jose

package module
v0.0.0-...-3d3ad9f Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 7, 2018 License: MIT Imports: 26 Imported by: 0

README

Golang (GO) Javascript Object Signing and Encryption (JOSE) and JSON Web Token (JWT) implementation

GoDoc

Pure Golang (GO) library for generating, decoding and encrypting JSON Web Tokens. Zero dependency, relies only on standard library.

Supports full suite of signing, encryption and compression algorithms defined by JSON Web Algorithms as of July 4, 2014 version.

Extensively unit tested and cross tested (100+ tests) for compatibility with jose.4.j, Nimbus-JOSE-JWT, json-jwt and jose-jwt libraries.

Status

Used in production. GA ready. Current version is 1.3.

Important

v1.3 fixed potential Invalid Curve Attack on NIST curves within ECDH key management. Upgrade strongly recommended.

v1.2 breaks jose.Decode interface by returning 3 values instead of 2.

v1.2 deprecates jose.Compress method in favor of using configuration options to jose.Encrypt, the method will be removed in next release.

Migration to v1.2

Pre v1.2 decoding:

payload,err := jose.Decode(token,sharedKey)

Should be updated to v1.2:

payload, headers, err := jose.Decode(token,sharedKey)

Pre v1.2 compression:

token,err := jose.Compress(payload,jose.DIR,jose.A128GCM,jose.DEF, key)

Should be update to v1.2:

token, err := jose.Encrypt(payload, jose.DIR, jose.A128GCM, key, jose.Zip(jose.DEF))

Supported JWA algorithms

Signing

  • HMAC signatures with HS256, HS384 and HS512.
  • RSASSA-PKCS1-V1_5 signatures with RS256, RS384 and RS512.
  • RSASSA-PSS signatures (probabilistic signature scheme with appendix) with PS256, PS384 and PS512.
  • ECDSA signatures with ES256, ES384 and ES512.
  • NONE (unprotected) plain text algorithm without integrity protection

Encryption

  • RSAES OAEP (using SHA-1 and MGF1 with SHA-1) encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • RSAES OAEP 256 (using SHA-256 and MGF1 with SHA-256) encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • RSAES-PKCS1-V1_5 encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • A128KW, A192KW, A256KW encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • A128GCMKW, A192GCMKW, A256GCMKW encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • ECDH-ES with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • Direct symmetric key encryption with pre-shared key A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM and A256GCM

Compression

  • DEFLATE compression

Installation

Grab package from github

go get github.com/dvsekhvalnov/jose2go or go get -u github.com/dvsekhvalnov/jose2go to update to latest version

Import package
import (
	"github.com/dvsekhvalnov/jose2go"
)

Usage

Creating Plaintext (unprotected) Tokens
package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	token,err := jose.Sign(payload,jose.NONE, nil)

	if(err==nil) {
		//go use token
		fmt.Printf("\nPlaintext = %v\n",token)
	}
}
Creating signed tokens
HS-256, HS-384 and HS-512

Signing with HS256, HS384, HS512 expecting []byte array key of corresponding length:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	key := []byte{97,48,97,50,97,98,100,56,45,54,49,54,50,45,52,49,99,51,45,56,51,100,54,45,49,99,102,53,53,57,98,52,54,97,102,99}

	token,err := jose.Sign(payload,jose.HS256,key)

	if(err==nil) {
		//go use token
		fmt.Printf("\nHS256 = %v\n",token)
	}
}
RS-256, RS-384 and RS-512, PS-256, PS-384 and PS-512

Signing with RS256, RS384, RS512, PS256, PS384, PS512 expecting *rsa.PrivateKey private key of corresponding length. jose2go provides convenient utils to construct *rsa.PrivateKey instance from PEM encoded PKCS1 or PKCS8 data: Rsa.ReadPrivate([]byte) under jose2go/keys/rsa package.

package main

import (
	"fmt"
	"io/ioutil"
	Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	keyBytes,err := ioutil.ReadFile("private.key")

	if(err!=nil) {
		panic("invalid key file")
	}

	privateKey,e:=Rsa.ReadPrivate(keyBytes)

	if(e!=nil) {
		panic("invalid key format")
	}

	token,err := jose.Sign(payload,jose.RS256, privateKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nRS256 = %v\n",token)
	}
}
ES-256, ES-384 and ES-512

ES256, ES384, ES512 ECDSA signatures expecting *ecdsa.PrivateKey private elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PrivateKey instance from PEM encoded PKCS1 or PKCS8 data: ecc.ReadPrivate([]byte) or directly from X,Y,D parameters: ecc.NewPrivate(x,y,d []byte) under jose2go/keys/ecc package.

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload := `{"hello":"world"}`

	privateKey:=ecc.NewPrivate([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
	 			 			   []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53},
							   []byte{ 42, 148, 231, 48, 225, 196, 166, 201, 23, 190, 229, 199, 20, 39, 226, 70, 209, 148, 29, 70, 125, 14, 174, 66, 9, 198, 80, 251, 95, 107, 98, 206 })

    token,err := jose.Sign(payload, jose.ES256, privateKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}
Creating encrypted tokens
RSA-OAEP-256, RSA-OAEP and RSA1_5 key management algorithm

RSA-OAEP-256, RSA-OAEP and RSA1_5 key management expecting *rsa.PublicKey public key of corresponding length.

package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	keyBytes,err := ioutil.ReadFile("public.key")

	if(err!=nil) {
		panic("invalid key file")
	}

	publicKey,e:=Rsa.ReadPublic(keyBytes)

	if(e!=nil) {
		panic("invalid key format")
	}

	//OR:
	//token,err := jose.Encrypt(payload, jose.RSA1_5, jose.A256GCM, publicKey)
	token,err := jose.Encrypt(payload, jose.RSA_OAEP, jose.A256GCM, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}  
AES Key Wrap key management family of algorithms

AES128KW, AES192KW and AES256KW key management requires []byte array key of corresponding length

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	sharedKey :=[]byte{194,164,235,6,138,248,171,239,24,216,11,22,137,199,215,133}

	token,err := jose.Encrypt(payload,jose.A128KW,jose.A128GCM,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nA128KW A128GCM = %v\n",token)
	}
}
AES GCM Key Wrap key management family of algorithms

AES128GCMKW, AES192GCMKW and AES256GCMKW key management requires []byte array key of corresponding length

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	sharedKey :=[]byte{194,164,235,6,138,248,171,239,24,216,11,22,137,199,215,133}

	token,err := jose.Encrypt(payload,jose.A128GCMKW,jose.A128GCM,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nA128GCMKW A128GCM = %v\n",token)
	}
}
ECDH-ES and ECDH-ES with AES Key Wrap key management family of algorithms

ECDH-ES and ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW key management requires *ecdsa.PublicKey elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PublicKey instance from PEM encoded PKCS1 X509 certificate or PKIX data: ecc.ReadPublic([]byte) or directly from X,Y parameters: ecc.NewPublic(x,y []byte)under jose2go/keys/ecc package:

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload := `{"hello":"world"}`

    publicKey:=ecc.NewPublic([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
                             []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53})

    token,err := jose.Encrypt(payload, jose.ECDH_ES, jose.A128CBC_HS256, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}  
PBES2 using HMAC SHA with AES Key Wrap key management family of algorithms

PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW key management requires string passphrase from which actual key will be derived

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	passphrase := `top secret`

	token,err := jose.Encrypt(payload,jose.PBES2_HS256_A128KW,jose.A256GCM,passphrase)

	if(err==nil) {
		//go use token
		fmt.Printf("\nPBES2_HS256_A128KW A256GCM = %v\n",token)
	}
}
DIR direct pre-shared symmetric key management

Direct key management with pre-shared symmetric keys expecting []byte array key of corresponding length:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	sharedKey :=[]byte{194,164,235,6,138,248,171,239,24,216,11,22,137,199,215,133}

	token,err := jose.Encrypt(payload,jose.DIR,jose.A128GCM,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nDIR A128GCM = %v\n",token)
	}
}
Creating compressed & encrypted tokens
DEFLATE compression

jose2go supports optional DEFLATE compression of payload before encrypting, can be used with all supported encryption and key management algorithms:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload := `{"hello": "world"}`

	sharedKey := []byte{194, 164, 235, 6, 138, 248, 171, 239, 24, 216, 11, 22, 137, 199, 215, 133}

	token, err := jose.Encrypt(payload, jose.DIR, jose.A128GCM, sharedKey, jose.Zip(jose.DEF))

	if err == nil {
		//go use token
		fmt.Printf("\nDIR A128GCM DEFLATED= %v\n", token)
	}
}
Verifying, Decoding and Decompressing tokens

Decoding json web tokens is fully symmetric to creating signed or encrypted tokens (with respect to public/private cryptography), decompressing deflated payloads is handled automatically:

As of v1.2 decode method defined as jose.Decode() payload string, headers map[string]interface{}, err error and returns both payload as unprocessed string and headers as map.

HS256, HS384, HS512 signatures, A128KW, A192KW, A256KW,A128GCMKW, A192GCMKW, A256GCMKW and DIR key management algorithm expecting []byte array key:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	token := "eyJhbGciOiJIUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.chIoYWrQMA8XL5nFz6oLDJyvgHk2KA4BrFGrKymjC8E"

	sharedKey :=[]byte{97,48,97,50,97,98,100,56,45,54,49,54,50,45,52,49,99,51,45,56,51,100,54,45,49,99,102,53,53,57,98,52,54,97,102,99}

	payload, headers, err := jose.Decode(token,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
	}
}

RS256, RS384, RS512,PS256, PS384, PS512 signatures expecting *rsa.PublicKey public key of corresponding length. jose2go provides convenient utils to construct *rsa.PublicKey instance from PEM encoded PKCS1 X509 certificate or PKIX data: Rsa.ReadPublic([]byte) under jose2go/keys/rsa package:

package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJSUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.NL_dfVpZkhNn4bZpCyMq5TmnXbT4yiyecuB6Kax_lV8Yq2dG8wLfea-T4UKnrjLOwxlbwLwuKzffWcnWv3LVAWfeBxhGTa0c4_0TX_wzLnsgLuU6s9M2GBkAIuSMHY6UTFumJlEeRBeiqZNrlqvmAzQ9ppJHfWWkW4stcgLCLMAZbTqvRSppC1SMxnvPXnZSWn_Fk_q3oGKWw6Nf0-j-aOhK0S0Lcr0PV69ZE4xBYM9PUS1MpMe2zF5J3Tqlc1VBcJ94fjDj1F7y8twmMT3H1PI9RozO-21R0SiXZ_a93fxhE_l_dj5drgOek7jUN9uBDjkXUwJPAyp9YPehrjyLdw"

    keyBytes, err := ioutil.ReadFile("public.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    publicKey, e:=Rsa.ReadPublic(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    payload, headers, err := jose.Decode(token, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}  

RSA-OAEP-256, RSA-OAEP and RSA1_5 key management algorithms expecting *rsa.PrivateKey private key of corresponding length:

package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMjU2R0NNIn0.ixD3WVOkvaxeLKi0kyVqTzM6W2EW25SHHYCAr9473Xq528xSK0AVux6kUtv7QMkQKgkMvO8X4VdvonyGkDZTK2jgYUiI06dz7I1sjWJIbyNVrANbBsmBiwikwB-9DLEaKuM85Lwu6gnzbOF6B9R0428ckxmITCPDrzMaXwYZHh46FiSg9djChUTex0pHGhNDiEIgaINpsmqsOFX1L2Y7KM2ZR7wtpR3kidMV3JlxHdKheiPKnDx_eNcdoE-eogPbRGFdkhEE8Dyass1ZSxt4fP27NwsIer5pc0b922_3XWdi1r1TL_fLvGktHLvt6HK6IruXFHpU4x5Z2gTXWxEIog.zzTNmovBowdX2_hi.QSPSgXn0w25ugvzmu2TnhePn.0I3B9BE064HFNP2E0I7M9g"

    keyBytes, err := ioutil.ReadFile("private.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    privateKey, e:=Rsa.ReadPrivate(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    payload, headers, err := jose.Decode(token, privateKey)

    if(err==nil) {
        //go use payload
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}  

PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW key management algorithms expects string passpharase as a key

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	token :=  `eyJhbGciOiJQQkVTMi1IUzI1NitBMTI4S1ciLCJlbmMiOiJBMjU2R0NNIiwicDJjIjo4MTkyLCJwMnMiOiJlZWpFZTF0YmJVbU5XV2s2In0.J2HTgltxH3p7A2zDgQWpZPgA2CHTSnDmMhlZWeSOMoZ0YvhphCeg-w.FzYG5AOptknu7jsG.L8jAxfxZhDNIqb0T96YWoznQ.yNeOfQWUbm8KuDGZ_5lL_g`

	passphrase := `top secret`

	payload, headers, err := jose.Decode(token,passphrase)

	if(err==nil) {
		//go use token
		fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
	}
}

ES256, ES284, ES512 signatures expecting *ecdsa.PublicKey public elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PublicKey instance from PEM encoded PKCS1 X509 certificate or PKIX data: ecc.ReadPublic([]byte) or directly from X,Y parameters: ecc.NewPublic(x,y []byte)under jose2go/keys/ecc package:

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJFUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.EVnmDMlz-oi05AQzts-R3aqWvaBlwVZddWkmaaHyMx5Phb2NSLgyI0kccpgjjAyo1S5KCB3LIMPfmxCX_obMKA"

	publicKey:=ecc.NewPublic([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
	 			 			 []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53})

    payload, headers, err := jose.Decode(token, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}

ECDH-ES and ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW key management expecting *ecdsa.PrivateKey private elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PrivateKey instance from PEM encoded PKCS1 or PKCS8 data: ecc.ReadPrivate([]byte) or directly from X,Y,D parameters: ecc.NewPrivate(x,y,d []byte) under jose2go/keys/ecc package:

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJFQ0RILUVTIiwiZW5jIjoiQTEyOENCQy1IUzI1NiIsImVwayI6eyJrdHkiOiJFQyIsIngiOiItVk1LTG5NeW9IVHRGUlpGNnFXNndkRm5BN21KQkdiNzk4V3FVMFV3QVhZIiwieSI6ImhQQWNReTgzVS01Qjl1U21xbnNXcFZzbHVoZGJSZE1nbnZ0cGdmNVhXTjgiLCJjcnYiOiJQLTI1NiJ9fQ..UA3N2j-TbYKKD361AxlXUA.XxFur_nY1GauVp5W_KO2DEHfof5s7kUwvOgghiNNNmnB4Vxj5j8VRS8vMOb51nYy2wqmBb2gBf1IHDcKZdACkCOMqMIcpBvhyqbuKiZPLHiilwSgVV6ubIV88X0vK0C8ZPe5lEyRudbgFjdlTnf8TmsvuAsdtPn9dXwDjUR23bD2ocp8UGAV0lKqKzpAw528vTfD0gwMG8gt_op8yZAxqqLLljMuZdTnjofAfsW2Rq3Z6GyLUlxR51DAUlQKi6UpsKMJoXTrm1Jw8sXBHpsRqA.UHCYOtnqk4SfhAknCnymaQ"

	privateKey:=ecc.NewPrivate([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
	 			 			   []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53},
							   []byte{ 42, 148, 231, 48, 225, 196, 166, 201, 23, 190, 229, 199, 20, 39, 226, 70, 209, 148, 29, 70, 125, 14, 174, 66, 9, 198, 80, 251, 95, 107, 98, 206 })

    payload, headers, err := jose.Decode(token, privateKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}
Adding extra headers

It's possible to pass additional headers while encoding token. jose2go provides convenience configuration helpers: Header(name string, value interface{}) and Headers(headers map[string]interface{}) that can be passed to Sign(..) and Encrypt(..) calls.

Note: jose2go do not allow to override alg, enc and zip headers.

Example of signing with extra headers:

	token, err := jose.Sign(payload, jose.ES256, key,
                    		jose.Header("keyid", "111-222-333"),
                    		jose.Header("trans-id", "aaa-bbb"))

Encryption with extra headers:

token, err := jose.Encrypt(payload, jose.DIR, jose.A128GCM, sharedKey,
                    jose.Headers(map[string]interface{}{"keyid": "111-22-33", "cty": "text/plain"}))
Two phase validation

In some cases validation (decoding) key can be unknown prior to examining token content. For instance one can use different keys per token issuer or rely on headers information to determine which key to use, do logging or other things.

jose2go allows to pass func(headers map[string]interface{}, payload string) key interface{} callback instead of key to jose.Decode(..). Callback will be executed prior to decoding and integrity validation and will recieve parsed headers and payload as is (for encrypted tokens it will be cipher text). Callback should return key to be used for actual decoding process or error if decoding should be stopped, given error object will be returned from jose.Decode(..) call.

Example of decoding token with callback:

package main

import (
	"crypto/rsa"
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
	"github.com/dvsekhvalnov/jose2go/keys/rsa"
	"io/ioutil"
	"errors"
)

func main() {

	token := "eyJhbGciOiJSUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.NL_dfVpZkhNn4bZpCyMq5TmnXbT4yiyecuB6Kax_lV8Yq2dG8wLfea-T4UKnrjLOwxlbwLwuKzffWcnWv3LVAWfeBxhGTa0c4_0TX_wzLnsgLuU6s9M2GBkAIuSMHY6UTFumJlEeRBeiqZNrlqvmAzQ9ppJHfWWkW4stcgLCLMAZbTqvRSppC1SMxnvPXnZSWn_Fk_q3oGKWw6Nf0-j-aOhK0S0Lcr0PV69ZE4xBYM9PUS1MpMe2zF5J3Tqlc1VBcJ94fjDj1F7y8twmMT3H1PI9RozO-21R0SiXZ_a93fxhE_l_dj5drgOek7jUN9uBDjkXUwJPAyp9YPehrjyLdw"

	payload, _, err := jose.Decode(token,
		func(headers map[string]interface{}, payload string) interface{} {
            //log something
			fmt.Printf("\nHeaders before decoding: %v\n", headers)
			fmt.Printf("\nPayload before decoding: %v\n", payload)

            //lookup key based on keyid header as en example
            //or lookup based on something from payload, e.g. 'iss' claim for instance
            key := FindKey(headers['keyid'])

            if(key==nil) {
                return errors.New("Key not found")
            }

            return key;
		})

	if err == nil {
		//go use token
		fmt.Printf("\ndecoded payload = %v\n", payload)
	}
}
Working with binary payload

In addition to work with string payloads (typical use-case) jose2go supports encoding and decoding of raw binary data. jose.DecodeBytes, jose.SignBytes and jose.EncryptBytes functions provides similar interface but accepting []byte payloads.

Examples:

package main

import (
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	token :=  `eyJhbGciOiJQQkVTMi1IUzI1NitBMTI4S1ciLCJlbmMiOiJBMjU2R0NNIiwicDJjIjo4MTkyLCJwMnMiOiJlZWpFZTF0YmJVbU5XV2s2In0.J2HTgltxH3p7A2zDgQWpZPgA2CHTSnDmMhlZWeSOMoZ0YvhphCeg-w.FzYG5AOptknu7jsG.L8jAxfxZhDNIqb0T96YWoznQ.yNeOfQWUbm8KuDGZ_5lL_g`

	passphrase := `top secret`

	payload, headers, err := jose.DecodeBytes(token,passphrase)

	if(err==nil) {
		//go use token
		//payload = []byte{....}
	}
}
package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload :=  []byte {0x01, 0x02, 0x03, 0x04}

    keyBytes,err := ioutil.ReadFile("private.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    privateKey,e:=Rsa.ReadPrivate(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    token,err := jose.SignBytes(payload,jose.RS256, privateKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\nRS256 = %v\n",token)
    }
}
package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload :=  []byte {0x01, 0x02, 0x03, 0x04}

    keyBytes,err := ioutil.ReadFile("public.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    publicKey,e:=Rsa.ReadPublic(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    token,err := jose.EncryptBytes(payload, jose.RSA_OAEP, jose.A256GCM, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}  
Dealing with keys

jose2go provides several helper methods to simplify loading & importing of elliptic and rsa keys. Import jose2go/keys/rsa or jose2go/keys/ecc respectively:

RSA keys
  1. Rsa.ReadPrivate(raw []byte) (key *rsa.PrivateKey,err error) attempts to parse RSA private key from PKCS1 or PKCS8 format (BEGIN RSA PRIVATE KEY and BEGIN PRIVATE KEY headers)
package main

import (
	"fmt"
	Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("private.key")

    privateKey, err:=Rsa.ReadPrivate(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("privateKey = %v\n",privateKey)
}
  1. Rsa.ReadPublic(raw []byte) (key *rsa.PublicKey,err error) attempts to parse RSA public key from PKIX key format or PKCS1 X509 certificate (BEGIN PUBLIC KEY and BEGIN CERTIFICATE headers)
package main

import (
	"fmt"
	Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("public.cer")

    publicKey, err:=Rsa.ReadPublic(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("publicKey = %v\n",publicKey)
}
ECC keys
  1. ecc.ReadPrivate(raw []byte) (key *ecdsa.PrivateKey,err error) attemps to parse elliptic curve private key from PKCS1 or PKCS8 format (BEGIN EC PRIVATE KEY and BEGIN PRIVATE KEY headers)
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("ec-private.pem")

    ecPrivKey, err:=ecc.ReadPrivate(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("ecPrivKey = %v\n",ecPrivKey)
}
  1. ecc.ReadPublic(raw []byte) (key *ecdsa.PublicKey,err error) attemps to parse elliptic curve public key from PKCS1 X509 or PKIX format (BEGIN PUBLIC KEY and BEGIN CERTIFICATE headers)
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("ec-public.key")

    ecPubKey, err:=ecc.ReadPublic(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("ecPubKey = %v\n",ecPubKey)
}
  1. ecc.NewPublic(x,y []byte) (*ecdsa.PublicKey) constructs elliptic public key from (X,Y) represented as bytes. Supported are NIST curves P-256,P-384 and P-521. Curve detected automatically by input length.
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
)

func main() {

    ecPubKey:=ecc.NewPublic([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
		 				    []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53})

	fmt.Printf("ecPubKey = %v\n",ecPubKey)
}
  1. ecc.NewPrivate(x,y,d []byte) (*ecdsa.PrivateKey) constructs elliptic private key from (X,Y) and D represented as bytes. Supported are NIST curves P-256,P-384 and P-521. Curve detected automatically by input length.
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
)

func main() {

    ecPrivKey:=ecc.NewPrivate([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
		 					  []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53},
							  []byte{ 42, 148, 231, 48, 225, 196, 166, 201, 23, 190, 229, 199, 20, 39, 226, 70, 209, 148, 29, 70, 125, 14, 174, 66, 9, 198, 80, 251, 95, 107, 98, 206 })

	fmt.Printf("ecPrivKey = %v\n",ecPrivKey)
}
More examples

Checkout jose_test.go for more examples.

Changelog

1.2
  • interface to access token headers after decoding
  • interface to provide extra headers for token encoding
  • two-phase validation support
1.1
  • security and bug fixes
1.0
  • initial stable version with full suite JOSE spec support

Documentation

Overview

Package jose provides high level functions for producing (signing, encrypting and compressing) or consuming (decoding) Json Web Tokens using Java Object Signing and Encryption spec

Index

Constants

View Source
const (
	NONE = "none" //plaintext (unprotected) without signature / encryption

	HS256 = "HS256" //HMAC using SHA-256 hash
	HS384 = "HS384" //HMAC using SHA-384 hash
	HS512 = "HS512" //HMAC using SHA-512 hash
	RS256 = "RS256" //RSASSA-PKCS-v1_5 using SHA-256 hash
	RS384 = "RS384" //RSASSA-PKCS-v1_5 using SHA-384 hash
	RS512 = "RS512" //RSASSA-PKCS-v1_5 using SHA-512 hash
	PS256 = "PS256" //RSASSA-PSS using SHA-256 hash
	PS384 = "PS384" //RSASSA-PSS using SHA-384 hash
	PS512 = "PS512" //RSASSA-PSS using SHA-512 hash
	ES256 = "ES256" //ECDSA using P-256 curve and SHA-256 hash
	ES384 = "ES384" //ECDSA using P-384 curve and SHA-384 hash
	ES512 = "ES512" //ECDSA using P-521 curve and SHA-512 hash

	A128CBC_HS256 = "A128CBC-HS256" //AES in CBC mode with PKCS #5 (NIST.800-38A) padding with HMAC using 256 bit key
	A192CBC_HS384 = "A192CBC-HS384" //AES in CBC mode with PKCS #5 (NIST.800-38A) padding with HMAC using 384 bit key
	A256CBC_HS512 = "A256CBC-HS512" //AES in CBC mode with PKCS #5 (NIST.800-38A) padding with HMAC using 512 bit key
	A128GCM       = "A128GCM"       //AES in GCM mode with 128 bit key
	A192GCM       = "A192GCM"       //AES in GCM mode with 192 bit key
	A256GCM       = "A256GCM"       //AES in GCM mode with 256 bit key

	DIR                = "dir"                //Direct use of pre-shared symmetric key
	RSA1_5             = "RSA1_5"             //RSAES with PKCS #1 v1.5 padding, RFC 3447
	RSA_OAEP           = "RSA-OAEP"           //RSAES using Optimal Assymetric Encryption Padding, RFC 3447
	RSA_OAEP_256       = "RSA-OAEP-256"       //RSAES using Optimal Assymetric Encryption Padding with SHA-256, RFC 3447
	A128KW             = "A128KW"             //AES Key Wrap Algorithm using 128 bit keys, RFC 3394
	A192KW             = "A192KW"             //AES Key Wrap Algorithm using 192 bit keys, RFC 3394
	A256KW             = "A256KW"             //AES Key Wrap Algorithm using 256 bit keys, RFC 3394
	A128GCMKW          = "A128GCMKW"          //AES GCM Key Wrap Algorithm using 128 bit keys
	A192GCMKW          = "A192GCMKW"          //AES GCM Key Wrap Algorithm using 192 bit keys
	A256GCMKW          = "A256GCMKW"          //AES GCM Key Wrap Algorithm using 256 bit keys
	PBES2_HS256_A128KW = "PBES2-HS256+A128KW" //Password Based Encryption using PBES2 schemes with HMAC-SHA and AES Key Wrap using 128 bit key
	PBES2_HS384_A192KW = "PBES2-HS384+A192KW" //Password Based Encryption using PBES2 schemes with HMAC-SHA and AES Key Wrap using 192 bit key
	PBES2_HS512_A256KW = "PBES2-HS512+A256KW" //Password Based Encryption using PBES2 schemes with HMAC-SHA and AES Key Wrap using 256 bit key
	ECDH_ES            = "ECDH-ES"            //Elliptic Curve Diffie Hellman key agreement
	ECDH_ES_A128KW     = "ECDH-ES+A128KW"     //Elliptic Curve Diffie Hellman key agreement with AES Key Wrap using 128 bit key
	ECDH_ES_A192KW     = "ECDH-ES+A192KW"     //Elliptic Curve Diffie Hellman key agreement with AES Key Wrap using 192 bit key
	ECDH_ES_A256KW     = "ECDH-ES+A256KW"     //Elliptic Curve Diffie Hellman key agreement with AES Key Wrap using 256 bit key

	DEF = "DEF" //DEFLATE compression, RFC 1951
)

Variables

This section is empty.

Functions

func Compress

func Compress(payload string, alg string, enc string, zip string, key interface{}) (token string, err error)

This method is DEPRICATED and subject to be removed in next version. Use Encrypt(..) with Zip option instead.

Compress produces encrypted & comressed JWT token given arbitrary payload, key management , encryption and compression algorithms to use (see constants for list of supported algs) and management key. Management key is of different type for different key management alg, see specific key management alg implementation documentation.

It returns 5 parts encrypted & compressed JWT token as string and not nil error if something went wrong.

func Decode

func Decode(token string, key interface{}) (string, map[string]interface{}, error)

Decode verifies, decrypts and decompresses given JWT token using management key. Management key is of different type for different key management or signing algorithms, see specific alg implementation documentation.

Returns decoded payload as a string, headers and not nil error if something went wrong.

func DecodeBytes

func DecodeBytes(token string, key interface{}) ([]byte, map[string]interface{}, error)

Decode verifies, decrypts and decompresses given JWT token using management key. Management key is of different type for different key management or signing algorithms, see specific alg implementation documentation.

Returns decoded payload as a raw bytes, headers and not nil error if something went wrong.

func Encrypt

func Encrypt(payload string, alg string, enc string, key interface{}, options ...func(*JoseConfig)) (token string, err error)

Encrypt produces encrypted JWT token given arbitrary string payload, key management and encryption algorithms to use (see constants for list of supported algs) and management key. Management key is of different type for different key management alg, see specific key management alg implementation documentation.

It returns 5 parts encrypted JWT token as string and not nil error if something went wrong.

func EncryptBytes

func EncryptBytes(payload []byte, alg string, enc string, key interface{}, options ...func(*JoseConfig)) (token string, err error)

Encrypt produces encrypted JWT token given arbitrary binary payload, key management and encryption algorithms to use (see constants for list of supported algs) and management key. Management key is of different type for different key management alg, see specific key management alg implementation documentation.

It returns 5 parts encrypted JWT token as string and not nil error if something went wrong.

func Header(name string, value interface{}) func(cfg *JoseConfig)

func Headers

func Headers(headers map[string]interface{}) func(cfg *JoseConfig)

func RegisterJwa

func RegisterJwa(alg JwaAlgorithm)

RegisterJwa register new key management algorithm

func RegisterJwc

func RegisterJwc(alg JwcAlgorithm)

RegisterJwc register new compression algorithm

func RegisterJwe

func RegisterJwe(alg JweEncryption)

RegisterJwe register new encryption algorithm

func RegisterJws

func RegisterJws(alg JwsAlgorithm)

RegisterJws register new signing algorithm

func Sign

func Sign(payload string, signingAlg string, key interface{}, options ...func(*JoseConfig)) (token string, err error)

Sign produces signed JWT token given arbitrary string payload, signature algorithm to use (see constants for list of supported algs), signing key and extra options (see option functions) Signing key is of different type for different signing alg, see specific signing alg implementation documentation.

It returns 3 parts signed JWT token as string and not nil error if something went wrong.

func SignBytes

func SignBytes(payload []byte, signingAlg string, key interface{}, options ...func(*JoseConfig)) (token string, err error)

Sign produces signed JWT token given arbitrary binary payload, signature algorithm to use (see constants for list of supported algs), signing key and extra options (see option functions) Signing key is of different type for different signing alg, see specific signing alg implementation documentation.

It returns 3 parts signed JWT token as string and not nil error if something went wrong.

func Zip

func Zip(alg string) func(cfg *JoseConfig)

Types

type AesCbcHmac

type AesCbcHmac struct {
	// contains filtered or unexported fields
}

AES CBC with HMAC authenticated encryption algorithm implementation

func (*AesCbcHmac) Decrypt

func (alg *AesCbcHmac) Decrypt(aad, cek, iv, cipherText, authTag []byte) (plainText []byte, err error)

func (*AesCbcHmac) Encrypt

func (alg *AesCbcHmac) Encrypt(aad, plainText, cek []byte) (iv, cipherText, authTag []byte, err error)

func (*AesCbcHmac) KeySizeBits

func (alg *AesCbcHmac) KeySizeBits() int

func (*AesCbcHmac) Name

func (alg *AesCbcHmac) Name() string

func (*AesCbcHmac) SetKeySizeBits

func (alg *AesCbcHmac) SetKeySizeBits(bits int)

type AesGcm

type AesGcm struct {
	// contains filtered or unexported fields
}

AES GCM authenticated encryption algorithm implementation

func (*AesGcm) Decrypt

func (alg *AesGcm) Decrypt(aad, cek, iv, cipherText, authTag []byte) (plainText []byte, err error)

func (*AesGcm) Encrypt

func (alg *AesGcm) Encrypt(aad, plainText, cek []byte) (iv, cipherText, authTag []byte, err error)

func (*AesGcm) KeySizeBits

func (alg *AesGcm) KeySizeBits() int

func (*AesGcm) Name

func (alg *AesGcm) Name() string

type AesGcmKW

type AesGcmKW struct {
	// contains filtered or unexported fields
}

AES GCM Key Wrap key management algorithm implementation

func (*AesGcmKW) Name

func (alg *AesGcmKW) Name() string

func (*AesGcmKW) Unwrap

func (alg *AesGcmKW) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*AesGcmKW) WrapNewKey

func (alg *AesGcmKW) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type AesKW

type AesKW struct {
	// contains filtered or unexported fields
}

AES Key Wrap key management algorithm implementation

func (*AesKW) Name

func (alg *AesKW) Name() string

func (*AesKW) Unwrap

func (alg *AesKW) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*AesKW) WrapNewKey

func (alg *AesKW) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type Deflate

type Deflate struct{}

Deflate compression algorithm implementation

func (*Deflate) Compress

func (alg *Deflate) Compress(plainText []byte) []byte

func (*Deflate) Decompress

func (alg *Deflate) Decompress(compressedText []byte) []byte

func (*Deflate) Name

func (alg *Deflate) Name() string

type Direct

type Direct struct {
}

Direct (pre-shared) key management algorithm implementation

func (*Direct) Name

func (alg *Direct) Name() string

func (*Direct) Unwrap

func (alg *Direct) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*Direct) WrapNewKey

func (alg *Direct) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type Ecdh

type Ecdh struct {
	// contains filtered or unexported fields
}

Elliptic curve Diffie–Hellman key management (key agreement) algorithm implementation

func (*Ecdh) Name

func (alg *Ecdh) Name() string

func (*Ecdh) Unwrap

func (alg *Ecdh) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*Ecdh) WrapNewKey

func (alg *Ecdh) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type EcdhAesKW

type EcdhAesKW struct {
	// contains filtered or unexported fields
}

Elliptic curve Diffie–Hellman with AES Key Wrap key management algorithm implementation

func (*EcdhAesKW) Name

func (alg *EcdhAesKW) Name() string

func (*EcdhAesKW) Unwrap

func (alg *EcdhAesKW) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*EcdhAesKW) WrapNewKey

func (alg *EcdhAesKW) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type EcdsaUsingSha

type EcdsaUsingSha struct {
	// contains filtered or unexported fields
}

ECDSA signing algorithm implementation

func (*EcdsaUsingSha) Name

func (alg *EcdsaUsingSha) Name() string

func (*EcdsaUsingSha) Sign

func (alg *EcdsaUsingSha) Sign(securedInput []byte, key interface{}) (signature []byte, err error)

func (*EcdsaUsingSha) Verify

func (alg *EcdsaUsingSha) Verify(securedInput, signature []byte, key interface{}) error

type HmacUsingSha

type HmacUsingSha struct {
	// contains filtered or unexported fields
}

HMAC with SHA signing algorithm implementation

func (*HmacUsingSha) Name

func (alg *HmacUsingSha) Name() string

func (*HmacUsingSha) Sign

func (alg *HmacUsingSha) Sign(securedInput []byte, key interface{}) (signature []byte, err error)

func (*HmacUsingSha) Verify

func (alg *HmacUsingSha) Verify(securedInput, signature []byte, key interface{}) error

type JoseConfig

type JoseConfig struct {
	CompressionAlg string
	Headers        map[string]interface{}
}

type JwaAlgorithm

type JwaAlgorithm interface {
	WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)
	Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)
	Name() string
}

JwaAlgorithm is a contract for implementing key management algorithm

type JwcAlgorithm

type JwcAlgorithm interface {
	Compress(plainText []byte) []byte
	Decompress(compressedText []byte) []byte
	Name() string
}

JwcAlgorithm is a contract for implementing compression algorithm

type JweEncryption

type JweEncryption interface {
	Encrypt(aad, plainText, cek []byte) (iv, cipherText, authTag []byte, err error)
	Decrypt(aad, cek, iv, cipherText, authTag []byte) (plainText []byte, err error)
	KeySizeBits() int
	Name() string
}

JweEncryption is a contract for implementing encryption algorithm

type JwsAlgorithm

type JwsAlgorithm interface {
	Verify(securedInput, signature []byte, key interface{}) error
	Sign(securedInput []byte, key interface{}) (signature []byte, err error)
	Name() string
}

JwsAlgorithm is a contract for implementing signing algorithm

type Pbse2HmacAesKW

type Pbse2HmacAesKW struct {
	// contains filtered or unexported fields
}

PBSE2 with HMAC key management algorithm implementation

func (*Pbse2HmacAesKW) Name

func (alg *Pbse2HmacAesKW) Name() string

func (*Pbse2HmacAesKW) Unwrap

func (alg *Pbse2HmacAesKW) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*Pbse2HmacAesKW) WrapNewKey

func (alg *Pbse2HmacAesKW) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type Plaintext

type Plaintext struct{}

Plaintext (no signing) signing algorithm implementation

func (*Plaintext) Name

func (alg *Plaintext) Name() string

func (*Plaintext) Sign

func (alg *Plaintext) Sign(securedInput []byte, key interface{}) (signature []byte, err error)

func (*Plaintext) Verify

func (alg *Plaintext) Verify(securedInput []byte, signature []byte, key interface{}) error

type RsaOaep

type RsaOaep struct {
	// contains filtered or unexported fields
}

func (*RsaOaep) Name

func (alg *RsaOaep) Name() string

func (*RsaOaep) Unwrap

func (alg *RsaOaep) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*RsaOaep) WrapNewKey

func (alg *RsaOaep) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type RsaPkcs1v15

type RsaPkcs1v15 struct {
}

RS-AES using PKCS #1 v1.5 padding key management algorithm implementation

func (*RsaPkcs1v15) Name

func (alg *RsaPkcs1v15) Name() string

func (*RsaPkcs1v15) Unwrap

func (alg *RsaPkcs1v15) Unwrap(encryptedCek []byte, key interface{}, cekSizeBits int, header map[string]interface{}) (cek []byte, err error)

func (*RsaPkcs1v15) WrapNewKey

func (alg *RsaPkcs1v15) WrapNewKey(cekSizeBits int, key interface{}, header map[string]interface{}) (cek []byte, encryptedCek []byte, err error)

type RsaPssUsingSha

type RsaPssUsingSha struct {
	// contains filtered or unexported fields
}

RSA with PSS using SHA signing algorithm implementation

func (*RsaPssUsingSha) Name

func (alg *RsaPssUsingSha) Name() string

func (*RsaPssUsingSha) Sign

func (alg *RsaPssUsingSha) Sign(securedInput []byte, key interface{}) (signature []byte, err error)

func (*RsaPssUsingSha) Verify

func (alg *RsaPssUsingSha) Verify(securedInput, signature []byte, key interface{}) error

type RsaUsingSha

type RsaUsingSha struct {
	// contains filtered or unexported fields
}

RSA using SHA signature algorithm implementation

func (*RsaUsingSha) Name

func (alg *RsaUsingSha) Name() string

func (*RsaUsingSha) Sign

func (alg *RsaUsingSha) Sign(securedInput []byte, key interface{}) (signature []byte, err error)

func (*RsaUsingSha) Verify

func (alg *RsaUsingSha) Verify(securedInput, signature []byte, key interface{}) error

Directories

Path Synopsis
Package aes contains provides AES Key Wrap and ECB mode implementations
Package aes contains provides AES Key Wrap and ECB mode implementations
Package arrays provides various byte array utilities
Package arrays provides various byte array utilities
package base64url provides base64url encoding/decoding support
package base64url provides base64url encoding/decoding support
package compact provides function to work with json compact serialization format
package compact provides function to work with json compact serialization format
package kdf contains implementations of various key derivation functions
package kdf contains implementations of various key derivation functions
keys
ecc
package ecc provides helpers for creating elliptic curve leys
package ecc provides helpers for creating elliptic curve leys
rsa
package Rsa provides helpers for creating rsa leys
package Rsa provides helpers for creating rsa leys
package padding provides various padding algorithms
package padding provides various padding algorithms

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL