types

package
v1.28.4 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 6, 2024 License: Apache-2.0 Imports: 4 Imported by: 0

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type Algorithm

type Algorithm string
const (
	AlgorithmSgd Algorithm = "sgd"
)

Enum values for Algorithm

func (Algorithm) Values added in v0.29.0

func (Algorithm) Values() []Algorithm

Values returns all known values for Algorithm. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type BatchPrediction

type BatchPrediction struct {

	// The ID of the DataSource that points to the group of observations to predict.
	BatchPredictionDataSourceId *string

	// The ID assigned to the BatchPrediction at creation. This value should be
	// identical to the value of the BatchPredictionID in the request.
	BatchPredictionId *string

	// Long integer type that is a 64-bit signed number.
	ComputeTime *int64

	// The time that the BatchPrediction was created. The time is expressed in epoch
	// time.
	CreatedAt *time.Time

	// The AWS user account that invoked the BatchPrediction . The account type can be
	// either an AWS root account or an AWS Identity and Access Management (IAM) user
	// account.
	CreatedByIamUser *string

	// A timestamp represented in epoch time.
	FinishedAt *time.Time

	// The location of the data file or directory in Amazon Simple Storage Service
	// (Amazon S3).
	InputDataLocationS3 *string

	// Long integer type that is a 64-bit signed number.
	InvalidRecordCount *int64

	// The time of the most recent edit to the BatchPrediction . The time is expressed
	// in epoch time.
	LastUpdatedAt *time.Time

	// The ID of the MLModel that generated predictions for the BatchPrediction
	// request.
	MLModelId *string

	// A description of the most recent details about processing the batch prediction
	// request.
	Message *string

	// A user-supplied name or description of the BatchPrediction .
	Name *string

	// The location of an Amazon S3 bucket or directory to receive the operation
	// results. The following substrings are not allowed in the s3 key portion of the
	// outputURI field: ':', '//', '/./', '/../'.
	OutputUri *string

	// A timestamp represented in epoch time.
	StartedAt *time.Time

	// The status of the BatchPrediction . This element can have one of the following
	// values:
	//
	//   - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
	//   generate predictions for a batch of observations.
	//
	//   - INPROGRESS - The process is underway.
	//
	//   - FAILED - The request to perform a batch prediction did not run to
	//   completion. It is not usable.
	//
	//   - COMPLETED - The batch prediction process completed successfully.
	//
	//   - DELETED - The BatchPrediction is marked as deleted. It is not usable.
	Status EntityStatus

	// Long integer type that is a 64-bit signed number.
	TotalRecordCount *int64
	// contains filtered or unexported fields
}
Represents the output of a GetBatchPrediction operation.

The content consists of the detailed metadata, the status, and the data file information of a Batch Prediction .

type BatchPredictionFilterVariable

type BatchPredictionFilterVariable string
const (
	BatchPredictionFilterVariableCreatedAt     BatchPredictionFilterVariable = "CreatedAt"
	BatchPredictionFilterVariableLastUpdatedAt BatchPredictionFilterVariable = "LastUpdatedAt"
	BatchPredictionFilterVariableStatus        BatchPredictionFilterVariable = "Status"
	BatchPredictionFilterVariableName          BatchPredictionFilterVariable = "Name"
	BatchPredictionFilterVariableIamUser       BatchPredictionFilterVariable = "IAMUser"
	BatchPredictionFilterVariableMlModelId     BatchPredictionFilterVariable = "MLModelId"
	BatchPredictionFilterVariableDatasourceId  BatchPredictionFilterVariable = "DataSourceId"
	BatchPredictionFilterVariableDataUri       BatchPredictionFilterVariable = "DataURI"
)

Enum values for BatchPredictionFilterVariable

func (BatchPredictionFilterVariable) Values added in v0.29.0

Values returns all known values for BatchPredictionFilterVariable. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type DataSource

type DataSource struct {

	//  The parameter is true if statistics need to be generated from the observation
	// data.
	ComputeStatistics bool

	// Long integer type that is a 64-bit signed number.
	ComputeTime *int64

	// The time that the DataSource was created. The time is expressed in epoch time.
	CreatedAt *time.Time

	// The AWS user account from which the DataSource was created. The account type
	// can be either an AWS root account or an AWS Identity and Access Management (IAM)
	// user account.
	CreatedByIamUser *string

	// The location and name of the data in Amazon Simple Storage Service (Amazon S3)
	// that is used by a DataSource .
	DataLocationS3 *string

	// A JSON string that represents the splitting and rearrangement requirement used
	// when this DataSource was created.
	DataRearrangement *string

	// The total number of observations contained in the data files that the DataSource
	// references.
	DataSizeInBytes *int64

	// The ID that is assigned to the DataSource during creation.
	DataSourceId *string

	// A timestamp represented in epoch time.
	FinishedAt *time.Time

	// The time of the most recent edit to the BatchPrediction . The time is expressed
	// in epoch time.
	LastUpdatedAt *time.Time

	// A description of the most recent details about creating the DataSource .
	Message *string

	// A user-supplied name or description of the DataSource .
	Name *string

	// The number of data files referenced by the DataSource .
	NumberOfFiles *int64

	// The datasource details that are specific to Amazon RDS.
	RDSMetadata *RDSMetadata

	// Describes the DataSource details specific to Amazon Redshift.
	RedshiftMetadata *RedshiftMetadata

	// The Amazon Resource Name (ARN) of an [AWS IAM Role], such as the following:
	// arn:aws:iam::account:role/rolename.
	//
	// [AWS IAM Role]: https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
	RoleARN *string

	// A timestamp represented in epoch time.
	StartedAt *time.Time

	// The current status of the DataSource . This element can have one of the
	// following values:
	//
	//   - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create
	//   a DataSource .
	//
	//   - INPROGRESS - The creation process is underway.
	//
	//   - FAILED - The request to create a DataSource did not run to completion. It is
	//   not usable.
	//
	//   - COMPLETED - The creation process completed successfully.
	//
	//   - DELETED - The DataSource is marked as deleted. It is not usable.
	Status EntityStatus
	// contains filtered or unexported fields
}
Represents the output of the GetDataSource operation.

The content consists of the detailed metadata and data file information and the current status of the DataSource .

type DataSourceFilterVariable

type DataSourceFilterVariable string
const (
	DataSourceFilterVariableCreatedAt     DataSourceFilterVariable = "CreatedAt"
	DataSourceFilterVariableLastUpdatedAt DataSourceFilterVariable = "LastUpdatedAt"
	DataSourceFilterVariableStatus        DataSourceFilterVariable = "Status"
	DataSourceFilterVariableName          DataSourceFilterVariable = "Name"
	DataSourceFilterVariableDataUri       DataSourceFilterVariable = "DataLocationS3"
	DataSourceFilterVariableIamUser       DataSourceFilterVariable = "IAMUser"
)

Enum values for DataSourceFilterVariable

func (DataSourceFilterVariable) Values added in v0.29.0

Values returns all known values for DataSourceFilterVariable. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type DetailsAttributes

type DetailsAttributes string
const (
	DetailsAttributesPredictiveModelType DetailsAttributes = "PredictiveModelType"
	DetailsAttributesAlgorithm           DetailsAttributes = "Algorithm"
)

Enum values for DetailsAttributes

func (DetailsAttributes) Values added in v0.29.0

Values returns all known values for DetailsAttributes. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type EntityStatus

type EntityStatus string
const (
	EntityStatusPending    EntityStatus = "PENDING"
	EntityStatusInprogress EntityStatus = "INPROGRESS"
	EntityStatusFailed     EntityStatus = "FAILED"
	EntityStatusCompleted  EntityStatus = "COMPLETED"
	EntityStatusDeleted    EntityStatus = "DELETED"
)

Enum values for EntityStatus

func (EntityStatus) Values added in v0.29.0

func (EntityStatus) Values() []EntityStatus

Values returns all known values for EntityStatus. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type Evaluation

type Evaluation struct {

	// Long integer type that is a 64-bit signed number.
	ComputeTime *int64

	// The time that the Evaluation was created. The time is expressed in epoch time.
	CreatedAt *time.Time

	// The AWS user account that invoked the evaluation. The account type can be
	// either an AWS root account or an AWS Identity and Access Management (IAM) user
	// account.
	CreatedByIamUser *string

	// The ID of the DataSource that is used to evaluate the MLModel .
	EvaluationDataSourceId *string

	// The ID that is assigned to the Evaluation at creation.
	EvaluationId *string

	// A timestamp represented in epoch time.
	FinishedAt *time.Time

	// The location and name of the data in Amazon Simple Storage Server (Amazon S3)
	// that is used in the evaluation.
	InputDataLocationS3 *string

	// The time of the most recent edit to the Evaluation . The time is expressed in
	// epoch time.
	LastUpdatedAt *time.Time

	// The ID of the MLModel that is the focus of the evaluation.
	MLModelId *string

	// A description of the most recent details about evaluating the MLModel .
	Message *string

	// A user-supplied name or description of the Evaluation .
	Name *string

	// Measurements of how well the MLModel performed, using observations referenced
	// by the DataSource . One of the following metrics is returned, based on the type
	// of the MLModel :
	//
	//   - BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique to
	//   measure performance.
	//
	//   - RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE)
	//   technique to measure performance. RMSE measures the difference between predicted
	//   and actual values for a single variable.
	//
	//   - MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique to
	//   measure performance.
	//
	// For more information about performance metrics, please see the [Amazon Machine Learning Developer Guide].
	//
	// [Amazon Machine Learning Developer Guide]: https://docs.aws.amazon.com/machine-learning/latest/dg
	PerformanceMetrics *PerformanceMetrics

	// A timestamp represented in epoch time.
	StartedAt *time.Time

	// The status of the evaluation. This element can have one of the following values:
	//
	//   - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
	//   evaluate an MLModel .
	//
	//   - INPROGRESS - The evaluation is underway.
	//
	//   - FAILED - The request to evaluate an MLModel did not run to completion. It is
	//   not usable.
	//
	//   - COMPLETED - The evaluation process completed successfully.
	//
	//   - DELETED - The Evaluation is marked as deleted. It is not usable.
	Status EntityStatus
	// contains filtered or unexported fields
}
Represents the output of GetEvaluation operation.

The content consists of the detailed metadata and data file information and the current status of the Evaluation .

type EvaluationFilterVariable

type EvaluationFilterVariable string
const (
	EvaluationFilterVariableCreatedAt     EvaluationFilterVariable = "CreatedAt"
	EvaluationFilterVariableLastUpdatedAt EvaluationFilterVariable = "LastUpdatedAt"
	EvaluationFilterVariableStatus        EvaluationFilterVariable = "Status"
	EvaluationFilterVariableName          EvaluationFilterVariable = "Name"
	EvaluationFilterVariableIamUser       EvaluationFilterVariable = "IAMUser"
	EvaluationFilterVariableMlModelId     EvaluationFilterVariable = "MLModelId"
	EvaluationFilterVariableDatasourceId  EvaluationFilterVariable = "DataSourceId"
	EvaluationFilterVariableDataUri       EvaluationFilterVariable = "DataURI"
)

Enum values for EvaluationFilterVariable

func (EvaluationFilterVariable) Values added in v0.29.0

Values returns all known values for EvaluationFilterVariable. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type IdempotentParameterMismatchException

type IdempotentParameterMismatchException struct {
	Message *string

	ErrorCodeOverride *string

	Code int32
	// contains filtered or unexported fields
}

A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.

func (*IdempotentParameterMismatchException) Error

func (*IdempotentParameterMismatchException) ErrorCode

func (*IdempotentParameterMismatchException) ErrorFault

func (*IdempotentParameterMismatchException) ErrorMessage

func (e *IdempotentParameterMismatchException) ErrorMessage() string

type InternalServerException

type InternalServerException struct {
	Message *string

	ErrorCodeOverride *string

	Code int32
	// contains filtered or unexported fields
}

An error on the server occurred when trying to process a request.

func (*InternalServerException) Error

func (e *InternalServerException) Error() string

func (*InternalServerException) ErrorCode

func (e *InternalServerException) ErrorCode() string

func (*InternalServerException) ErrorFault

func (e *InternalServerException) ErrorFault() smithy.ErrorFault

func (*InternalServerException) ErrorMessage

func (e *InternalServerException) ErrorMessage() string

type InvalidInputException

type InvalidInputException struct {
	Message *string

	ErrorCodeOverride *string

	Code int32
	// contains filtered or unexported fields
}

An error on the client occurred. Typically, the cause is an invalid input value.

func (*InvalidInputException) Error

func (e *InvalidInputException) Error() string

func (*InvalidInputException) ErrorCode

func (e *InvalidInputException) ErrorCode() string

func (*InvalidInputException) ErrorFault

func (e *InvalidInputException) ErrorFault() smithy.ErrorFault

func (*InvalidInputException) ErrorMessage

func (e *InvalidInputException) ErrorMessage() string

type InvalidTagException

type InvalidTagException struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

func (*InvalidTagException) Error

func (e *InvalidTagException) Error() string

func (*InvalidTagException) ErrorCode

func (e *InvalidTagException) ErrorCode() string

func (*InvalidTagException) ErrorFault

func (e *InvalidTagException) ErrorFault() smithy.ErrorFault

func (*InvalidTagException) ErrorMessage

func (e *InvalidTagException) ErrorMessage() string

type LimitExceededException

type LimitExceededException struct {
	Message *string

	ErrorCodeOverride *string

	Code int32
	// contains filtered or unexported fields
}

The subscriber exceeded the maximum number of operations. This exception can occur when listing objects such as DataSource .

func (*LimitExceededException) Error

func (e *LimitExceededException) Error() string

func (*LimitExceededException) ErrorCode

func (e *LimitExceededException) ErrorCode() string

func (*LimitExceededException) ErrorFault

func (e *LimitExceededException) ErrorFault() smithy.ErrorFault

func (*LimitExceededException) ErrorMessage

func (e *LimitExceededException) ErrorMessage() string

type MLModel

type MLModel struct {

	// The algorithm used to train the MLModel . The following algorithm is supported:
	//
	//   - SGD -- Stochastic gradient descent. The goal of SGD is to minimize the
	//   gradient of the loss function.
	Algorithm Algorithm

	// Long integer type that is a 64-bit signed number.
	ComputeTime *int64

	// The time that the MLModel was created. The time is expressed in epoch time.
	CreatedAt *time.Time

	// The AWS user account from which the MLModel was created. The account type can
	// be either an AWS root account or an AWS Identity and Access Management (IAM)
	// user account.
	CreatedByIamUser *string

	// The current endpoint of the MLModel .
	EndpointInfo *RealtimeEndpointInfo

	// A timestamp represented in epoch time.
	FinishedAt *time.Time

	// The location of the data file or directory in Amazon Simple Storage Service
	// (Amazon S3).
	InputDataLocationS3 *string

	// The time of the most recent edit to the MLModel . The time is expressed in epoch
	// time.
	LastUpdatedAt *time.Time

	// The ID assigned to the MLModel at creation.
	MLModelId *string

	// Identifies the MLModel category. The following are the available types:
	//
	//   - REGRESSION - Produces a numeric result. For example, "What price should a
	//   house be listed at?"
	//
	//   - BINARY - Produces one of two possible results. For example, "Is this a
	//   child-friendly web site?".
	//
	//   - MULTICLASS - Produces one of several possible results. For example, "Is this
	//   a HIGH-, LOW-, or MEDIUM-risk trade?".
	MLModelType MLModelType

	// A description of the most recent details about accessing the MLModel .
	Message *string

	// A user-supplied name or description of the MLModel .
	Name *string

	ScoreThreshold *float32

	// The time of the most recent edit to the ScoreThreshold . The time is expressed
	// in epoch time.
	ScoreThresholdLastUpdatedAt *time.Time

	// Long integer type that is a 64-bit signed number.
	SizeInBytes *int64

	// A timestamp represented in epoch time.
	StartedAt *time.Time

	// The current status of an MLModel . This element can have one of the following
	// values:
	//
	//   - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create
	//   an MLModel .
	//
	//   - INPROGRESS - The creation process is underway.
	//
	//   - FAILED - The request to create an MLModel didn't run to completion. The
	//   model isn't usable.
	//
	//   - COMPLETED - The creation process completed successfully.
	//
	//   - DELETED - The MLModel is marked as deleted. It isn't usable.
	Status EntityStatus

	// The ID of the training DataSource . The CreateMLModel operation uses the
	// TrainingDataSourceId .
	TrainingDataSourceId *string

	// A list of the training parameters in the MLModel . The list is implemented as a
	// map of key-value pairs.
	//
	// The following is the current set of training parameters:
	//
	//   - sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
	//   on the input data, the size of the model might affect its performance.
	//
	// The value is an integer that ranges from 100000 to 2147483648 . The default
	//   value is 33554432 .
	//
	//   - sgd.maxPasses - The number of times that the training process traverses the
	//   observations to build the MLModel . The value is an integer that ranges from 1
	//   to 10000 . The default value is 10 .
	//
	//   - sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
	//   the data improves a model's ability to find the optimal solution for a variety
	//   of data types. The valid values are auto and none . The default value is none .
	//
	//   - sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which
	//   controls overfitting the data by penalizing large coefficients. This parameter
	//   tends to drive coefficients to zero, resulting in sparse feature set. If you use
	//   this parameter, start by specifying a small value, such as 1.0E-08 .
	//
	// The value is a double that ranges from 0 to MAX_DOUBLE . The default is to not
	//   use L1 normalization. This parameter can't be used when L2 is specified. Use
	//   this parameter sparingly.
	//
	//   - sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which
	//   controls overfitting the data by penalizing large coefficients. This tends to
	//   drive coefficients to small, nonzero values. If you use this parameter, start by
	//   specifying a small value, such as 1.0E-08 .
	//
	// The value is a double that ranges from 0 to MAX_DOUBLE . The default is to not
	//   use L2 normalization. This parameter can't be used when L1 is specified. Use
	//   this parameter sparingly.
	TrainingParameters map[string]string
	// contains filtered or unexported fields
}
Represents the output of a GetMLModel operation.

The content consists of the detailed metadata and the current status of the MLModel .

type MLModelFilterVariable

type MLModelFilterVariable string
const (
	MLModelFilterVariableCreatedAt              MLModelFilterVariable = "CreatedAt"
	MLModelFilterVariableLastUpdatedAt          MLModelFilterVariable = "LastUpdatedAt"
	MLModelFilterVariableStatus                 MLModelFilterVariable = "Status"
	MLModelFilterVariableName                   MLModelFilterVariable = "Name"
	MLModelFilterVariableIamUser                MLModelFilterVariable = "IAMUser"
	MLModelFilterVariableTrainingDatasourceId   MLModelFilterVariable = "TrainingDataSourceId"
	MLModelFilterVariableRealTimeEndpointStatus MLModelFilterVariable = "RealtimeEndpointStatus"
	MLModelFilterVariableMlModelType            MLModelFilterVariable = "MLModelType"
	MLModelFilterVariableAlgorithm              MLModelFilterVariable = "Algorithm"
	MLModelFilterVariableTrainingDataUri        MLModelFilterVariable = "TrainingDataURI"
)

Enum values for MLModelFilterVariable

func (MLModelFilterVariable) Values added in v0.29.0

Values returns all known values for MLModelFilterVariable. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type MLModelType

type MLModelType string
const (
	MLModelTypeRegression MLModelType = "REGRESSION"
	MLModelTypeBinary     MLModelType = "BINARY"
	MLModelTypeMulticlass MLModelType = "MULTICLASS"
)

Enum values for MLModelType

func (MLModelType) Values added in v0.29.0

func (MLModelType) Values() []MLModelType

Values returns all known values for MLModelType. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type PerformanceMetrics

type PerformanceMetrics struct {
	Properties map[string]string
	// contains filtered or unexported fields
}

Measurements of how well the MLModel performed on known observations. One of the following metrics is returned, based on the type of the MLModel :

  • BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.

  • RegressionRMSE: The regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.

  • MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique to measure performance.

For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.

type Prediction

type Prediction struct {

	// Provides any additional details regarding the prediction.
	Details map[string]string

	// The prediction label for either a BINARY or MULTICLASS MLModel .
	PredictedLabel *string

	// Provides the raw classification score corresponding to each label.
	PredictedScores map[string]float32

	// The prediction value for REGRESSION MLModel .
	PredictedValue *float32
	// contains filtered or unexported fields
}

The output from a Predict operation:

  • Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASS DetailsAttributes.ALGORITHM - SGD

  • PredictedLabel - Present for either a BINARY or MULTICLASS MLModel request.

  • PredictedScores - Contains the raw classification score corresponding to each label.

  • PredictedValue - Present for a REGRESSION MLModel request.

type PredictorNotMountedException

type PredictorNotMountedException struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

The exception is thrown when a predict request is made to an unmounted MLModel .

func (*PredictorNotMountedException) Error

func (*PredictorNotMountedException) ErrorCode

func (e *PredictorNotMountedException) ErrorCode() string

func (*PredictorNotMountedException) ErrorFault

func (*PredictorNotMountedException) ErrorMessage

func (e *PredictorNotMountedException) ErrorMessage() string

type RDSDataSpec

type RDSDataSpec struct {

	// The AWS Identity and Access Management (IAM) credentials that are used connect
	// to the Amazon RDS database.
	//
	// This member is required.
	DatabaseCredentials *RDSDatabaseCredentials

	// Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.
	//
	// This member is required.
	DatabaseInformation *RDSDatabase

	// The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute
	// Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to
	// an Amazon S3 task. For more information, see [Role templates]for data pipelines.
	//
	// [Role templates]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
	//
	// This member is required.
	ResourceRole *string

	// The Amazon S3 location for staging Amazon RDS data. The data retrieved from
	// Amazon RDS using SelectSqlQuery is stored in this location.
	//
	// This member is required.
	S3StagingLocation *string

	// The security group IDs to be used to access a VPC-based RDS DB instance. Ensure
	// that there are appropriate ingress rules set up to allow access to the RDS DB
	// instance. This attribute is used by Data Pipeline to carry out the copy
	// operation from Amazon RDS to an Amazon S3 task.
	//
	// This member is required.
	SecurityGroupIds []string

	// The query that is used to retrieve the observation data for the DataSource .
	//
	// This member is required.
	SelectSqlQuery *string

	// The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to
	// monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
	// information, see [Role templates]for data pipelines.
	//
	// [Role templates]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
	//
	// This member is required.
	ServiceRole *string

	// The subnet ID to be used to access a VPC-based RDS DB instance. This attribute
	// is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon
	// S3.
	//
	// This member is required.
	SubnetId *string

	// A JSON string that represents the splitting and rearrangement processing to be
	// applied to a DataSource . If the DataRearrangement parameter is not provided,
	// all of the input data is used to create the Datasource .
	//
	// There are multiple parameters that control what data is used to create a
	// datasource:
	//
	//   - percentBegin
	//
	// Use percentBegin to indicate the beginning of the range of the data used to
	//   create the Datasource. If you do not include percentBegin and percentEnd ,
	//   Amazon ML includes all of the data when creating the datasource.
	//
	//   - percentEnd
	//
	// Use percentEnd to indicate the end of the range of the data used to create the
	//   Datasource. If you do not include percentBegin and percentEnd , Amazon ML
	//   includes all of the data when creating the datasource.
	//
	//   - complement
	//
	// The complement parameter instructs Amazon ML to use the data that is not
	//   included in the range of percentBegin to percentEnd to create a datasource.
	//   The complement parameter is useful if you need to create complementary
	//   datasources for training and evaluation. To create a complementary datasource,
	//   use the same values for percentBegin and percentEnd , along with the
	//   complement parameter.
	//
	// For example, the following two datasources do not share any data, and can be
	//   used to train and evaluate a model. The first datasource has 25 percent of the
	//   data, and the second one has 75 percent of the data.
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
	//
	// Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
	//   "complement":"true"}}
	//
	//   - strategy
	//
	// To change how Amazon ML splits the data for a datasource, use the strategy
	//   parameter.
	//
	// The default value for the strategy parameter is sequential , meaning that Amazon
	//   ML takes all of the data records between the percentBegin and percentEnd
	//   parameters for the datasource, in the order that the records appear in the input
	//   data.
	//
	// The following two DataRearrangement lines are examples of sequentially ordered
	//   training and evaluation datasources:
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"sequential"}}
	//
	// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"sequential", "complement":"true"}}
	//
	// To randomly split the input data into the proportions indicated by the
	//   percentBegin and percentEnd parameters, set the strategy parameter to random
	//   and provide a string that is used as the seed value for the random data
	//   splitting (for example, you can use the S3 path to your data as the random seed
	//   string). If you choose the random split strategy, Amazon ML assigns each row of
	//   data a pseudo-random number between 0 and 100, and then selects the rows that
	//   have an assigned number between percentBegin and percentEnd . Pseudo-random
	//   numbers are assigned using both the input seed string value and the byte offset
	//   as a seed, so changing the data results in a different split. Any existing
	//   ordering is preserved. The random splitting strategy ensures that variables in
	//   the training and evaluation data are distributed similarly. It is useful in the
	//   cases where the input data may have an implicit sort order, which would
	//   otherwise result in training and evaluation datasources containing non-similar
	//   data records.
	//
	// The following two DataRearrangement lines are examples of non-sequentially
	//   ordered training and evaluation datasources:
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
	//
	// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv",
	//   "complement":"true"}}
	DataRearrangement *string

	// A JSON string that represents the schema for an Amazon RDS DataSource . The
	// DataSchema defines the structure of the observation data in the data file(s)
	// referenced in the DataSource .
	//
	// A DataSchema is not required if you specify a DataSchemaUri
	//
	// Define your DataSchema as a series of key-value pairs. attributes and
	// excludedVariableNames have an array of key-value pairs for their value. Use the
	// following format to define your DataSchema .
	//
	// { "version": "1.0",
	//
	// "recordAnnotationFieldName": "F1",
	//
	// "recordWeightFieldName": "F2",
	//
	// "targetFieldName": "F3",
	//
	// "dataFormat": "CSV",
	//
	// "dataFileContainsHeader": true,
	//
	// "attributes": [
	//
	// { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
	// "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
	// "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
	// }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
	// "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
	// "WEIGHTED_STRING_SEQUENCE" } ],
	//
	// "excludedVariableNames": [ "F6" ] }
	DataSchema *string

	// The Amazon S3 location of the DataSchema .
	DataSchemaUri *string
	// contains filtered or unexported fields
}

The data specification of an Amazon Relational Database Service (Amazon RDS) DataSource .

type RDSDatabase

type RDSDatabase struct {

	// The name of a database hosted on an RDS DB instance.
	//
	// This member is required.
	DatabaseName *string

	// The ID of an RDS DB instance.
	//
	// This member is required.
	InstanceIdentifier *string
	// contains filtered or unexported fields
}

The database details of an Amazon RDS database.

type RDSDatabaseCredentials

type RDSDatabaseCredentials struct {

	// The password to be used by Amazon ML to connect to a database on an RDS DB
	// instance. The password should have sufficient permissions to execute the
	// RDSSelectQuery query.
	//
	// This member is required.
	Password *string

	// The username to be used by Amazon ML to connect to database on an Amazon RDS
	// instance. The username should have sufficient permissions to execute an
	// RDSSelectSqlQuery query.
	//
	// This member is required.
	Username *string
	// contains filtered or unexported fields
}

The database credentials to connect to a database on an RDS DB instance.

type RDSMetadata

type RDSMetadata struct {

	// The ID of the Data Pipeline instance that is used to carry to copy data from
	// Amazon RDS to Amazon S3. You can use the ID to find details about the instance
	// in the Data Pipeline console.
	DataPipelineId *string

	// The database details required to connect to an Amazon RDS.
	Database *RDSDatabase

	// The username to be used by Amazon ML to connect to database on an Amazon RDS
	// instance. The username should have sufficient permissions to execute an
	// RDSSelectSqlQuery query.
	DatabaseUserName *string

	// The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to
	// carry out the copy task from Amazon RDS to Amazon S3. For more information, see [Role templates]
	// for data pipelines.
	//
	// [Role templates]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
	ResourceRole *string

	// The SQL query that is supplied during CreateDataSourceFromRDS. Returns only if Verbose is true in
	// GetDataSourceInput .
	SelectSqlQuery *string

	// The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to
	// monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
	// information, see [Role templates]for data pipelines.
	//
	// [Role templates]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
	ServiceRole *string
	// contains filtered or unexported fields
}

The datasource details that are specific to Amazon RDS.

type RealtimeEndpointInfo

type RealtimeEndpointInfo struct {

	// The time that the request to create the real-time endpoint for the MLModel was
	// received. The time is expressed in epoch time.
	CreatedAt *time.Time

	//  The current status of the real-time endpoint for the MLModel . This element can
	// have one of the following values:
	//
	//   - NONE - Endpoint does not exist or was previously deleted.
	//
	//   - READY - Endpoint is ready to be used for real-time predictions.
	//
	//   - UPDATING - Updating/creating the endpoint.
	EndpointStatus RealtimeEndpointStatus

	// The URI that specifies where to send real-time prediction requests for the
	// MLModel .
	//
	// Note: The application must wait until the real-time endpoint is ready before
	// using this URI.
	EndpointUrl *string

	//  The maximum processing rate for the real-time endpoint for MLModel , measured
	// in incoming requests per second.
	PeakRequestsPerSecond int32
	// contains filtered or unexported fields
}

Describes the real-time endpoint information for an MLModel .

type RealtimeEndpointStatus

type RealtimeEndpointStatus string
const (
	RealtimeEndpointStatusNone     RealtimeEndpointStatus = "NONE"
	RealtimeEndpointStatusReady    RealtimeEndpointStatus = "READY"
	RealtimeEndpointStatusUpdating RealtimeEndpointStatus = "UPDATING"
	RealtimeEndpointStatusFailed   RealtimeEndpointStatus = "FAILED"
)

Enum values for RealtimeEndpointStatus

func (RealtimeEndpointStatus) Values added in v0.29.0

Values returns all known values for RealtimeEndpointStatus. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type RedshiftDataSpec

type RedshiftDataSpec struct {

	// Describes AWS Identity and Access Management (IAM) credentials that are used
	// connect to the Amazon Redshift database.
	//
	// This member is required.
	DatabaseCredentials *RedshiftDatabaseCredentials

	// Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift
	// DataSource .
	//
	// This member is required.
	DatabaseInformation *RedshiftDatabase

	// Describes an Amazon S3 location to store the result set of the SelectSqlQuery
	// query.
	//
	// This member is required.
	S3StagingLocation *string

	// Describes the SQL Query to execute on an Amazon Redshift database for an Amazon
	// Redshift DataSource .
	//
	// This member is required.
	SelectSqlQuery *string

	// A JSON string that represents the splitting and rearrangement processing to be
	// applied to a DataSource . If the DataRearrangement parameter is not provided,
	// all of the input data is used to create the Datasource .
	//
	// There are multiple parameters that control what data is used to create a
	// datasource:
	//
	//   - percentBegin
	//
	// Use percentBegin to indicate the beginning of the range of the data used to
	//   create the Datasource. If you do not include percentBegin and percentEnd ,
	//   Amazon ML includes all of the data when creating the datasource.
	//
	//   - percentEnd
	//
	// Use percentEnd to indicate the end of the range of the data used to create the
	//   Datasource. If you do not include percentBegin and percentEnd , Amazon ML
	//   includes all of the data when creating the datasource.
	//
	//   - complement
	//
	// The complement parameter instructs Amazon ML to use the data that is not
	//   included in the range of percentBegin to percentEnd to create a datasource.
	//   The complement parameter is useful if you need to create complementary
	//   datasources for training and evaluation. To create a complementary datasource,
	//   use the same values for percentBegin and percentEnd , along with the
	//   complement parameter.
	//
	// For example, the following two datasources do not share any data, and can be
	//   used to train and evaluate a model. The first datasource has 25 percent of the
	//   data, and the second one has 75 percent of the data.
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
	//
	// Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
	//   "complement":"true"}}
	//
	//   - strategy
	//
	// To change how Amazon ML splits the data for a datasource, use the strategy
	//   parameter.
	//
	// The default value for the strategy parameter is sequential , meaning that Amazon
	//   ML takes all of the data records between the percentBegin and percentEnd
	//   parameters for the datasource, in the order that the records appear in the input
	//   data.
	//
	// The following two DataRearrangement lines are examples of sequentially ordered
	//   training and evaluation datasources:
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"sequential"}}
	//
	// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"sequential", "complement":"true"}}
	//
	// To randomly split the input data into the proportions indicated by the
	//   percentBegin and percentEnd parameters, set the strategy parameter to random
	//   and provide a string that is used as the seed value for the random data
	//   splitting (for example, you can use the S3 path to your data as the random seed
	//   string). If you choose the random split strategy, Amazon ML assigns each row of
	//   data a pseudo-random number between 0 and 100, and then selects the rows that
	//   have an assigned number between percentBegin and percentEnd . Pseudo-random
	//   numbers are assigned using both the input seed string value and the byte offset
	//   as a seed, so changing the data results in a different split. Any existing
	//   ordering is preserved. The random splitting strategy ensures that variables in
	//   the training and evaluation data are distributed similarly. It is useful in the
	//   cases where the input data may have an implicit sort order, which would
	//   otherwise result in training and evaluation datasources containing non-similar
	//   data records.
	//
	// The following two DataRearrangement lines are examples of non-sequentially
	//   ordered training and evaluation datasources:
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
	//
	// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv",
	//   "complement":"true"}}
	DataRearrangement *string

	// A JSON string that represents the schema for an Amazon Redshift DataSource . The
	// DataSchema defines the structure of the observation data in the data file(s)
	// referenced in the DataSource .
	//
	// A DataSchema is not required if you specify a DataSchemaUri .
	//
	// Define your DataSchema as a series of key-value pairs. attributes and
	// excludedVariableNames have an array of key-value pairs for their value. Use the
	// following format to define your DataSchema .
	//
	// { "version": "1.0",
	//
	// "recordAnnotationFieldName": "F1",
	//
	// "recordWeightFieldName": "F2",
	//
	// "targetFieldName": "F3",
	//
	// "dataFormat": "CSV",
	//
	// "dataFileContainsHeader": true,
	//
	// "attributes": [
	//
	// { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
	// "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
	// "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
	// }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
	// "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
	// "WEIGHTED_STRING_SEQUENCE" } ],
	//
	// "excludedVariableNames": [ "F6" ] }
	DataSchema *string

	// Describes the schema location for an Amazon Redshift DataSource .
	DataSchemaUri *string
	// contains filtered or unexported fields
}

Describes the data specification of an Amazon Redshift DataSource .

type RedshiftDatabase

type RedshiftDatabase struct {

	// The ID of an Amazon Redshift cluster.
	//
	// This member is required.
	ClusterIdentifier *string

	// The name of a database hosted on an Amazon Redshift cluster.
	//
	// This member is required.
	DatabaseName *string
	// contains filtered or unexported fields
}

Describes the database details required to connect to an Amazon Redshift database.

type RedshiftDatabaseCredentials

type RedshiftDatabaseCredentials struct {

	// A password to be used by Amazon ML to connect to a database on an Amazon
	// Redshift cluster. The password should have sufficient permissions to execute a
	// RedshiftSelectSqlQuery query. The password should be valid for an Amazon
	// Redshift [USER].
	//
	// [USER]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
	//
	// This member is required.
	Password *string

	// A username to be used by Amazon Machine Learning (Amazon ML)to connect to a
	// database on an Amazon Redshift cluster. The username should have sufficient
	// permissions to execute the RedshiftSelectSqlQuery query. The username should be
	// valid for an Amazon Redshift [USER].
	//
	// [USER]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
	//
	// This member is required.
	Username *string
	// contains filtered or unexported fields
}

Describes the database credentials for connecting to a database on an Amazon Redshift cluster.

type RedshiftMetadata

type RedshiftMetadata struct {

	// A username to be used by Amazon Machine Learning (Amazon ML)to connect to a
	// database on an Amazon Redshift cluster. The username should have sufficient
	// permissions to execute the RedshiftSelectSqlQuery query. The username should be
	// valid for an Amazon Redshift [USER].
	//
	// [USER]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
	DatabaseUserName *string

	// Describes the database details required to connect to an Amazon Redshift
	// database.
	RedshiftDatabase *RedshiftDatabase

	//  The SQL query that is specified during CreateDataSourceFromRedshift. Returns only if Verbose is true in
	// GetDataSourceInput.
	SelectSqlQuery *string
	// contains filtered or unexported fields
}

Describes the DataSource details specific to Amazon Redshift.

type ResourceNotFoundException

type ResourceNotFoundException struct {
	Message *string

	ErrorCodeOverride *string

	Code int32
	// contains filtered or unexported fields
}

A specified resource cannot be located.

func (*ResourceNotFoundException) Error

func (e *ResourceNotFoundException) Error() string

func (*ResourceNotFoundException) ErrorCode

func (e *ResourceNotFoundException) ErrorCode() string

func (*ResourceNotFoundException) ErrorFault

func (*ResourceNotFoundException) ErrorMessage

func (e *ResourceNotFoundException) ErrorMessage() string

type S3DataSpec

type S3DataSpec struct {

	// The location of the data file(s) used by a DataSource . The URI specifies a data
	// file or an Amazon Simple Storage Service (Amazon S3) directory or bucket
	// containing data files.
	//
	// This member is required.
	DataLocationS3 *string

	// A JSON string that represents the splitting and rearrangement processing to be
	// applied to a DataSource . If the DataRearrangement parameter is not provided,
	// all of the input data is used to create the Datasource .
	//
	// There are multiple parameters that control what data is used to create a
	// datasource:
	//
	//   - percentBegin
	//
	// Use percentBegin to indicate the beginning of the range of the data used to
	//   create the Datasource. If you do not include percentBegin and percentEnd ,
	//   Amazon ML includes all of the data when creating the datasource.
	//
	//   - percentEnd
	//
	// Use percentEnd to indicate the end of the range of the data used to create the
	//   Datasource. If you do not include percentBegin and percentEnd , Amazon ML
	//   includes all of the data when creating the datasource.
	//
	//   - complement
	//
	// The complement parameter instructs Amazon ML to use the data that is not
	//   included in the range of percentBegin to percentEnd to create a datasource.
	//   The complement parameter is useful if you need to create complementary
	//   datasources for training and evaluation. To create a complementary datasource,
	//   use the same values for percentBegin and percentEnd , along with the
	//   complement parameter.
	//
	// For example, the following two datasources do not share any data, and can be
	//   used to train and evaluate a model. The first datasource has 25 percent of the
	//   data, and the second one has 75 percent of the data.
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
	//
	// Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
	//   "complement":"true"}}
	//
	//   - strategy
	//
	// To change how Amazon ML splits the data for a datasource, use the strategy
	//   parameter.
	//
	// The default value for the strategy parameter is sequential , meaning that Amazon
	//   ML takes all of the data records between the percentBegin and percentEnd
	//   parameters for the datasource, in the order that the records appear in the input
	//   data.
	//
	// The following two DataRearrangement lines are examples of sequentially ordered
	//   training and evaluation datasources:
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"sequential"}}
	//
	// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"sequential", "complement":"true"}}
	//
	// To randomly split the input data into the proportions indicated by the
	//   percentBegin and percentEnd parameters, set the strategy parameter to random
	//   and provide a string that is used as the seed value for the random data
	//   splitting (for example, you can use the S3 path to your data as the random seed
	//   string). If you choose the random split strategy, Amazon ML assigns each row of
	//   data a pseudo-random number between 0 and 100, and then selects the rows that
	//   have an assigned number between percentBegin and percentEnd . Pseudo-random
	//   numbers are assigned using both the input seed string value and the byte offset
	//   as a seed, so changing the data results in a different split. Any existing
	//   ordering is preserved. The random splitting strategy ensures that variables in
	//   the training and evaluation data are distributed similarly. It is useful in the
	//   cases where the input data may have an implicit sort order, which would
	//   otherwise result in training and evaluation datasources containing non-similar
	//   data records.
	//
	// The following two DataRearrangement lines are examples of non-sequentially
	//   ordered training and evaluation datasources:
	//
	// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
	//
	// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
	//   "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv",
	//   "complement":"true"}}
	DataRearrangement *string

	//  A JSON string that represents the schema for an Amazon S3 DataSource . The
	// DataSchema defines the structure of the observation data in the data file(s)
	// referenced in the DataSource .
	//
	// You must provide either the DataSchema or the DataSchemaLocationS3 .
	//
	// Define your DataSchema as a series of key-value pairs. attributes and
	// excludedVariableNames have an array of key-value pairs for their value. Use the
	// following format to define your DataSchema .
	//
	// { "version": "1.0",
	//
	// "recordAnnotationFieldName": "F1",
	//
	// "recordWeightFieldName": "F2",
	//
	// "targetFieldName": "F3",
	//
	// "dataFormat": "CSV",
	//
	// "dataFileContainsHeader": true,
	//
	// "attributes": [
	//
	// { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
	// "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
	// "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
	// }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
	// "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
	// "WEIGHTED_STRING_SEQUENCE" } ],
	//
	// "excludedVariableNames": [ "F6" ] }
	DataSchema *string

	// Describes the schema location in Amazon S3. You must provide either the
	// DataSchema or the DataSchemaLocationS3 .
	DataSchemaLocationS3 *string
	// contains filtered or unexported fields
}

Describes the data specification of a DataSource .

type SortOrder

type SortOrder string
const (
	SortOrderAsc SortOrder = "asc"
	SortOrderDsc SortOrder = "dsc"
)

Enum values for SortOrder

func (SortOrder) Values added in v0.29.0

func (SortOrder) Values() []SortOrder

Values returns all known values for SortOrder. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

type Tag

type Tag struct {

	// A unique identifier for the tag. Valid characters include Unicode letters,
	// digits, white space, _, ., /, =, +, -, %, and @.
	Key *string

	// An optional string, typically used to describe or define the tag. Valid
	// characters include Unicode letters, digits, white space, _, ., /, =, +, -, %,
	// and @.
	Value *string
	// contains filtered or unexported fields
}

A custom key-value pair associated with an ML object, such as an ML model.

type TagLimitExceededException

type TagLimitExceededException struct {
	Message *string

	ErrorCodeOverride *string
	// contains filtered or unexported fields
}

func (*TagLimitExceededException) Error

func (e *TagLimitExceededException) Error() string

func (*TagLimitExceededException) ErrorCode

func (e *TagLimitExceededException) ErrorCode() string

func (*TagLimitExceededException) ErrorFault

func (*TagLimitExceededException) ErrorMessage

func (e *TagLimitExceededException) ErrorMessage() string

type TaggableResourceType

type TaggableResourceType string
const (
	TaggableResourceTypeBatchPrediction TaggableResourceType = "BatchPrediction"
	TaggableResourceTypeDatasource      TaggableResourceType = "DataSource"
	TaggableResourceTypeEvaluation      TaggableResourceType = "Evaluation"
	TaggableResourceTypeMlModel         TaggableResourceType = "MLModel"
)

Enum values for TaggableResourceType

func (TaggableResourceType) Values added in v0.29.0

Values returns all known values for TaggableResourceType. Note that this can be expanded in the future, and so it is only as up to date as the client.

The ordering of this slice is not guaranteed to be stable across updates.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL