big

package
v0.0.0-...-6d44844 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Mar 19, 2015 License: BSD-3-Clause Imports: 9 Imported by: 0

Documentation ΒΆ

Overview ΒΆ

Package big implements multi-precision arithmetic (big numbers). The following numeric types are supported:

Int    signed integers
Rat    rational numbers
Float  floating-point numbers

Methods are typically of the form:

func (z *T) Unary(x *T) *T        // z = op x
func (z *T) Binary(x, y *T) *T    // z = x op y
func (x *T) M() T1                // v = x.M()

with T one of Int, Rat, or Float. For unary and binary operations, the result is the receiver (usually named z in that case); if it is one of the operands x or y it may be overwritten (and its memory reused). To enable chaining of operations, the result is also returned. Methods returning a result other than *Int, *Rat, or *Float take an operand as the receiver (usually named x in that case).

Index ΒΆ

Examples ΒΆ

Constants ΒΆ

View Source
const (
	MaxExp  = math.MaxInt32  // largest supported exponent
	MinExp  = math.MinInt32  // smallest supported exponent
	MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
)

Exponent and precision limits.

View Source
const MaxBase = 'z' - 'a' + 10 + 1

MaxBase is the largest number base accepted for string conversions.

Variables ΒΆ

This section is empty.

Functions ΒΆ

This section is empty.

Types ΒΆ

type Accuracy ΒΆ

type Accuracy byte

Accuracy describes the rounding error produced by the most recent operation that generated a Float value, relative to the exact value. The accuracy is Undef for operations on and resulting in NaNs since they are neither Below nor Above any other value.

const (
	Exact Accuracy = 0
	Below Accuracy = 1 << 0
	Above Accuracy = 1 << 1
	Undef Accuracy = Below | Above
)

Constants describing the Accuracy of a Float.

func (Accuracy) String ΒΆ

func (i Accuracy) String() string

type Float ΒΆ

type Float struct {
	// contains filtered or unexported fields
}

A nonzero finite Float represents a multi-precision floating point number

sign Γ— mantissa Γ— 2**exponent

with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp. A Float may also be zero (+0, -0), infinite (+Inf, -Inf) or not-a-number (NaN). Except for NaNs, all Floats are ordered, and the ordering of two Floats x and y is defined by x.Cmp(y). NaNs are always different from any other Float value.

Each Float value also has a precision, rounding mode, and accuracy. The precision is the maximum number of mantissa bits available to represent the value. The rounding mode specifies how a result should be rounded to fit into the mantissa bits, and accuracy describes the rounding error with respect to the exact result.

All operations, including setters, that specify a *Float variable for the result (usually via the receiver with the exception of MantExp), round the numeric result according to the precision and rounding mode of the result variable, unless specified otherwise.

If the provided result precision is 0 (see below), it is set to the precision of the argument with the largest precision value before any rounding takes place, and the rounding mode remains unchanged. Thus, uninitialized Floats provided as result arguments will have their precision set to a reasonable value determined by the operands and their mode is the zero value for RoundingMode (ToNearestEven).

By setting the desired precision to 24 or 53 and using matching rounding mode (typically ToNearestEven), Float operations produce the same results as the corresponding float32 or float64 IEEE-754 arithmetic. Exponent underflow and overflow lead to a 0 or an Infinity for different values than IEEE-754 because Float exponents have a much larger range.

The zero (uninitialized) value for a Float is ready to use and represents the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.

func NewFloat ΒΆ

func NewFloat(x float64) *Float

NewFloat allocates and returns a new Float set to x, with precision 53 and rounding mode ToNearestEven.

func ParseFloat ΒΆ

func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error)

ParseFloat is like f.Parse(s, base) with f set to the given precision and rounding mode.

func ScanFloat ΒΆ

func ScanFloat(r io.ByteScanner, base int, prec uint, mode RoundingMode) (f *Float, b int, err error)

ScanFloat is like f.Scan(r, base) with f set to the given precision and rounding mode.

func (*Float) Abs ΒΆ

func (z *Float) Abs(x *Float) *Float

Abs sets z to the (possibly rounded) value |x| (the absolute value of x) and returns z.

func (*Float) Acc ΒΆ

func (x *Float) Acc() Accuracy

Acc returns the accuracy of x produced by the most recent operation.

func (*Float) Add ΒΆ

func (z *Float) Add(x, y *Float) *Float

Add sets z to the rounded sum x+y and returns z. If z's precision is 0, it is changed to the larger of x's or y's precision before the operation. Rounding is performed according to z's precision and rounding mode; and z's accuracy reports the result error relative to the exact (not rounded) result. BUG(gri) Float.Add returns NaN if an operand is Inf. BUG(gri) When rounding ToNegativeInf, the sign of Float values rounded to 0 is incorrect.

Example ΒΆ
package main

import (
	"fmt"
	"math/big"
)

func main() {
	// Operating on numbers of different precision.
	var x, y, z big.Float
	x.SetInt64(1000)          // x is automatically set to 64bit precision
	y.SetFloat64(2.718281828) // y is automatically set to 53bit precision
	z.SetPrec(32)
	z.Add(&x, &y)
	fmt.Printf("x = %s (%s, prec = %d, acc = %s)\n", &x, x.Format('p', 0), x.Prec(), x.Acc())
	fmt.Printf("y = %s (%s, prec = %d, acc = %s)\n", &y, y.Format('p', 0), y.Prec(), y.Acc())
	fmt.Printf("z = %s (%s, prec = %d, acc = %s)\n", &z, z.Format('p', 0), z.Prec(), z.Acc())
}
Output:

x = 1000 (0x.fap10, prec = 64, acc = Exact)
y = 2.718281828 (0x.adf85458248cd8p2, prec = 53, acc = Exact)
z = 1002.718282 (0x.faadf854p10, prec = 32, acc = Below)

func (*Float) Append ΒΆ

func (x *Float) Append(buf []byte, format byte, prec int) []byte

Append appends the string form of the floating-point number x, as generated by x.Format, to buf and returns the extended buffer.

func (*Float) Cmp ΒΆ

func (x *Float) Cmp(y *Float) cmpResult

Cmp compares x and y and returns:

Below if x <  y
Exact if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf)
Above if x >  y
Undef if any of x, y is NaN
Example ΒΆ
package main

import (
	"fmt"
	"math"
	"math/big"
)

func main() {
	inf := math.Inf(1)
	zero := 0.0
	nan := math.NaN()

	operands := []float64{-inf, -1.2, -zero, 0, +1.2, +inf, nan}

	fmt.Println("   x     y   cmp   eql  neq  lss  leq  gtr  geq")
	fmt.Println("-----------------------------------------------")
	for _, x64 := range operands {
		x := big.NewFloat(x64)
		for _, y64 := range operands {
			y := big.NewFloat(y64)
			t := x.Cmp(y)
			fmt.Printf(
				"%4s  %4s  %5s   %c    %c    %c    %c    %c    %c\n",
				x, y, t.Acc(),
				mark(t.Eql()), mark(t.Neq()), mark(t.Lss()), mark(t.Leq()), mark(t.Gtr()), mark(t.Geq()))
		}
		fmt.Println()
	}

}

func mark(p bool) rune {
	if p {
		return '●'
	}
	return 'β—‹'
}
Output:

   x     y   cmp   eql  neq  lss  leq  gtr  geq
-----------------------------------------------
-Inf  -Inf  Exact   ●    β—‹    β—‹    ●    β—‹    ●
-Inf  -1.2  Below   β—‹    ●    ●    ●    β—‹    β—‹
-Inf    -0  Below   β—‹    ●    ●    ●    β—‹    β—‹
-Inf     0  Below   β—‹    ●    ●    ●    β—‹    β—‹
-Inf   1.2  Below   β—‹    ●    ●    ●    β—‹    β—‹
-Inf  +Inf  Below   β—‹    ●    ●    ●    β—‹    β—‹
-Inf   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

-1.2  -Inf  Above   β—‹    ●    β—‹    β—‹    ●    ●
-1.2  -1.2  Exact   ●    β—‹    β—‹    ●    β—‹    ●
-1.2    -0  Below   β—‹    ●    ●    ●    β—‹    β—‹
-1.2     0  Below   β—‹    ●    ●    ●    β—‹    β—‹
-1.2   1.2  Below   β—‹    ●    ●    ●    β—‹    β—‹
-1.2  +Inf  Below   β—‹    ●    ●    ●    β—‹    β—‹
-1.2   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

  -0  -Inf  Above   β—‹    ●    β—‹    β—‹    ●    ●
  -0  -1.2  Above   β—‹    ●    β—‹    β—‹    ●    ●
  -0    -0  Exact   ●    β—‹    β—‹    ●    β—‹    ●
  -0     0  Exact   ●    β—‹    β—‹    ●    β—‹    ●
  -0   1.2  Below   β—‹    ●    ●    ●    β—‹    β—‹
  -0  +Inf  Below   β—‹    ●    ●    ●    β—‹    β—‹
  -0   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

   0  -Inf  Above   β—‹    ●    β—‹    β—‹    ●    ●
   0  -1.2  Above   β—‹    ●    β—‹    β—‹    ●    ●
   0    -0  Exact   ●    β—‹    β—‹    ●    β—‹    ●
   0     0  Exact   ●    β—‹    β—‹    ●    β—‹    ●
   0   1.2  Below   β—‹    ●    ●    ●    β—‹    β—‹
   0  +Inf  Below   β—‹    ●    ●    ●    β—‹    β—‹
   0   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

 1.2  -Inf  Above   β—‹    ●    β—‹    β—‹    ●    ●
 1.2  -1.2  Above   β—‹    ●    β—‹    β—‹    ●    ●
 1.2    -0  Above   β—‹    ●    β—‹    β—‹    ●    ●
 1.2     0  Above   β—‹    ●    β—‹    β—‹    ●    ●
 1.2   1.2  Exact   ●    β—‹    β—‹    ●    β—‹    ●
 1.2  +Inf  Below   β—‹    ●    ●    ●    β—‹    β—‹
 1.2   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

+Inf  -Inf  Above   β—‹    ●    β—‹    β—‹    ●    ●
+Inf  -1.2  Above   β—‹    ●    β—‹    β—‹    ●    ●
+Inf    -0  Above   β—‹    ●    β—‹    β—‹    ●    ●
+Inf     0  Above   β—‹    ●    β—‹    β—‹    ●    ●
+Inf   1.2  Above   β—‹    ●    β—‹    β—‹    ●    ●
+Inf  +Inf  Exact   ●    β—‹    β—‹    ●    β—‹    ●
+Inf   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

 NaN  -Inf  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹
 NaN  -1.2  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹
 NaN    -0  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹
 NaN     0  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹
 NaN   1.2  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹
 NaN  +Inf  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹
 NaN   NaN  Undef   β—‹    ●    β—‹    β—‹    β—‹    β—‹

func (*Float) Copy ΒΆ

func (z *Float) Copy(x *Float) *Float

Copy sets z to x, with the same precision, rounding mode, and accuracy as x, and returns z. x is not changed even if z and x are the same.

func (*Float) Float64 ΒΆ

func (x *Float) Float64() (float64, Accuracy)

Float64 returns the closest float64 value of x by rounding to nearest with 53 bits precision. BUG(gri) Float.Float64 doesn't handle exponent overflow.

func (*Float) Format ΒΆ

func (x *Float) Format(format byte, prec int) string

Format converts the floating-point number x to a string according to the given format and precision prec. The format is one of:

'e'	-d.ddddeΒ±dd, decimal exponent, at least two (possibly 0) exponent digits
'E'	-d.ddddEΒ±dd, decimal exponent, at least two (possibly 0) exponent digits
'f'	-ddddd.dddd, no exponent
'g'	like 'e' for large exponents, like 'f' otherwise
'G'	like 'E' for large exponents, like 'f' otherwise
'b'	-ddddddpΒ±dd, binary exponent
'p'	-0x.dddpΒ±dd, binary exponent, hexadecimal mantissa

For the binary exponent formats, the mantissa is printed in normalized form:

'b'	decimal integer mantissa using x.Prec() bits, or -0
'p'	hexadecimal fraction with 0.5 <= 0.mantissa < 1.0, or -0

The precision prec controls the number of digits (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats. For 'e', 'E', and 'f' it is the number of digits after the decimal point. For 'g' and 'G' it is the total number of digits. A negative precision selects the smallest number of digits necessary such that ParseFloat will return f exactly. The prec value is ignored for the 'b' or 'p' format.

BUG(gri) Float.Format does not accept negative precisions.

func (*Float) Int ΒΆ

func (x *Float) Int(z *Int) (*Int, Accuracy)

Int returns the result of truncating x towards zero; or nil if x is an infinity or NaN. The result is Exact if x.IsInt(); otherwise it is Below for x > 0, and Above for x < 0. If a non-nil *Int argument z is provided, Int stores the result in z instead of allocating a new Int.

func (*Float) Int64 ΒΆ

func (x *Float) Int64() (int64, Accuracy)

Int64 returns the integer resulting from truncating x towards zero. If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is an integer, and Above (x < 0) or Below (x > 0) otherwise. The result is (math.MinInt64, Above) for x < math.MinInt64, (math.MaxInt64, Below) for x > math.MaxInt64, and (0, Undef) for NaNs.

func (*Float) IsFinite ΒΆ

func (x *Float) IsFinite() bool

IsFinite reports whether -Inf < x < Inf. A NaN value is not finite.

func (*Float) IsInf ΒΆ

func (x *Float) IsInf() bool

IsInf reports whether x is +Inf or -Inf.

func (*Float) IsInt ΒΆ

func (x *Float) IsInt() bool

IsInt reports whether x is an integer. Β±Inf and NaN values are not integers.

func (*Float) IsNaN ΒΆ

func (x *Float) IsNaN() bool

IsNaN reports whether x is a NaN value.

func (*Float) IsNeg ΒΆ

func (x *Float) IsNeg() bool

IsNeg reports whether x is negative. A NaN value is not negative.

func (*Float) IsZero ΒΆ

func (x *Float) IsZero() bool

IsZero reports whether x is +0 or -0.

func (*Float) MantExp ΒΆ

func (x *Float) MantExp(mant *Float) (exp int)

MantExp breaks x into its mantissa and exponent components and returns the exponent. If a non-nil mant argument is provided its value is set to the mantissa of x, with the same precision and rounding mode as x. The components satisfy x == mant Γ— 2**exp, with 0.5 <= |mant| < 1.0. Calling MantExp with a nil argument is an efficient way to get the exponent of the receiver.

Special cases are:

(  Β±0).MantExp(mant) = 0, with mant set to   Β±0
(Β±Inf).MantExp(mant) = 0, with mant set to Β±Inf
( NaN).MantExp(mant) = 0, with mant set to  NaN

x and mant may be the same in which case x is set to its mantissa value.

func (*Float) MinPrec ΒΆ

func (x *Float) MinPrec() uint

MinPrec returns the minimum precision required to represent x exactly (i.e., the smallest prec before x.SetPrec(prec) would start rounding x). The result is 0 if x is 0 or not finite.

func (*Float) Mode ΒΆ

func (x *Float) Mode() RoundingMode

Mode returns the rounding mode of x.

func (*Float) Mul ΒΆ

func (z *Float) Mul(x, y *Float) *Float

Mul sets z to the rounded product x*y and returns z. Precision, rounding, and accuracy reporting are as for Add. BUG(gri) Float.Mul returns NaN if an operand is Inf.

func (*Float) Neg ΒΆ

func (z *Float) Neg(x *Float) *Float

Neg sets z to the (possibly rounded) value of x with its sign negated, and returns z.

func (*Float) Parse ΒΆ

func (z *Float) Parse(s string, base int) (f *Float, b int, err error)

Parse is like z.Scan(r, base), but instead of reading from an io.ByteScanner, it parses the string s. An error is also returned if the string contains invalid or trailing bytes not belonging to the number.

func (*Float) Prec ΒΆ

func (x *Float) Prec() uint

Prec returns the mantissa precision of x in bits. The result may be 0 for |x| == 0, |x| == Inf, or NaN.

func (*Float) Quo ΒΆ

func (z *Float) Quo(x, y *Float) *Float

Quo sets z to the rounded quotient x/y and returns z. Precision, rounding, and accuracy reporting are as for Add. BUG(gri) Float.Quo returns NaN if an operand is Inf.

func (*Float) Rat ΒΆ

func (x *Float) Rat(z *Rat) (*Rat, Accuracy)

Rat returns the rational number corresponding to x; or nil if x is an infinity or NaN. The result is Exact is x is not an Inf or NaN. If a non-nil *Rat argument z is provided, Rat stores the result in z instead of allocating a new Rat.

func (*Float) Scan ΒΆ

func (z *Float) Scan(r io.ByteScanner, base int) (f *Float, b int, err error)

Scan scans the number corresponding to the longest possible prefix of r representing a floating-point number with a mantissa in the given conversion base (the exponent is always a decimal number). It sets z to the (possibly rounded) value of the corresponding floating-point number, and returns z, the actual base b, and an error err, if any. If z's precision is 0, it is changed to 64 before rounding takes effect. The number must be of the form:

	number   = [ sign ] [ prefix ] mantissa [ exponent ] .
	sign     = "+" | "-" .
     prefix   = "0" ( "x" | "X" | "b" | "B" ) .
	mantissa = digits | digits "." [ digits ] | "." digits .
	exponent = ( "E" | "e" | "p" ) [ sign ] digits .
	digits   = digit { digit } .
	digit    = "0" ... "9" | "a" ... "z" | "A" ... "Z" .

The base argument must be 0, 2, 10, or 16. Providing an invalid base argument will lead to a run-time panic.

For base 0, the number prefix determines the actual base: A prefix of "0x" or "0X" selects base 16, and a "0b" or "0B" prefix selects base 2; otherwise, the actual base is 10 and no prefix is accepted. The octal prefix "0" is not supported (a leading "0" is simply considered a "0").

A "p" exponent indicates a binary (rather then decimal) exponent; for instance "0x1.fffffffffffffp1023" (using base 0) represents the maximum float64 value. For hexadecimal mantissae, the exponent must be binary, if present (an "e" or "E" exponent indicator cannot be distinguished from a mantissa digit).

The returned *Float f is nil and the value of z is valid but not defined if an error is reported.

BUG(gri) The Float.Scan signature conflicts with Scan(s fmt.ScanState, ch rune) error.

func (*Float) Set ΒΆ

func (z *Float) Set(x *Float) *Float

Set sets z to the (possibly rounded) value of x and returns z. If z's precision is 0, it is changed to the precision of x before setting z (and rounding will have no effect). Rounding is performed according to z's precision and rounding mode; and z's accuracy reports the result error relative to the exact (not rounded) result.

func (*Float) SetFloat64 ΒΆ

func (z *Float) SetFloat64(x float64) *Float

SetFloat64 sets z to the (possibly rounded) value of x and returns z. If z's precision is 0, it is changed to 53 (and rounding will have no effect).

func (*Float) SetInf ΒΆ

func (z *Float) SetInf(sign int) *Float

SetInf sets z to the infinite Float +Inf for sign >= 0, or -Inf for sign < 0, and returns z. The precision of z is unchanged and the result is always Exact.

func (*Float) SetInt ΒΆ

func (z *Float) SetInt(x *Int) *Float

SetInt sets z to the (possibly rounded) value of x and returns z. If z's precision is 0, it is changed to the larger of x.BitLen() or 64 (and rounding will have no effect).

func (*Float) SetInt64 ΒΆ

func (z *Float) SetInt64(x int64) *Float

SetInt64 sets z to the (possibly rounded) value of x and returns z. If z's precision is 0, it is changed to 64 (and rounding will have no effect).

func (*Float) SetMantExp ΒΆ

func (z *Float) SetMantExp(mant *Float, exp int) *Float

SetMantExp sets z to mant Γ— 2**exp and and returns z. The result z has the same precision and rounding mode as mant. SetMantExp is an inverse of MantExp but does not require 0.5 <= |mant| < 1.0. Specifically:

mant := new(Float)
new(Float).SetMantExp(mant, x.SetMantExp(mant)).Cmp(x).Eql() is true

Special cases are:

z.SetMantExp(  Β±0, exp) =   Β±0
z.SetMantExp(Β±Inf, exp) = Β±Inf
z.SetMantExp( NaN, exp) =  NaN

z and mant may be the same in which case z's exponent is set to exp.

func (*Float) SetMode ΒΆ

func (z *Float) SetMode(mode RoundingMode) *Float

SetMode sets z's rounding mode to mode and returns an exact z. z remains unchanged otherwise. z.SetMode(z.Mode()) is a cheap way to set z's accuracy to Exact.

func (*Float) SetNaN ΒΆ

func (z *Float) SetNaN() *Float

SetNaN sets z to a NaN value, and returns z. The precision of z is unchanged and the result accuracy is always Undef.

func (*Float) SetPrec ΒΆ

func (z *Float) SetPrec(prec uint) *Float

SetPrec sets z's precision to prec and returns the (possibly) rounded value of z. Rounding occurs according to z's rounding mode if the mantissa cannot be represented in prec bits without loss of precision. SetPrec(0) maps all finite values to Β±0; infinite and NaN values remain unchanged. If prec > MaxPrec, it is set to MaxPrec.

func (*Float) SetRat ΒΆ

func (z *Float) SetRat(x *Rat) *Float

SetRat sets z to the (possibly rounded) value of x and returns z. If z's precision is 0, it is changed to the largest of a.BitLen(), b.BitLen(), or 64; with x = a/b.

func (*Float) SetString ΒΆ

func (z *Float) SetString(s string) (*Float, bool)

SetString sets z to the value of s and returns z and a boolean indicating success. s must be a floating-point number of the same format as accepted by Scan, with number prefixes permitted.

func (*Float) SetUint64 ΒΆ

func (z *Float) SetUint64(x uint64) *Float

SetUint64 sets z to the (possibly rounded) value of x and returns z. If z's precision is 0, it is changed to 64 (and rounding will have no effect).

func (*Float) Sign ΒΆ

func (x *Float) Sign() int

Sign returns:

-1 if x <   0
 0 if x is Β±0 or NaN
+1 if x >   0

func (*Float) String ΒΆ

func (x *Float) String() string

BUG(gri): Float.String uses x.Format('g', 10) rather than x.Format('g', -1).

func (*Float) Sub ΒΆ

func (z *Float) Sub(x, y *Float) *Float

Sub sets z to the rounded difference x-y and returns z. Precision, rounding, and accuracy reporting are as for Add. BUG(gri) Float.Sub returns NaN if an operand is Inf.

func (*Float) Uint64 ΒΆ

func (x *Float) Uint64() (uint64, Accuracy)

Uint64 returns the unsigned integer resulting from truncating x towards zero. If 0 <= x <= math.MaxUint64, the result is Exact if x is an integer and Below otherwise. The result is (0, Above) for x < 0, (math.MaxUint64, Below) for x > math.MaxUint64, and (0, Undef) for NaNs.

type Int ΒΆ

type Int struct {
	// contains filtered or unexported fields
}

An Int represents a signed multi-precision integer. The zero value for an Int represents the value 0.

func NewInt ΒΆ

func NewInt(x int64) *Int

NewInt allocates and returns a new Int set to x.

func (*Int) Abs ΒΆ

func (z *Int) Abs(x *Int) *Int

Abs sets z to |x| (the absolute value of x) and returns z.

func (*Int) Add ΒΆ

func (z *Int) Add(x, y *Int) *Int

Add sets z to the sum x+y and returns z.

func (*Int) And ΒΆ

func (z *Int) And(x, y *Int) *Int

And sets z = x & y and returns z.

func (*Int) AndNot ΒΆ

func (z *Int) AndNot(x, y *Int) *Int

AndNot sets z = x &^ y and returns z.

func (*Int) Binomial ΒΆ

func (z *Int) Binomial(n, k int64) *Int

Binomial sets z to the binomial coefficient of (n, k) and returns z.

func (*Int) Bit ΒΆ

func (x *Int) Bit(i int) uint

Bit returns the value of the i'th bit of x. That is, it returns (x>>i)&1. The bit index i must be >= 0.

func (*Int) BitLen ΒΆ

func (x *Int) BitLen() int

BitLen returns the length of the absolute value of x in bits. The bit length of 0 is 0.

func (*Int) Bits ΒΆ

func (x *Int) Bits() []Word

Bits provides raw (unchecked but fast) access to x by returning its absolute value as a little-endian Word slice. The result and x share the same underlying array. Bits is intended to support implementation of missing low-level Int functionality outside this package; it should be avoided otherwise.

func (*Int) Bytes ΒΆ

func (x *Int) Bytes() []byte

Bytes returns the absolute value of x as a big-endian byte slice.

func (*Int) Cmp ΒΆ

func (x *Int) Cmp(y *Int) (r int)

Cmp compares x and y and returns:

-1 if x <  y
 0 if x == y
+1 if x >  y

func (*Int) Div ΒΆ

func (z *Int) Div(x, y *Int) *Int

Div sets z to the quotient x/y for y != 0 and returns z. If y == 0, a division-by-zero run-time panic occurs. Div implements Euclidean division (unlike Go); see DivMod for more details.

func (*Int) DivMod ΒΆ

func (z *Int) DivMod(x, y, m *Int) (*Int, *Int)

DivMod sets z to the quotient x div y and m to the modulus x mod y and returns the pair (z, m) for y != 0. If y == 0, a division-by-zero run-time panic occurs.

DivMod implements Euclidean division and modulus (unlike Go):

q = x div y  such that
m = x - y*q  with 0 <= m < |q|

(See Raymond T. Boute, β€œThe Euclidean definition of the functions div and mod”. ACM Transactions on Programming Languages and Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. ACM press.) See QuoRem for T-division and modulus (like Go).

func (*Int) Exp ΒΆ

func (z *Int) Exp(x, y, m *Int) *Int

Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y. See Knuth, volume 2, section 4.6.3.

func (*Int) Format ΒΆ

func (x *Int) Format(s fmt.State, ch rune)

Format is a support routine for fmt.Formatter. It accepts the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). Also supported are the full suite of package fmt's format verbs for integral types, including '+', '-', and ' ' for sign control, '#' for leading zero in octal and for hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X" respectively, specification of minimum digits precision, output field width, space or zero padding, and left or right justification.

func (*Int) GCD ΒΆ

func (z *Int) GCD(x, y, a, b *Int) *Int

GCD sets z to the greatest common divisor of a and b, which both must be > 0, and returns z. If x and y are not nil, GCD sets x and y such that z = a*x + b*y. If either a or b is <= 0, GCD sets z = x = y = 0.

func (*Int) GobDecode ΒΆ

func (z *Int) GobDecode(buf []byte) error

GobDecode implements the gob.GobDecoder interface.

func (*Int) GobEncode ΒΆ

func (x *Int) GobEncode() ([]byte, error)

GobEncode implements the gob.GobEncoder interface.

func (*Int) Int64 ΒΆ

func (x *Int) Int64() int64

Int64 returns the int64 representation of x. If x cannot be represented in an int64, the result is undefined.

func (*Int) Lsh ΒΆ

func (z *Int) Lsh(x *Int, n uint) *Int

Lsh sets z = x << n and returns z.

func (*Int) MarshalJSON ΒΆ

func (z *Int) MarshalJSON() ([]byte, error)

MarshalJSON implements the json.Marshaler interface.

func (*Int) MarshalText ΒΆ

func (z *Int) MarshalText() (text []byte, err error)

MarshalText implements the encoding.TextMarshaler interface.

func (*Int) Mod ΒΆ

func (z *Int) Mod(x, y *Int) *Int

Mod sets z to the modulus x%y for y != 0 and returns z. If y == 0, a division-by-zero run-time panic occurs. Mod implements Euclidean modulus (unlike Go); see DivMod for more details.

func (*Int) ModInverse ΒΆ

func (z *Int) ModInverse(g, n *Int) *Int

ModInverse sets z to the multiplicative inverse of g in the ring β„€/nβ„€ and returns z. If g and n are not relatively prime, the result is undefined.

func (*Int) Mul ΒΆ

func (z *Int) Mul(x, y *Int) *Int

Mul sets z to the product x*y and returns z.

func (*Int) MulRange ΒΆ

func (z *Int) MulRange(a, b int64) *Int

MulRange sets z to the product of all integers in the range [a, b] inclusively and returns z. If a > b (empty range), the result is 1.

func (*Int) Neg ΒΆ

func (z *Int) Neg(x *Int) *Int

Neg sets z to -x and returns z.

func (*Int) Not ΒΆ

func (z *Int) Not(x *Int) *Int

Not sets z = ^x and returns z.

func (*Int) Or ΒΆ

func (z *Int) Or(x, y *Int) *Int

Or sets z = x | y and returns z.

func (*Int) ProbablyPrime ΒΆ

func (x *Int) ProbablyPrime(n int) bool

ProbablyPrime performs n Miller-Rabin tests to check whether x is prime. If it returns true, x is prime with probability 1 - 1/4^n. If it returns false, x is not prime. n must be > 0.

func (*Int) Quo ΒΆ

func (z *Int) Quo(x, y *Int) *Int

Quo sets z to the quotient x/y for y != 0 and returns z. If y == 0, a division-by-zero run-time panic occurs. Quo implements truncated division (like Go); see QuoRem for more details.

func (*Int) QuoRem ΒΆ

func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int)

QuoRem sets z to the quotient x/y and r to the remainder x%y and returns the pair (z, r) for y != 0. If y == 0, a division-by-zero run-time panic occurs.

QuoRem implements T-division and modulus (like Go):

q = x/y      with the result truncated to zero
r = x - y*q

(See Daan Leijen, β€œDivision and Modulus for Computer Scientists”.) See DivMod for Euclidean division and modulus (unlike Go).

func (*Int) Rand ΒΆ

func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int

Rand sets z to a pseudo-random number in [0, n) and returns z.

func (*Int) Rem ΒΆ

func (z *Int) Rem(x, y *Int) *Int

Rem sets z to the remainder x%y for y != 0 and returns z. If y == 0, a division-by-zero run-time panic occurs. Rem implements truncated modulus (like Go); see QuoRem for more details.

func (*Int) Rsh ΒΆ

func (z *Int) Rsh(x *Int, n uint) *Int

Rsh sets z = x >> n and returns z.

func (*Int) Scan ΒΆ

func (z *Int) Scan(s fmt.ScanState, ch rune) error

Scan is a support routine for fmt.Scanner; it sets z to the value of the scanned number. It accepts the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).

Example ΒΆ
package main

import (
	"fmt"
	"log"
	"math/big"
)

func main() {
	// The Scan function is rarely used directly;
	// the fmt package recognizes it as an implementation of fmt.Scanner.
	i := new(big.Int)
	_, err := fmt.Sscan("18446744073709551617", i)
	if err != nil {
		log.Println("error scanning value:", err)
	} else {
		fmt.Println(i)
	}
}
Output:

18446744073709551617

func (*Int) Set ΒΆ

func (z *Int) Set(x *Int) *Int

Set sets z to x and returns z.

func (*Int) SetBit ΒΆ

func (z *Int) SetBit(x *Int, i int, b uint) *Int

SetBit sets z to x, with x's i'th bit set to b (0 or 1). That is, if b is 1 SetBit sets z = x | (1 << i); if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, SetBit will panic.

func (*Int) SetBits ΒΆ

func (z *Int) SetBits(abs []Word) *Int

SetBits provides raw (unchecked but fast) access to z by setting its value to abs, interpreted as a little-endian Word slice, and returning z. The result and abs share the same underlying array. SetBits is intended to support implementation of missing low-level Int functionality outside this package; it should be avoided otherwise.

func (*Int) SetBytes ΒΆ

func (z *Int) SetBytes(buf []byte) *Int

SetBytes interprets buf as the bytes of a big-endian unsigned integer, sets z to that value, and returns z.

func (*Int) SetInt64 ΒΆ

func (z *Int) SetInt64(x int64) *Int

SetInt64 sets z to x and returns z.

func (*Int) SetString ΒΆ

func (z *Int) SetString(s string, base int) (*Int, bool)

SetString sets z to the value of s, interpreted in the given base, and returns z and a boolean indicating success. If SetString fails, the value of z is undefined but the returned value is nil.

The base argument must be 0 or a value between 2 and MaxBase. If the base is 0, the string prefix determines the actual conversion base. A prefix of β€œ0x” or β€œ0X” selects base 16; the β€œ0” prefix selects base 8, and a β€œ0b” or β€œ0B” prefix selects base 2. Otherwise the selected base is 10.

Example ΒΆ
package main

import (
	"fmt"
	"math/big"
)

func main() {
	i := new(big.Int)
	i.SetString("644", 8) // octal
	fmt.Println(i)
}
Output:

420

func (*Int) SetUint64 ΒΆ

func (z *Int) SetUint64(x uint64) *Int

SetUint64 sets z to x and returns z.

func (*Int) Sign ΒΆ

func (x *Int) Sign() int

Sign returns:

-1 if x <  0
 0 if x == 0
+1 if x >  0

func (*Int) String ΒΆ

func (x *Int) String() string

func (*Int) Sub ΒΆ

func (z *Int) Sub(x, y *Int) *Int

Sub sets z to the difference x-y and returns z.

func (*Int) Uint64 ΒΆ

func (x *Int) Uint64() uint64

Uint64 returns the uint64 representation of x. If x cannot be represented in a uint64, the result is undefined.

func (*Int) UnmarshalJSON ΒΆ

func (z *Int) UnmarshalJSON(text []byte) error

UnmarshalJSON implements the json.Unmarshaler interface.

func (*Int) UnmarshalText ΒΆ

func (z *Int) UnmarshalText(text []byte) error

UnmarshalText implements the encoding.TextUnmarshaler interface.

func (*Int) Xor ΒΆ

func (z *Int) Xor(x, y *Int) *Int

Xor sets z = x ^ y and returns z.

type Rat ΒΆ

type Rat struct {
	// contains filtered or unexported fields
}

A Rat represents a quotient a/b of arbitrary precision. The zero value for a Rat represents the value 0.

func NewRat ΒΆ

func NewRat(a, b int64) *Rat

NewRat creates a new Rat with numerator a and denominator b.

func (*Rat) Abs ΒΆ

func (z *Rat) Abs(x *Rat) *Rat

Abs sets z to |x| (the absolute value of x) and returns z.

func (*Rat) Add ΒΆ

func (z *Rat) Add(x, y *Rat) *Rat

Add sets z to the sum x+y and returns z.

func (*Rat) Cmp ΒΆ

func (x *Rat) Cmp(y *Rat) int

Cmp compares x and y and returns:

-1 if x <  y
 0 if x == y
+1 if x >  y

func (*Rat) Denom ΒΆ

func (x *Rat) Denom() *Int

Denom returns the denominator of x; it is always > 0. The result is a reference to x's denominator; it may change if a new value is assigned to x, and vice versa.

func (*Rat) Float32 ΒΆ

func (x *Rat) Float32() (f float32, exact bool)

Float32 returns the nearest float32 value for x and a bool indicating whether f represents x exactly. If the magnitude of x is too large to be represented by a float32, f is an infinity and exact is false. The sign of f always matches the sign of x, even if f == 0.

func (*Rat) Float64 ΒΆ

func (x *Rat) Float64() (f float64, exact bool)

Float64 returns the nearest float64 value for x and a bool indicating whether f represents x exactly. If the magnitude of x is too large to be represented by a float64, f is an infinity and exact is false. The sign of f always matches the sign of x, even if f == 0.

func (*Rat) FloatString ΒΆ

func (x *Rat) FloatString(prec int) string

FloatString returns a string representation of x in decimal form with prec digits of precision after the decimal point and the last digit rounded.

func (*Rat) GobDecode ΒΆ

func (z *Rat) GobDecode(buf []byte) error

GobDecode implements the gob.GobDecoder interface.

func (*Rat) GobEncode ΒΆ

func (x *Rat) GobEncode() ([]byte, error)

GobEncode implements the gob.GobEncoder interface.

func (*Rat) Inv ΒΆ

func (z *Rat) Inv(x *Rat) *Rat

Inv sets z to 1/x and returns z.

func (*Rat) IsInt ΒΆ

func (x *Rat) IsInt() bool

IsInt reports whether the denominator of x is 1.

func (*Rat) MarshalText ΒΆ

func (r *Rat) MarshalText() (text []byte, err error)

MarshalText implements the encoding.TextMarshaler interface.

func (*Rat) Mul ΒΆ

func (z *Rat) Mul(x, y *Rat) *Rat

Mul sets z to the product x*y and returns z.

func (*Rat) Neg ΒΆ

func (z *Rat) Neg(x *Rat) *Rat

Neg sets z to -x and returns z.

func (*Rat) Num ΒΆ

func (x *Rat) Num() *Int

Num returns the numerator of x; it may be <= 0. The result is a reference to x's numerator; it may change if a new value is assigned to x, and vice versa. The sign of the numerator corresponds to the sign of x.

func (*Rat) Quo ΒΆ

func (z *Rat) Quo(x, y *Rat) *Rat

Quo sets z to the quotient x/y and returns z. If y == 0, a division-by-zero run-time panic occurs.

func (*Rat) RatString ΒΆ

func (x *Rat) RatString() string

RatString returns a string representation of x in the form "a/b" if b != 1, and in the form "a" if b == 1.

func (*Rat) Scan ΒΆ

func (z *Rat) Scan(s fmt.ScanState, ch rune) error

Scan is a support routine for fmt.Scanner. It accepts the formats 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.

Example ΒΆ
package main

import (
	"fmt"
	"log"
	"math/big"
)

func main() {
	// The Scan function is rarely used directly;
	// the fmt package recognizes it as an implementation of fmt.Scanner.
	r := new(big.Rat)
	_, err := fmt.Sscan("1.5000", r)
	if err != nil {
		log.Println("error scanning value:", err)
	} else {
		fmt.Println(r)
	}
}
Output:

3/2

func (*Rat) Set ΒΆ

func (z *Rat) Set(x *Rat) *Rat

Set sets z to x (by making a copy of x) and returns z.

func (*Rat) SetFloat64 ΒΆ

func (z *Rat) SetFloat64(f float64) *Rat

SetFloat64 sets z to exactly f and returns z. If f is not finite, SetFloat returns nil.

func (*Rat) SetFrac ΒΆ

func (z *Rat) SetFrac(a, b *Int) *Rat

SetFrac sets z to a/b and returns z.

func (*Rat) SetFrac64 ΒΆ

func (z *Rat) SetFrac64(a, b int64) *Rat

SetFrac64 sets z to a/b and returns z.

func (*Rat) SetInt ΒΆ

func (z *Rat) SetInt(x *Int) *Rat

SetInt sets z to x (by making a copy of x) and returns z.

func (*Rat) SetInt64 ΒΆ

func (z *Rat) SetInt64(x int64) *Rat

SetInt64 sets z to x and returns z.

func (*Rat) SetString ΒΆ

func (z *Rat) SetString(s string) (*Rat, bool)

SetString sets z to the value of s and returns z and a boolean indicating success. s can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. If the operation failed, the value of z is undefined but the returned value is nil.

Example ΒΆ
package main

import (
	"fmt"
	"math/big"
)

func main() {
	r := new(big.Rat)
	r.SetString("355/113")
	fmt.Println(r.FloatString(3))
}
Output:

3.142

func (*Rat) Sign ΒΆ

func (x *Rat) Sign() int

Sign returns:

-1 if x <  0
 0 if x == 0
+1 if x >  0

func (*Rat) String ΒΆ

func (x *Rat) String() string

String returns a string representation of x in the form "a/b" (even if b == 1).

func (*Rat) Sub ΒΆ

func (z *Rat) Sub(x, y *Rat) *Rat

Sub sets z to the difference x-y and returns z.

func (*Rat) UnmarshalText ΒΆ

func (r *Rat) UnmarshalText(text []byte) error

UnmarshalText implements the encoding.TextUnmarshaler interface.

type RoundingMode ΒΆ

type RoundingMode byte

RoundingMode determines how a Float value is rounded to the desired precision. Rounding may change the Float value; the rounding error is described by the Float's Accuracy.

const (
	ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
	ToNearestAway                     // == IEEE 754-2008 roundTiesToAway
	ToZero                            // == IEEE 754-2008 roundTowardZero
	AwayFromZero                      // no IEEE 754-2008 equivalent
	ToNegativeInf                     // == IEEE 754-2008 roundTowardNegative
	ToPositiveInf                     // == IEEE 754-2008 roundTowardPositive
)

The following rounding modes are supported.

func (RoundingMode) String ΒΆ

func (i RoundingMode) String() string

type Word ΒΆ

type Word uintptr

A Word represents a single digit of a multi-precision unsigned integer.

Notes ΒΆ

Bugs ΒΆ

  • Float.Float64 doesn't handle exponent overflow.

  • Float.Add returns NaN if an operand is Inf.

  • When rounding ToNegativeInf, the sign of Float values rounded to 0 is incorrect.

  • Float.Sub returns NaN if an operand is Inf.

  • Float.Mul returns NaN if an operand is Inf.

  • Float.Quo returns NaN if an operand is Inf.

  • The Float.Scan signature conflicts with Scan(s fmt.ScanState, ch rune) error.

  • Float.Format does not accept negative precisions.

  • Float.String uses x.Format('g', 10) rather than x.Format('g', -1).

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL