Documentation ¶
Overview ¶
Package bn256 implements a particular bilinear group at the 128-bit security level.
Bilinear groups are the basis of many of the new cryptographic protocols that have been proposed over the past decade. They consist of a triplet of groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ is a generator of the respective group). That function is called a pairing function.
This package specifically implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve as described in http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible with the implementation described in that paper.
Index ¶
- Variables
- func PairingCheck(a []*G1, b []*G2) bool
- type G1
- func (e *G1) Add(a, b *G1) *G1
- func (e *G1) IsZero() bool
- func (e *G1) Marshal() []byte
- func (e *G1) Neg(a *G1) *G1
- func (e *G1) ScalarBaseMult(k *big.Int) *G1
- func (e *G1) ScalarMult(a *G1, k *big.Int) *G1
- func (e *G1) Set(a *G1) *G1
- func (e *G1) SetInfinity() *G1
- func (g *G1) String() string
- func (e *G1) Unmarshal(m []byte) ([]byte, error)
- type G2
- func (e *G2) Add(a, b *G2) *G2
- func (e *G2) IsZero() bool
- func (e *G2) Marshal() []byte
- func (e *G2) Neg(a *G2) *G2
- func (e *G2) ScalarBaseMult(k *big.Int) *G2
- func (e *G2) ScalarMult(a *G2, k *big.Int) *G2
- func (e *G2) Set(a *G2) *G2
- func (e *G2) SetInfinity() *G2
- func (e *G2) String() string
- func (e *G2) Unmarshal(m []byte) ([]byte, error)
- type GT
- func (e *GT) Add(a, b *GT) *GT
- func (e *GT) Finalize() *GT
- func (e *GT) Invert(a *GT) *GT
- func (e *GT) IsOne() bool
- func (e *GT) IsZero() bool
- func (e *GT) Marshal() []byte
- func (e *GT) Neg(a *GT) *GT
- func (e *GT) ScalarMult(a *GT, k *big.Int) *GT
- func (e *GT) Set(a *GT) *GT
- func (g *GT) String() string
- func (e *GT) Unmarshal(m []byte) ([]byte, error)
Constants ¶
This section is empty.
Variables ¶
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
Functions ¶
func PairingCheck ¶
PairingCheck calculates the Optimal Ate pairing for a set of points.
Types ¶
type G1 ¶
type G1 struct {
// contains filtered or unexported fields
}
G1 is an abstract cyclic group. The zero value is suitable for use as the output of an operation, but cannot be used as an input.
func (*G1) ScalarBaseMult ¶
ScalarBaseMult sets e to g*k where g is the generator of the group and then returns e.
func (*G1) ScalarMult ¶
ScalarMult sets e to a*k and then returns e.
type G2 ¶
type G2 struct {
// contains filtered or unexported fields
}
G2 is an abstract cyclic group. The zero value is suitable for use as the output of an operation, but cannot be used as an input.
func (*G2) ScalarBaseMult ¶
ScalarBaseMult sets e to g*k where g is the generator of the group and then returns out.
func (*G2) ScalarMult ¶
ScalarMult sets e to a*k and then returns e.
type GT ¶
type GT struct {
// contains filtered or unexported fields
}
GT is an abstract cyclic group. The zero value is suitable for use as the output of an operation, but cannot be used as an input.
func Miller ¶
Miller applies Miller's algorithm, which is a bilinear function from the source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1, g2).
func (*GT) ScalarMult ¶
ScalarMult sets e to a*k and then returns e.