for batch
	// transform. The following values are compatible: ManifestFile , S3Prefix The
	// following value is not compatible: AugmentedManifestFile
	//
	// This member is required.
	S3DataType S3DataType

	// Depending on the value specified for the S3DataType , identifies either a key
	// name prefix or a manifest. For example:
	//   - A key name prefix might look like this: s3://bucketname/exampleprefix .
	//   - A manifest might look like this: s3://bucketname/example.manifest The
	//   manifest is an S3 object which is a JSON file with the following format: [
	//   {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1",
	//   "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding
	//   JSON matches the following S3Uris :
	//   s3://customer_bucket/some/prefix/relative/path/to/custdata-1
	//   s3://customer_bucket/some/prefix/relative/path/custdata-2 ...
	//   s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of
	//   S3Uris in this manifest constitutes the input data for the channel for this
	//   datasource. The object that each S3Uris points to must be readable by the IAM
	//   role that Amazon SageMaker uses to perform tasks on your behalf.
	//
	// This member is required.
	S3Uri *string
	// contains filtered or unexported fields
}

Describes the S3 data source.

type Trial

type Trial struct {

	// Who created the trial.
	CreatedBy *UserContext

	// When the trial was created.
	CreationTime *time.Time

	// The name of the trial as displayed. If DisplayName isn't specified, TrialName
	// is displayed.
	DisplayName *string

	// The name of the experiment the trial is part of.
	ExperimentName *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// Who last modified the trial.
	LastModifiedTime *time.Time

	// Metadata properties of the tracking entity, trial, or trial component.
	MetadataProperties *MetadataProperties

	// The source of the trial.
	Source *TrialSource

	// The list of tags that are associated with the trial. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
	// API to search on the tags.
	Tags []Tag

	// The Amazon Resource Name (ARN) of the trial.
	TrialArn *string

	// A list of the components associated with the trial. For each component, a
	// summary of the component's properties is included.
	TrialComponentSummaries []TrialComponentSimpleSummary

	// The name of the trial.
	TrialName *string
	// contains filtered or unexported fields
}

The properties of a trial as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API.

type TrialComponent

type TrialComponent struct {

	// Who created the trial component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The name of the component as displayed. If DisplayName isn't specified,
	// TrialComponentName is displayed.
	DisplayName *string

	// When the component ended.
	EndTime *time.Time

	// The input artifacts of the component.
	InputArtifacts map[string]TrialComponentArtifact

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// When the component was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the lineage group resource.
	LineageGroupArn *string

	// Metadata properties of the tracking entity, trial, or trial component.
	MetadataProperties *MetadataProperties

	// The metrics for the component.
	Metrics []TrialComponentMetricSummary

	// The output artifacts of the component.
	OutputArtifacts map[string]TrialComponentArtifact

	// The hyperparameters of the component.
	Parameters map[string]TrialComponentParameterValue

	// An array of the parents of the component. A parent is a trial the component is
	// associated with and the experiment the trial is part of. A component might not
	// have any parents.
	Parents []Parent

	// The name of the experiment run.
	RunName *string

	// The Amazon Resource Name (ARN) and job type of the source of the component.
	Source *TrialComponentSource

	// Details of the source of the component.
	SourceDetail *TrialComponentSourceDetail

	// When the component started.
	StartTime *time.Time

	// The status of the trial component.
	Status *TrialComponentStatus

	// The list of tags that are associated with the component. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
	// API to search on the tags.
	Tags []Tag

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string
	// contains filtered or unexported fields
}

The properties of a trial component as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html) API.

type TrialComponentArtifact

type TrialComponentArtifact struct {

	// The location of the artifact.
	//
	// This member is required.
	Value *string

	// The media type of the artifact, which indicates the type of data in the
	// artifact file. The media type consists of a type and a subtype concatenated with
	// a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type
	// specifies the category of the media. The subtype specifies the kind of data.
	MediaType *string
	// contains filtered or unexported fields
}

Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html) request. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

type TrialComponentMetricSummary

type TrialComponentMetricSummary struct {

	// The average value of the metric.
	Avg *float64

	// The number of samples used to generate the metric.
	Count *int32

	// The most recent value of the metric.
	Last *float64

	// The maximum value of the metric.
	Max *float64

	// The name of the metric.
	MetricName *string

	// The minimum value of the metric.
	Min *float64

	// The Amazon Resource Name (ARN) of the source.
	SourceArn *string

	// The standard deviation of the metric.
	StdDev *float64

	// When the metric was last updated.
	TimeStamp *time.Time
	// contains filtered or unexported fields
}

A summary of the metrics of a trial component.

type TrialComponentParameterValue

type TrialComponentParameterValue interface {
	// contains filtered or unexported methods
}

The value of a hyperparameter. Only one of NumberValue or StringValue can be specified. This object is specified in the CreateTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html) request.

The following types satisfy this interface:

TrialComponentParameterValueMemberNumberValue
TrialComponentParameterValueMemberStringValue
Example (OutputUsage)
package main

import (
	"fmt"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
)

func main() {
	var union types.TrialComponentParameterValue
	// type switches can be used to check the union value
	switch v := union.(type) {
	case *types.TrialComponentParameterValueMemberNumberValue:
		_ = v.Value // Value is float64

	case *types.TrialComponentParameterValueMemberStringValue:
		_ = v.Value // Value is string

	case *types.UnknownUnionMember:
		fmt.Println("unknown tag:", v.Tag)

	default:
		fmt.Println("union is nil or unknown type")

	}
}
Output:

type TrialComponentParameterValueMemberNumberValue added in v0.31.0

type TrialComponentParameterValueMemberNumberValue struct {
	Value float64
	// contains filtered or unexported fields
}

The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

type TrialComponentParameterValueMemberStringValue added in v0.31.0

type TrialComponentParameterValueMemberStringValue struct {
	Value string
	// contains filtered or unexported fields
}

The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

type TrialComponentPrimaryStatus

type TrialComponentPrimaryStatus string
const (
	TrialComponentPrimaryStatusInProgress TrialComponentPrimaryStatus = "InProgress"
	TrialComponentPrimaryStatusCompleted  TrialComponentPrimaryStatus = "Completed"
	TrialComponentPrimaryStatusFailed     TrialComponentPrimaryStatus = "Failed"
	TrialComponentPrimaryStatusStopping   TrialComponentPrimaryStatus = "Stopping"
	TrialComponentPrimaryStatusStopped    TrialComponentPrimaryStatus = "Stopped"
)

Enum values for TrialComponentPrimaryStatus

func (TrialComponentPrimaryStatus) Values added in v0.29.0

Values returns all known values for TrialComponentPrimaryStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TrialComponentSimpleSummary

type TrialComponentSimpleSummary struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	// The Amazon Resource Name (ARN) and job type of the source of a trial component.
	TrialComponentSource *TrialComponentSource
	// contains filtered or unexported fields
}

A short summary of a trial component.

type TrialComponentSource

type TrialComponentSource struct {

	// The source Amazon Resource Name (ARN).
	//
	// This member is required.
	SourceArn *string

	// The source job type.
	SourceType *string
	// contains filtered or unexported fields
}

The Amazon Resource Name (ARN) and job type of the source of a trial component.

type TrialComponentSourceDetail

type TrialComponentSourceDetail struct {

	// Information about a processing job that's the source of a trial component.
	ProcessingJob *ProcessingJob

	// The Amazon Resource Name (ARN) of the source.
	SourceArn *string

	// Information about a training job that's the source of a trial component.
	TrainingJob *TrainingJob

	// Information about a transform job that's the source of a trial component.
	TransformJob *TransformJob
	// contains filtered or unexported fields
}

Detailed information about the source of a trial component. Either ProcessingJob or TrainingJob is returned.

type TrialComponentStatus

type TrialComponentStatus struct {

	// If the component failed, a message describing why.
	Message *string

	// The status of the trial component.
	PrimaryStatus TrialComponentPrimaryStatus
	// contains filtered or unexported fields
}

The status of the trial component.

type TrialComponentSummary

type TrialComponentSummary struct {

	// Who created the trial component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The name of the component as displayed. If DisplayName isn't specified,
	// TrialComponentName is displayed.
	DisplayName *string

	// When the component ended.
	EndTime *time.Time

	// Who last modified the component.
	LastModifiedBy *UserContext

	// When the component was last modified.
	LastModifiedTime *time.Time

	// When the component started.
	StartTime *time.Time

	// The status of the component. States include:
	//   - InProgress
	//   - Completed
	//   - Failed
	Status *TrialComponentStatus

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	// The Amazon Resource Name (ARN) and job type of the source of a trial component.
	TrialComponentSource *TrialComponentSource
	// contains filtered or unexported fields
}

A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrialComponent.html) API and provide the TrialComponentName .

type TrialSource

type TrialSource struct {

	// The Amazon Resource Name (ARN) of the source.
	//
	// This member is required.
	SourceArn *string

	// The source job type.
	SourceType *string
	// contains filtered or unexported fields
}

The source of the trial.

type TrialSummary

type TrialSummary struct {

	// When the trial was created.
	CreationTime *time.Time

	// The name of the trial as displayed. If DisplayName isn't specified, TrialName
	// is displayed.
	DisplayName *string

	// When the trial was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the trial.
	TrialArn *string

	// The name of the trial.
	TrialName *string

	// The source of the trial.
	TrialSource *TrialSource
	// contains filtered or unexported fields
}

A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrial.html) API and provide the TrialName .

type TtlDuration added in v1.87.0

type TtlDuration struct {

	// TtlDuration time unit.
	Unit TtlDurationUnit

	// TtlDuration time value.
	Value *int32
	// contains filtered or unexported fields
}

Time to live duration, where the record is hard deleted after the expiration time is reached; ExpiresAt = EventTime + TtlDuration . For information on HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html) API in the Amazon SageMaker API Reference guide.

type TtlDurationUnit added in v1.87.0

type TtlDurationUnit string
const (
	TtlDurationUnitSeconds TtlDurationUnit = "Seconds"
	TtlDurationUnitMinutes TtlDurationUnit = "Minutes"
	TtlDurationUnitHours   TtlDurationUnit = "Hours"
	TtlDurationUnitDays    TtlDurationUnit = "Days"
	TtlDurationUnitWeeks   TtlDurationUnit = "Weeks"
)

Enum values for TtlDurationUnit

func (TtlDurationUnit) Values added in v1.87.0

func (TtlDurationUnit) Values() []TtlDurationUnit

Values returns all known values for TtlDurationUnit. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type TuningJobCompletionCriteria

type TuningJobCompletionCriteria struct {

	// A flag to stop your hyperparameter tuning job if model performance fails to
	// improve as evaluated against an objective function.
	BestObjectiveNotImproving *BestObjectiveNotImproving

	// A flag to top your hyperparameter tuning job if automatic model tuning (AMT)
	// has detected that your model has converged as evaluated against your objective
	// function.
	ConvergenceDetected *ConvergenceDetected

	// The value of the objective metric.
	TargetObjectiveMetricValue *float32
	// contains filtered or unexported fields
}

The job completion criteria.

type TuningJobStepMetaData added in v1.10.0

type TuningJobStepMetaData struct {

	// The Amazon Resource Name (ARN) of the tuning job that was run by this step
	// execution.
	Arn *string
	// contains filtered or unexported fields
}

Metadata for a tuning step.

type USD

type USD struct {

	// The fractional portion, in cents, of the amount.
	Cents *int32

	// The whole number of dollars in the amount.
	Dollars *int32

	// Fractions of a cent, in tenths.
	TenthFractionsOfACent *int32
	// contains filtered or unexported fields
}

Represents an amount of money in United States dollars.

type UiConfig

type UiConfig struct {

	// The ARN of the worker task template used to render the worker UI and tools for
	// labeling job tasks. Use this parameter when you are creating a labeling job for
	// named entity recognition, 3D point cloud and video frame labeling jobs. Use your
	// labeling job task type to select one of the following ARNs and use it with this
	// parameter when you create a labeling job. Replace aws-region with the Amazon
	// Web Services Region you are creating your labeling job in. For example, replace
	// aws-region with us-west-1 if you create a labeling job in US West (N.
	// California). Named Entity Recognition Use the following HumanTaskUiArn for
	// named entity recognition labeling jobs:
	// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition
	// 3D Point Cloud HumanTaskUiArns Use this HumanTaskUiArn for 3D point cloud
	// object detection and 3D point cloud object detection adjustment labeling jobs.
	//   -
	//   arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection
	// Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud
	// object tracking adjustment labeling jobs.
	//   -
	//   arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking
	// Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point
	// cloud semantic segmentation adjustment labeling jobs.
	//   -
	//   arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
	// Video Frame HumanTaskUiArns Use this HumanTaskUiArn for video frame object
	// detection and video frame object detection adjustment labeling jobs.
	//   - arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection
	// Use this HumanTaskUiArn for video frame object tracking and video frame object
	// tracking adjustment labeling jobs.
	//   - arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
	HumanTaskUiArn *string

	// The Amazon S3 bucket location of the UI template, or worker task template. This
	// is the template used to render the worker UI and tools for labeling job tasks.
	// For more information about the contents of a UI template, see Creating Your
	// Custom Labeling Task Template (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html)
	// .
	UiTemplateS3Uri *string
	// contains filtered or unexported fields
}

Provided configuration information for the worker UI for a labeling job. Provide either HumanTaskUiArn or UiTemplateS3Uri . For named entity recognition, 3D point cloud and video frame labeling jobs, use HumanTaskUiArn . For all other Ground Truth built-in task types and custom task types, use UiTemplateS3Uri to specify the location of a worker task template in Amazon S3.

type UiTemplate

type UiTemplate struct {

	// The content of the Liquid template for the worker user interface.
	//
	// This member is required.
	Content *string
	// contains filtered or unexported fields
}

The Liquid template for the worker user interface.

type UiTemplateInfo

type UiTemplateInfo struct {

	// The SHA-256 digest of the contents of the template.
	ContentSha256 *string

	// The URL for the user interface template.
	Url *string
	// contains filtered or unexported fields
}

Container for user interface template information.

type UnknownUnionMember added in v0.31.0

type UnknownUnionMember struct {
	Tag   string
	Value []byte
	// contains filtered or unexported fields
}

UnknownUnionMember is returned when a union member is returned over the wire, but has an unknown tag.

type UserContext

type UserContext struct {

	// The domain associated with the user.
	DomainId *string

	// The IAM Identity details associated with the user. These details are associated
	// with model package groups, model packages, and project entities only.
	IamIdentity *IamIdentity

	// The Amazon Resource Name (ARN) of the user's profile.
	UserProfileArn *string

	// The name of the user's profile.
	UserProfileName *string
	// contains filtered or unexported fields
}

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

type UserProfileDetails

type UserProfileDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The domain ID.
	DomainId *string

	// The last modified time.
	LastModifiedTime *time.Time

	// The status.
	Status UserProfileStatus

	// The user profile name.
	UserProfileName *string
	// contains filtered or unexported fields
}

The user profile details.

type UserProfileSortKey

type UserProfileSortKey string
const (
	UserProfileSortKeyCreationTime     UserProfileSortKey = "CreationTime"
	UserProfileSortKeyLastModifiedTime UserProfileSortKey = "LastModifiedTime"
)

Enum values for UserProfileSortKey

func (UserProfileSortKey) Values added in v0.29.0

Values returns all known values for UserProfileSortKey. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type UserProfileStatus

type UserProfileStatus string
const (
	UserProfileStatusDeleting     UserProfileStatus = "Deleting"
	UserProfileStatusFailed       UserProfileStatus = "Failed"
	UserProfileStatusInService    UserProfileStatus = "InService"
	UserProfileStatusPending      UserProfileStatus = "Pending"
	UserProfileStatusUpdating     UserProfileStatus = "Updating"
	UserProfileStatusUpdateFailed UserProfileStatus = "Update_Failed"
	UserProfileStatusDeleteFailed UserProfileStatus = "Delete_Failed"
)

Enum values for UserProfileStatus

func (UserProfileStatus) Values added in v0.29.0

Values returns all known values for UserProfileStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type UserSettings

type UserSettings struct {

	// The Canvas app settings.
	CanvasAppSettings *CanvasAppSettings

	// The Code Editor application settings.
	CodeEditorAppSettings *CodeEditorAppSettings

	// The settings for assigning a custom file system to a user profile. Permitted
	// users can access this file system in Amazon SageMaker Studio.
	CustomFileSystemConfigs []CustomFileSystemConfig

	// Details about the POSIX identity that is used for file system operations.
	CustomPosixUserConfig *CustomPosixUserConfig

	// The default experience that the user is directed to when accessing the domain.
	// The supported values are:
	//   - studio:: : Indicates that Studio is the default experience. This value can
	//   only be passed if StudioWebPortal is set to ENABLED .
	//   - app:JupyterServer: : Indicates that Studio Classic is the default
	//   experience.
	DefaultLandingUri *string

	// The execution role for the user.
	ExecutionRole *string

	// The settings for the JupyterLab application.
	JupyterLabAppSettings *JupyterLabAppSettings

	// The Jupyter server's app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The kernel gateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// A collection of settings that configure the RSessionGateway app.
	RSessionAppSettings *RSessionAppSettings

	// A collection of settings that configure user interaction with the
	// RStudioServerPro app.
	RStudioServerProAppSettings *RStudioServerProAppSettings

	// The security groups for the Amazon Virtual Private Cloud (VPC) that the domain
	// uses for communication. Optional when the CreateDomain.AppNetworkAccessType
	// parameter is set to PublicInternetOnly . Required when the
	// CreateDomain.AppNetworkAccessType parameter is set to VpcOnly , unless specified
	// as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a
	// security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the
	// number of security groups that you can specify is one less than the maximum
	// number shown.
	SecurityGroups []string

	// Specifies options for sharing Amazon SageMaker Studio notebooks.
	SharingSettings *SharingSettings

	// The storage settings for a private space.
	SpaceStorageSettings *DefaultSpaceStorageSettings

	// Whether the user can access Studio. If this value is set to DISABLED , the user
	// cannot access Studio, even if that is the default experience for the domain.
	StudioWebPortal StudioWebPortal

	// The TensorBoard app settings.
	TensorBoardAppSettings *TensorBoardAppSettings
	// contains filtered or unexported fields
}

A collection of settings that apply to users in a domain. These settings are specified when the CreateUserProfile API is called, and as DefaultUserSettings when the CreateDomain API is called. SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings , the values specified in CreateUserProfile take precedence over those specified in CreateDomain .

type VariantProperty

type VariantProperty struct {

	// The type of variant property. The supported values are:
	//   - DesiredInstanceCount : Overrides the existing variant instance counts using
	//   the InitialInstanceCount values in the ProductionVariants of
	//   CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	//   .
	//   - DesiredWeight : Overrides the existing variant weights using the
	//   InitialVariantWeight values in the ProductionVariants of CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	//   .
	//   - DataCaptureConfig : (Not currently supported.)
	//
	// This member is required.
	VariantPropertyType VariantPropertyType
	// contains filtered or unexported fields
}

Specifies a production variant property type for an Endpoint. If you are updating an endpoint with the RetainAllVariantProperties option of UpdateEndpointInput (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html) set to true , the VariantProperty objects listed in the ExcludeRetainedVariantProperties parameter of UpdateEndpointInput (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html) override the existing variant properties of the endpoint.

type VariantPropertyType

type VariantPropertyType string
const (
	VariantPropertyTypeDesiredInstanceCount VariantPropertyType = "DesiredInstanceCount"
	VariantPropertyTypeDesiredWeight        VariantPropertyType = "DesiredWeight"
	VariantPropertyTypeDataCaptureConfig    VariantPropertyType = "DataCaptureConfig"
)

Enum values for VariantPropertyType

func (VariantPropertyType) Values added in v0.29.0

Values returns all known values for VariantPropertyType. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type VariantStatus added in v1.19.0

type VariantStatus string
const (
	VariantStatusCreating          VariantStatus = "Creating"
	VariantStatusUpdating          VariantStatus = "Updating"
	VariantStatusDeleting          VariantStatus = "Deleting"
	VariantStatusActivatingTraffic VariantStatus = "ActivatingTraffic"
	VariantStatusBaking            VariantStatus = "Baking"
)

Enum values for VariantStatus

func (VariantStatus) Values added in v1.19.0

func (VariantStatus) Values() []VariantStatus

Values returns all known values for VariantStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type VectorConfig added in v1.108.0

type VectorConfig struct {

	// The number of elements in your vector.
	//
	// This member is required.
	Dimension *int32
	// contains filtered or unexported fields
}

Configuration for your vector collection type.

type VendorGuidance added in v1.59.0

type VendorGuidance string
const (
	VendorGuidanceNotProvided  VendorGuidance = "NOT_PROVIDED"
	VendorGuidanceStable       VendorGuidance = "STABLE"
	VendorGuidanceToBeArchived VendorGuidance = "TO_BE_ARCHIVED"
	VendorGuidanceArchived     VendorGuidance = "ARCHIVED"
)

Enum values for VendorGuidance

func (VendorGuidance) Values added in v1.59.0

func (VendorGuidance) Values() []VendorGuidance

Values returns all known values for VendorGuidance. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type Vertex added in v1.20.0

type Vertex struct {

	// The Amazon Resource Name (ARN) of the lineage entity resource.
	Arn *string

	// The type of resource of the lineage entity.
	LineageType LineageType

	// The type of the lineage entity resource. For example: DataSet , Model , Endpoint
	// , etc...
	Type *string
	// contains filtered or unexported fields
}

A lineage entity connected to the starting entity(ies).

type VpcConfig

type VpcConfig struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx . Specify the security
	// groups for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC to which you want to connect your training job
	// or model. For information about the availability of specific instance types, see
	// Supported Instance Types and Availability Zones (https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html)
	// .
	//
	// This member is required.
	Subnets []string
	// contains filtered or unexported fields
}

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html) .

type WarmPoolResourceStatus added in v1.45.0

type WarmPoolResourceStatus string
const (
	WarmPoolResourceStatusAvailable  WarmPoolResourceStatus = "Available"
	WarmPoolResourceStatusTerminated WarmPoolResourceStatus = "Terminated"
	WarmPoolResourceStatusReused     WarmPoolResourceStatus = "Reused"
	WarmPoolResourceStatusInuse      WarmPoolResourceStatus = "InUse"
)

Enum values for WarmPoolResourceStatus

func (WarmPoolResourceStatus) Values added in v1.45.0

Values returns all known values for WarmPoolResourceStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type WarmPoolStatus added in v1.45.0

type WarmPoolStatus struct {

	// The status of the warm pool.
	//   - InUse : The warm pool is in use for the training job.
	//   - Available : The warm pool is available to reuse for a matching training job.
	//   - Reused : The warm pool moved to a matching training job for reuse.
	//   - Terminated : The warm pool is no longer available. Warm pools are
	//   unavailable if they are terminated by a user, terminated for a patch update, or
	//   terminated for exceeding the specified KeepAlivePeriodInSeconds .
	//
	// This member is required.
	Status WarmPoolResourceStatus

	// The billable time in seconds used by the warm pool. Billable time refers to the
	// absolute wall-clock time. Multiply ResourceRetainedBillableTimeInSeconds by the
	// number of instances ( InstanceCount ) in your training cluster to get the total
	// compute time SageMaker bills you if you run warm pool training. The formula is
	// as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .
	ResourceRetainedBillableTimeInSeconds *int32

	// The name of the matching training job that reused the warm pool.
	ReusedByJob *string
	// contains filtered or unexported fields
}

Status and billing information about the warm pool.

type Workforce

type Workforce struct {

	// The Amazon Resource Name (ARN) of the private workforce.
	//
	// This member is required.
	WorkforceArn *string

	// The name of the private workforce.
	//
	// This member is required.
	WorkforceName *string

	// The configuration of an Amazon Cognito workforce. A single Cognito workforce is
	// created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
	// .
	CognitoConfig *CognitoConfig

	// The date that the workforce is created.
	CreateDate *time.Time

	// The reason your workforce failed.
	FailureReason *string

	// The most recent date that UpdateWorkforce (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html)
	// was used to successfully add one or more IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
	// ) to a private workforce's allow list.
	LastUpdatedDate *time.Time

	// The configuration of an OIDC Identity Provider (IdP) private workforce.
	OidcConfig *OidcConfigForResponse

	// A list of one to ten IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
	// ) to be added to the workforce allow list. By default, a workforce isn't
	// restricted to specific IP addresses.
	SourceIpConfig *SourceIpConfig

	// The status of your workforce.
	Status WorkforceStatus

	// The subdomain for your OIDC Identity Provider.
	SubDomain *string

	// The configuration of a VPC workforce.
	WorkforceVpcConfig *WorkforceVpcConfigResponse
	// contains filtered or unexported fields
}

A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html) .

type WorkforceStatus added in v1.33.0

type WorkforceStatus string
const (
	WorkforceStatusInitializing WorkforceStatus = "Initializing"
	WorkforceStatusUpdating     WorkforceStatus = "Updating"
	WorkforceStatusDeleting     WorkforceStatus = "Deleting"
	WorkforceStatusFailed       WorkforceStatus = "Failed"
	WorkforceStatusActive       WorkforceStatus = "Active"
)

Enum values for WorkforceStatus

func (WorkforceStatus) Values added in v1.33.0

func (WorkforceStatus) Values() []WorkforceStatus

Values returns all known values for WorkforceStatus. Note that this can be expanded in the future, and so it is only as up to date as the client. The ordering of this slice is not guaranteed to be stable across updates.

type WorkforceVpcConfigRequest added in v1.33.0

type WorkforceVpcConfigRequest struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must
	// be for the same VPC as specified in the subnet.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC that you want to connect.
	Subnets []string

	// The ID of the VPC that the workforce uses for communication.
	VpcId *string
	// contains filtered or unexported fields
}

The VPC object you use to create or update a workforce.

type WorkforceVpcConfigResponse added in v1.33.0

type WorkforceVpcConfigResponse struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must
	// be for the same VPC as specified in the subnet.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC that you want to connect.
	//
	// This member is required.
	Subnets []string

	// The ID of the VPC that the workforce uses for communication.
	//
	// This member is required.
	VpcId *string

	// The IDs for the VPC service endpoints of your VPC workforce when it is created
	// and updated.
	VpcEndpointId *string
	// contains filtered or unexported fields
}

A VpcConfig object that specifies the VPC that you want your workforce to connect to.

type WorkspaceSettings added in v1.92.0

type WorkspaceSettings struct {

	// The Amazon S3 bucket used to store artifacts generated by Canvas. Updating the
	// Amazon S3 location impacts existing configuration settings, and Canvas users no
	// longer have access to their artifacts. Canvas users must log out and log back in
	// to apply the new location.
	S3ArtifactPath *string

	// The Amazon Web Services Key Management Service (KMS) encryption key ID that is
	// used to encrypt artifacts generated by Canvas in the Amazon S3 bucket.
	S3KmsKeyId *string
	// contains filtered or unexported fields
}

The workspace settings for the SageMaker Canvas application.

type Workteam

type Workteam struct {

	// A description of the work team.
	//
	// This member is required.
	Description *string

	// A list of MemberDefinition objects that contains objects that identify the
	// workers that make up the work team. Workforces can be created using Amazon
	// Cognito or your own OIDC Identity Provider (IdP). For private workforces created
	// using Amazon Cognito use CognitoMemberDefinition . For workforces created using
	// your own OIDC identity provider (IdP) use OidcMemberDefinition .
	//
	// This member is required.
	MemberDefinitions []MemberDefinition

	// The Amazon Resource Name (ARN) that identifies the work team.
	//
	// This member is required.
	WorkteamArn *string

	// The name of the work team.
	//
	// This member is required.
	WorkteamName *string

	// The date and time that the work team was created (timestamp).
	CreateDate *time.Time

	// The date and time that the work team was last updated (timestamp).
	LastUpdatedDate *time.Time

	// Configures SNS notifications of available or expiring work items for work teams.
	NotificationConfiguration *NotificationConfiguration

	// The Amazon Marketplace identifier for a vendor's work team.
	ProductListingIds []string

	// The URI of the labeling job's user interface. Workers open this URI to start
	// labeling your data objects.
	SubDomain *string

	// The Amazon Resource Name (ARN) of the workforce.
	WorkforceArn *string
	// contains filtered or unexported fields
}

Provides details about a labeling work team.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL