BLS48556

package
v0.0.0-...-344c847 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Feb 6, 2024 License: Apache-2.0 Imports: 3 Imported by: 0

Documentation

Index

Constants

View Source
const AESKEY int = 32
View Source
const ALLOW_ALT_COMPRESS bool = false
View Source
const ATE_BITS int = 42
View Source
const BAD_PARAMS int = -11
View Source
const BAD_PIN int = -19
View Source
const BASEBITS uint = 58
View Source
const BFS int = int(MODBYTES)
View Source
const BGS int = int(MODBYTES)
View Source
const BIGBITS int = int(MODBYTES * 8)
View Source
const BIG_ENDIAN_SIGN bool = false
View Source
const BLS12 int = 2
View Source
const BLS24 int = 3
View Source
const BLS48 int = 4
View Source
const BLS_FAIL int = -1
View Source
const BLS_OK int = 0
View Source
const BN int = 1
View Source
const CHUNK int = 64 /* Set word size */
View Source
const CURVETYPE int = WEIERSTRASS
View Source
const CURVE_A int = 0
View Source
const CURVE_B_I int = 17
View Source
const CURVE_Cof_I int = 0
View Source
const CURVE_PAIRING_TYPE int = BLS48
View Source
const DNLEN int = 2 * NLEN
View Source
const D_TYPE int = 0

Pairing Twist type

View Source
const ECDH_ERROR int = -3
View Source
const ECDH_INVALID_PUBLIC_KEY int = -2
View Source
const EDDSA_INVALID_PUBLIC_KEY int = -2
View Source
const EDWARDS int = 1
View Source
const EFS int = int(MODBYTES)

const INVALID int = -4

View Source
const EGS int = int(MODBYTES)
View Source
const FEXCESS int32 = ((int32(1) << 24) - 1)
View Source
const FP_DENSE int = 5
View Source
const FP_ONE int = 1
View Source
const FP_SPARSE int = 4
View Source
const FP_SPARSER int = 3
View Source
const FP_SPARSEST int = 2
View Source
const FP_ZERO int = 0

Sparsity

View Source
const G2_TABLE int = 35
View Source
const GENERALISED_MERSENNE int = 3
View Source
const HASH_TYPE int = 64
View Source
const HBITS uint = (BASEBITS / 2)
View Source
const HTC_ISO int = 0
View Source
const HTC_ISO_G2 int = 0
View Source
const INVALID_POINT int = -14
View Source
const MAXPIN int32 = 10000 /* PIN less than this */
View Source
const MFS int = int(MODBYTES)
View Source
const MGS int = int(MODBYTES)
View Source
const MODBITS uint = 556 /* Number of bits in Modulus */

Modulus details

View Source
const MODBYTES uint = 70

BIG length in bytes and number base

View Source
const MODTYPE int = NOT_SPECIAL //NOT_SPECIAL
View Source
const MONTGOMERY int = 2
View Source
const MONTGOMERY_FRIENDLY int = 2
View Source
const M_TYPE int = 1
View Source
const NEGATIVEX int = 1
View Source
const NEGATOWER int = 0
View Source
const NEXCESS int = (1 << (uint(CHUNK) - BASEBITS - 1))
View Source
const NLEN int = int((1 + ((8*MODBYTES - 1) / BASEBITS)))

BIG lengths and Masks

View Source
const NOT int = 0

Pairing Friendly?

View Source
const NOT_SPECIAL int = 0

Modulus types

View Source
const PBLEN int32 = 14 /* Number of bits in PIN */
View Source
const PM1D2 uint = 1 /* Modulus mod 8 */
View Source
const POSITIVEX int = 0

Pairing x parameter sign

View Source
const POSITOWER int = 1
View Source
const PSEUDO_MERSENNE int = 1
View Source
const QNRI int = 0 // Fp2 QNR
View Source
const RIADZ int = -1 /* hash-to-point Z */
View Source
const RIADZG2A int = 2 /* G2 hash-to-point Z */
View Source
const RIADZG2B int = 0 /* G2 hash-to-point Z */
View Source
const SEXTIC_TWIST int = M_TYPE
View Source
const SIGN_OF_X int = POSITIVEX
View Source
const TBITS uint = MODBITS % BASEBITS // Number of active bits in top word
View Source
const TOWER int = NEGATOWER // Tower type
View Source
const USE_GLV bool = true
View Source
const USE_GS_G2 bool = true
View Source
const USE_GS_GT bool = true
View Source
const WEIERSTRASS int = 0

Curve types

View Source
const WRONG_ORDER int = -18

Variables

View Source
var CRu = [...]Chunk{0x364E7E6CBBA429, 0x338C28A4D3DD160, 0x28DC3C68308093A, 0x230B290AE0E768, 0x127B0AB9B73BC2D, 0x23192337B1A639C, 0x1E399AEEFF04AE3, 0x20C88F0091318E5, 0x37CEF23203A79F7, 0x3F45F60F3}

var CURVE_Cof = [...]Chunk{0xA2D10F7F12ABEB, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}

View Source
var CURVE_B = [...]Chunk{0x11, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
View Source
var CURVE_Bnx = [...]Chunk{0x7DE40020, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
View Source
var CURVE_Cof = [...]Chunk{0x7DE4001F, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
View Source
var CURVE_Gx = [...]Chunk{0x3286D2F65D71D33, 0x3601553F8CB783F, 0xFF01647711EE0B, 0x268BC07F29FD8CC, 0xE0702E69A80F66, 0x285003EAC056511, 0x35E130D242B2C3A, 0x107024C87924166, 0x17595DB8957EDD7, 0x26A27A4A1}
View Source
var CURVE_Gy = [...]Chunk{0x29A5B3FEA6ED83A, 0x3712E552A29C33D, 0x3391EA8E6958677, 0x29F3C7B9DED7E3E, 0x4E2E3818FB7229, 0x1CC30999551E32D, 0xE67A4086260E3C, 0x2A68CCB8579C437, 0x62C5FAE2B3349D, 0x2B634253}
View Source
var CURVE_HTPC = [...]Chunk{0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
View Source
var CURVE_Order = [...]Chunk{0x2FFFF0000000001, 0x11550278A769C21, 0x14D1EB162029C21, 0x2309B4A2B6307F4, 0x34790BD26DFED78, 0x2C6FE3F2571037B, 0x1306A973C465FB0, 0x28446ABB18DF17A, 0xC43BF73E, 0x0}
View Source
var CURVE_Pxaaa = [...]Chunk{0x28D2E8E8923CE4A, 0x2F5C40B4AE04F4A, 0x2165D8A1313A20C, 0x2BFC7FD18DF074F, 0x12B37F0A7C90B98, 0x286ED92CE57BD37, 0x1C416C4ABF57375, 0x39779D0B2EE2172, 0x1A1C0497A5D9487, 0x3995E3602}
View Source
var CURVE_Pxaab = [...]Chunk{0x271CDC5AC0A1BE1, 0x2A3F8EC01DF5FDC, 0xAD5478433972C5, 0x22B73FAE2491D8C, 0x30E75C6B40A11FA, 0xE960C8FF259C26, 0x8CE48632D18B04, 0x39549A6BC27F419, 0x274A97B58DB48B6, 0xA5080497}
View Source
var CURVE_Pxaba = [...]Chunk{0x23A724C770C5DC4, 0x2A592B776B3BCB6, 0x110934259BEC736, 0x18E2C5A649AB2A8, 0x2B84CB2C58CD55, 0x168195F91EE8B90, 0xF7D917CE233167, 0x2A38FB7729335BD, 0x36D71DDA78B689B, 0x2D4BFBE3D}
View Source
var CURVE_Pxabb = [...]Chunk{0xD629669A64B740, 0x47F52632481578, 0x40D7054323ADD1, 0x3F9F4CCCD789E1B, 0x1E3C73C41F4EEA7, 0x15E7D7A61968610, 0x1B4186B40590D3B, 0x19F3BA577306AAF, 0x12DFE5F23F63B1A, 0x24E102A76}
View Source
var CURVE_Pxbaa = [...]Chunk{0x1BB0C6172F1E01F, 0x30C4734D2C29802, 0x990FA39218788, 0xEEB80ED6AE2501, 0x34728852870C80B, 0x94841D1637D478, 0x21CBCE27C3AD4D4, 0xA29F9E111E6AD5, 0x18CF1447CC49D3, 0x37787BDFD}
View Source
var CURVE_Pxbab = [...]Chunk{0x30A38238637383D, 0x288094FE661F866, 0x135C51ED5D3D212, 0x3C39C57E8051F25, 0x164639D737D882F, 0x312AEC8AA8DB8FC, 0x3FE838885E54DA8, 0x2FC3978BA297414, 0x850556F014F91F, 0x20B6CE9E3}
View Source
var CURVE_Pxbba = [...]Chunk{0x1683DB3D711939C, 0x26F9475A69066BA, 0xBCDB572CF2F6C0, 0x128DC8902CE1323, 0x29B3233EF353D1C, 0x342402A46B7046, 0x3187D1A403D6070, 0x3E3466F9F23BA45, 0xD943BE2435A9CC, 0x2A08A9CE1}
View Source
var CURVE_Pxbbb = [...]Chunk{0x32D410A856F4899, 0x7147AE4A959750, 0x28AEA57990BC9BC, 0x2807F11E9E26DA, 0x282C5EBA71895E3, 0x2832162D9FEC5FF, 0x33479E30007597C, 0x227A376C26A4B00, 0x1C16F1567857A32, 0x37DD51E0F}
View Source
var CURVE_Pyaaa = [...]Chunk{0x2E097CFB4137844, 0x313B1927FD3CCDD, 0x1EB86FABC768851, 0x4156382E29C659, 0x3C10CC7CF8896E0, 0x22FC388FD1D539C, 0x2C3E202F56CDD39, 0x2E9645FB43E8C72, 0x93548FD8706190, 0x1D9BB42E1}
View Source
var CURVE_Pyaab = [...]Chunk{0x25E3248EDC83190, 0x2BAABD11AA26424, 0x161D23BAC418D32, 0x5B3258247CBFF7, 0xED295CADE03C1F, 0x3A84758C5C741A2, 0x3D207E205E02B9E, 0x86743E24EA6513, 0x1DAA8E268EFA1C4, 0x9E72CE4F}
View Source
var CURVE_Pyaba = [...]Chunk{0x1DC5FD041985C0D, 0x2350136864770FA, 0x3179A5F5483ACE9, 0x2C25AB1A171F32C, 0x397C4403E658341, 0xE7E1C2186E971, 0x15921F60B0A5F40, 0x46E9317635E008, 0x17EF1353F3140D6, 0x35166F259}
View Source
var CURVE_Pyabb = [...]Chunk{0x36FE0A8159D42F8, 0x290EBF4445895D7, 0x20273B0FE9E7F2B, 0x23A6E2FF0F3FD7D, 0x1F37678869E5006, 0x2CA2DB53C9ED8D, 0x4E4BFD902F51DE, 0x1FF8649F125B66, 0x382D89BED80731, 0x28383AAA8}
View Source
var CURVE_Pybaa = [...]Chunk{0xD512B39F38039F, 0x23BA255F3C68984, 0x390AA14058093CF, 0x1FF0B2F2FFA1622, 0x310C5CC5F2ABB75, 0x3D9016C9EB6A2C9, 0x1CF7EE268EC2F18, 0x338BBB12C36B65A, 0x1EEE591B8A1D1AB, 0xAC11927C}
View Source
var CURVE_Pybab = [...]Chunk{0x269E06F295F7865, 0x2FC1D5BA1CE9A0E, 0x3631F3F1DACADD7, 0x30CCF3581D3943, 0x3FBE3B902505BB0, 0x23C4A9D31B36A49, 0x2056135CA438576, 0x2B78046739984F4, 0x12C0AC57B6F180E, 0xC48CA65B}
View Source
var CURVE_Pybba = [...]Chunk{0x1D83A9F67CC1979, 0x12ABE71DD89E6F0, 0x247B1C21635FDA9, 0x92880950076209, 0x2ECF179E0D733D7, 0x20D2DFFB53841F9, 0x3441B1645BC9FE8, 0x3089222CE22EC9D, 0x3699AE4108C86C5, 0x320034967}
View Source
var CURVE_Pybbb = [...]Chunk{0xFC89562FC9F25B, 0xB13E01AE9AB5D3, 0x18E8F169C9D264F, 0x3A5828D76B24A13, 0x1E8FD9BCEF84D9A, 0x36D20E3DBFEE16A, 0x17D3B3DF1AB4C1C, 0xF190510390F005, 0x12640E61B9BF549, 0x283D84D97}
View Source
var Fra = [...]Chunk{0x2623CFD9325BF89, 0x341FA8DCCD0A56F, 0x1952FBA0E83BCCA, 0xBE3C26F8D1D297, 0x27F84ABE7AB9F2C, 0x13BDE945C9DECEB, 0x3B3213C83C0F60B, 0x3B7F0411FF27FF7, 0x80089C089BB36C, 0xA62E01EE}
View Source
var Frb = [...]Chunk{0x2623CFD9325BF89, 0x341FA8DCCD0A56F, 0x1952FBA0E83BCCA, 0xBE3C26F8D1D297, 0x27F84ABE7AB9F2C, 0x13BDE945C9DECEB, 0x3B3213C83C0F60B, 0x3B7F0411FF27FF7, 0x80089C089BB36C, 0xA62E01EE}
View Source
var G2_TAB []*FP16
View Source
var Modulus = [...]Chunk{0x2F6E60FFCF6AC0B, 0x259C02699877E7B, 0x37A9870D4228402, 0x80821A1DACBB04, 0x13016A7C025A415, 0x2BB355ACDE6E250, 0x20536F405DA950, 0x295B219C54AB351, 0x3FCFC5B23729047, 0x3F45F610B}

Base Bits= 58

View Source
var R2modp = [...]Chunk{0x25E03FA0D59D0FA, 0x6B55DC2DE8FD41, 0xA0E01D0B937F48, 0x20336279F50EFCE, 0x2212822A3470A2F, 0xD5A21C4F9FB72D, 0x89E8F0A1CFD9F8, 0x2291DA62B48793, 0x3DC6978EF609E61, 0x1735D29E}
View Source
var ROI = [...]Chunk{0x2F6E60FFCF6AC0A, 0x259C02699877E7B, 0x37A9870D4228402, 0x80821A1DACBB04, 0x13016A7C025A415, 0x2BB355ACDE6E250, 0x20536F405DA950, 0x295B219C54AB351, 0x3FCFC5B23729047, 0x3F45F610B}
View Source
var SQRTm3 = [...]Chunk{0x175B6ECDC809C48, 0x17C4EE00F42444, 0x1A0EF1C31ED8E73, 0x3C59437F81513CC, 0x11F4AAF76C1D444, 0x1A7EF0C284DE4E8, 0x3A6DFEE9F82EC76, 0x1835FC64CDB7E79, 0x2FCE1EB1D0263A7, 0x3F45F60DB}
View Source
var TWK = [...]Chunk{0x12267AA216F9937, 0x2F4D058D89F92B, 0x3061EA136600368, 0x2B3B2E5B531266E, 0x8DC0D0FC269C72, 0x3DDE9A740CAA903, 0x208D6556ED502F8, 0x1FB2700BEC6EF4F, 0x1A15FE7FEEEDD57, 0x10C83E724}

Functions

func Another

func Another(r []*FP48, P1 *ECP8, Q1 *ECP)

Accumulate another set of line functions for n-pairing

func Another_pc

func Another_pc(r []*FP48, T []*FP16, QV *ECP)

func AuthDecap

func AuthDecap(config_id int, skR []byte, pkE []byte, pkR []byte, pkS []byte) []byte

func AuthEncap

func AuthEncap(config_id int, skE []byte, skS []byte, pkE []byte, pkR []byte, pkS []byte) []byte

func Comp

func Comp(a *BIG, b *BIG) int

Compare a and b, return 0 if a==b, -1 if a<b, +1 if a>b. Inputs must be normalised

func Core_Sign

func Core_Sign(SIG []byte, M []byte, S []byte) int

Sign message m using private key S to produce signature SIG

func Core_Verify

func Core_Verify(SIG []byte, M []byte, W []byte) int

func Decap

func Decap(config_id int, skR []byte, pkE []byte, pkR []byte) []byte

func DeriveKeyPair

func DeriveKeyPair(config_id int, SK []byte, PK []byte, SEED []byte) bool

func ECDH_ECIES_DECRYPT

func ECDH_ECIES_DECRYPT(sha int, P1 []byte, P2 []byte, V []byte, C []byte, T []byte, U []byte) []byte

IEEE1363 ECIES decryption. Decryption of ciphertext V,C,T using private key U outputs plaintext M

func ECDH_ECIES_ENCRYPT

func ECDH_ECIES_ENCRYPT(sha int, P1 []byte, P2 []byte, RNG *core.RAND, W []byte, M []byte, V []byte, T []byte) []byte

IEEE1363 ECIES encryption. Encryption of plaintext M uses public key W and produces ciphertext V,C,T

func ECDH_ECPSP_DSA

func ECDH_ECPSP_DSA(sha int, RNG *core.RAND, S []byte, F []byte, C []byte, D []byte) int

IEEE ECDSA Signature, C and D are signature on F using private key S

func ECDH_ECPSVDP_DH

func ECDH_ECPSVDP_DH(S []byte, WD []byte, Z []byte, typ int) int
IEEE-1363 Diffie-Hellman online calculation Z=S.WD

type = 0 is just x coordinate output type = 1 for standard compressed output type = 2 for standard uncompress output 04|x|y

func ECDH_ECPVP_DSA

func ECDH_ECPVP_DSA(sha int, W []byte, F []byte, C []byte, D []byte) int

IEEE1363 ECDSA Signature Verification. Signature C and D on F is verified using public key W

func ECDH_IN_RANGE

func ECDH_IN_RANGE(S []byte) bool

return true if S is in ranger 0 < S < order , else return false

func ECDH_KEY_PAIR_GENERATE

func ECDH_KEY_PAIR_GENERATE(RNG *core.RAND, S []byte, W []byte) int

Calculate a public/private EC GF(p) key pair W,S where W=S.G mod EC(p), * where S is the secret key and W is the public key * and G is fixed generator. * If RNG is NULL then the private key is provided externally in S * otherwise it is generated randomly internally

func ECDH_PUBLIC_KEY_VALIDATE

func ECDH_PUBLIC_KEY_VALIDATE(W []byte) int

validate public key

func Encap

func Encap(config_id int, skE []byte, pkE []byte, pkR []byte) []byte

func FP_tpo

func FP_tpo(i *FP, s *FP) int

Two for the price of one - See Hamburg https://eprint.iacr.org/2012/309.pdf Calculate inverse of i and square root of s, return QR

func G1member

func G1member(P *ECP) bool

test G1 group membership

func G2member

func G2member(P *ECP8) bool

test G2 group membership

func GTcyclotomic

func GTcyclotomic(m *FP48) bool

Check that m is in cyclotomic sub-group Check that m!=1, conj(m)*m==1, and m.m^{p^16}=m^{p^8}

func GTmember

func GTmember(m *FP48) bool

test for full GT membership

func Init

func Init() int

func KEY_PAIR_GENERATE

func KEY_PAIR_GENERATE(RNG *core.RAND, D []byte, Q []byte) int

Calculate a public/private EC GF(p) key pair. Q=D.G mod EC(p), * where D is the secret key and Q is the public key * and G is fixed generator. * RNG is a cryptographically strong RNG * If RNG==NULL, D is provided externally

func KeyPairGenerate

func KeyPairGenerate(IKM []byte, S []byte, W []byte) int

generate key pair, private key S, public key W

func KeySchedule

func KeySchedule(config_id int, mode int, Z []byte, info []byte, psk []byte, pskID []byte) ([]byte, []byte, []byte)

func MPIN_CLIENT_1

func MPIN_CLIENT_1(CID []byte, rng *core.RAND, X []byte, pin int, TOKEN []byte, SEC []byte, xID []byte) int

Implement step 1 on client side of MPin protocol

func MPIN_CLIENT_2

func MPIN_CLIENT_2(X []byte, Y []byte, SEC []byte) int

Implement step 2 on client side of MPin protocol

func MPIN_ENCODE_TO_CURVE

func MPIN_ENCODE_TO_CURVE(DST []byte, ID []byte, HCID []byte)

func MPIN_EXTRACT_PIN

func MPIN_EXTRACT_PIN(CID []byte, pin int, TOKEN []byte) int

func MPIN_GET_CLIENT_SECRET

func MPIN_GET_CLIENT_SECRET(S []byte, IDHTC []byte, CST []byte) int

func MPIN_GET_SERVER_SECRET

func MPIN_GET_SERVER_SECRET(S []byte, SST []byte) int

Extract Server Secret SST=S*Q where Q is fixed generator in G2 and S is master secret

func MPIN_HASH_ID

func MPIN_HASH_ID(sha int, ID []byte) []byte

func MPIN_RANDOM_GENERATE

func MPIN_RANDOM_GENERATE(rng *core.RAND, S []byte) int

create random secret S

func MPIN_SERVER

func MPIN_SERVER(HID []byte, Y []byte, SST []byte, xID []byte, mSEC []byte) int

Implement step 2 of MPin protocol on server side

func RFC7748

func RFC7748(r *BIG)

Transform a point multiplier to RFC7748 form

func SIGNATURE

func SIGNATURE(ph bool, D []byte, ctx []byte, M []byte, SIG []byte) int

Generate a signature using key pair (D,Q) on message M Set ph=true if message has already been pre-hashed if ph=false, then context should be NULL for ed25519. However RFC8032 mode ed25519ctx is supported by supplying a non-NULL or non-empty context

func VERIFY

func VERIFY(ph bool, Q []byte, ctx []byte, M []byte, SIG []byte) bool

Types

type BIG

type BIG struct {
	// contains filtered or unexported fields
}

func BIG_frombytearray

func BIG_frombytearray(b []byte, n int) *BIG

convert from byte array to BIG

func FromBytes

func FromBytes(b []byte) *BIG

func Modadd

func Modadd(a1, b1, m *BIG) *BIG

return a+b mod m

func Modmul

func Modmul(a1, b1, m *BIG) *BIG

return a*b mod m

func Modneg

func Modneg(a1, m *BIG) *BIG

return -a mod m

func Modsqr

func Modsqr(a1, m *BIG) *BIG

return a^2 mod m

func NewBIG

func NewBIG() *BIG

func NewBIGcopy

func NewBIGcopy(x *BIG) *BIG

func NewBIGdcopy

func NewBIGdcopy(x *DBIG) *BIG

func NewBIGint

func NewBIGint(x int) *BIG

func NewBIGints

func NewBIGints(x [NLEN]Chunk) *BIG

func Random

func Random(rng *core.RAND) *BIG

get 8*MODBYTES size random number

func Randomnum

func Randomnum(q *BIG, rng *core.RAND) *BIG

Create random BIG in portable way, one bit at a time

func Randtrunc

func Randtrunc(q *BIG, trunc int, rng *core.RAND) *BIG

func (*BIG) Invmodp

func (r *BIG) Invmodp(p *BIG)

this=1/this mod p. Binary method

func (*BIG) Jacobi

func (r *BIG) Jacobi(p *BIG) int

Jacobi Symbol (this/p). Returns 0, 1 or -1

func (*BIG) Minus

func (r *BIG) Minus(x *BIG) *BIG

return this-x

func (*BIG) Mod

func (r *BIG) Mod(m *BIG)

reduce this mod m

func (*BIG) Nbits

func (r *BIG) Nbits() int

func (*BIG) Plus

func (r *BIG) Plus(x *BIG) *BIG

return this+x

func (*BIG) Powmod

func (r *BIG) Powmod(e1 *BIG, m *BIG) *BIG

return this^e mod m

func (*BIG) ToBytes

func (r *BIG) ToBytes(b []byte)

func (*BIG) ToString

func (r *BIG) ToString() string

Convert to Hex String

type Chunk

type Chunk int64
const BMASK Chunk = ((Chunk(1) << BASEBITS) - 1)
const HMASK Chunk = ((Chunk(1) << HBITS) - 1)
const MConst Chunk = 0x21BFCBCA9DA805D
const OMASK Chunk = ((Chunk(-1)) << (MODBITS % BASEBITS))

Modulus Masks

const TMASK Chunk = (Chunk(1) << TBITS) - 1

type DBIG

type DBIG struct {
	// contains filtered or unexported fields
}

func DBIG_fromBytes

func DBIG_fromBytes(b []byte) *DBIG

convert from byte array to BIG

func NewDBIG

func NewDBIG() *DBIG

func NewDBIGcopy

func NewDBIGcopy(x *DBIG) *DBIG

func NewDBIGscopy

func NewDBIGscopy(x *BIG) *DBIG

func (*DBIG) Mod

func (r *DBIG) Mod(m *BIG) *BIG

reduces this DBIG mod a BIG, and returns the BIG

type ECP

type ECP struct {
	// contains filtered or unexported fields
}

func ECP_fromBytes

func ECP_fromBytes(b []byte) *ECP

convert from byte array to point

func ECP_generator

func ECP_generator() *ECP

func ECP_hap2point

func ECP_hap2point(h *BIG) *ECP

Hunt and Peck a BIG to a curve point

func ECP_map2point

func ECP_map2point(h *FP) *ECP

Constant time Map to Point

func ECP_mapit

func ECP_mapit(h []byte) *ECP

func ECP_muln

func ECP_muln(n int, X []*ECP, e []*BIG) *ECP

Generic multi-multiplication, fixed 4-bit window, P=Sigma e_i*X_i

func G1mul

func G1mul(P *ECP, e *BIG) *ECP

Multiply P by e in group G1

func NewECP

func NewECP() *ECP

Constructors

func NewECPbig

func NewECPbig(ix *BIG) *ECP

set from x - calculate y from curve equation

func NewECPbigint

func NewECPbigint(ix *BIG, s int) *ECP

set (x,y) from BIG and a bit

func NewECPbigs

func NewECPbigs(ix *BIG, iy *BIG) *ECP

set (x,y) from two BIGs

func (*ECP) Add

func (E *ECP) Add(Q *ECP)

this+=Q

func (*ECP) Affine

func (E *ECP) Affine()

set to affine - from (x,y,z) to (x,y)

func (*ECP) Cfp

func (E *ECP) Cfp()

func (*ECP) Copy

func (E *ECP) Copy(P *ECP)

this=P

func (*ECP) Equals

func (E *ECP) Equals(Q *ECP) bool

Test P == Q

func (*ECP) GetS

func (E *ECP) GetS() int

get sign of Y

func (*ECP) GetX

func (E *ECP) GetX() *BIG

extract x as a BIG

func (*ECP) GetY

func (E *ECP) GetY() *BIG

extract y as a BIG

func (*ECP) Is_infinity

func (E *ECP) Is_infinity() bool

test for O point-at-infinity

func (*ECP) Mul

func (E *ECP) Mul(e *BIG) *ECP

Public version

func (*ECP) Mul2

func (E *ECP) Mul2(e *BIG, Q *ECP, f *BIG) *ECP

func (*ECP) Neg

func (E *ECP) Neg()

this=-this

func (*ECP) Sub

func (E *ECP) Sub(Q *ECP)

this-=Q

func (*ECP) ToBytes

func (E *ECP) ToBytes(b []byte, compress bool)

convert to byte array

func (*ECP) ToString

func (E *ECP) ToString() string

convert to hex string

type ECP8

type ECP8 struct {
	// contains filtered or unexported fields
}

func ECP8_fromBytes

func ECP8_fromBytes(b []byte) *ECP8

convert from byte array to point

func ECP8_generator

func ECP8_generator() *ECP8

func ECP8_hap2point

func ECP8_hap2point(h *BIG) *ECP8

func ECP8_map2point

func ECP8_map2point(H *FP8) *ECP8

Deterministic mapping of Fp to point on curve

func ECP8_mapit

func ECP8_mapit(h []byte) *ECP8

Map octet string to curve point

func G2mul

func G2mul(P *ECP8, e *BIG) *ECP8

Multiply P by e in group G2

func NewECP8

func NewECP8() *ECP8

func NewECP8fp8

func NewECP8fp8(ix *FP8, s int) *ECP8

construct this from x - but set to O if not on curve

func NewECP8fp8s

func NewECP8fp8s(ix *FP8, iy *FP8) *ECP8

construct this from (x,y) - but set to O if not on curve

func (*ECP8) Add

func (E *ECP8) Add(Q *ECP8) int

this+=Q - return 0 for add, 1 for double, -1 for O

func (*ECP8) Affine

func (E *ECP8) Affine()

set to Affine - (x,y,z) to (x,y)

func (*ECP8) Cfp

func (E *ECP8) Cfp()

needed for SOK

func (*ECP8) Copy

func (E *ECP8) Copy(P *ECP8)

copy this=P

func (*ECP8) Equals

func (E *ECP8) Equals(Q *ECP8) bool

Test if P == Q

func (*ECP8) GetX

func (E *ECP8) GetX() *FP8

extract affine x as FP2

func (*ECP8) GetY

func (E *ECP8) GetY() *FP8

extract affine y as FP2

func (*ECP8) Is_infinity

func (E *ECP8) Is_infinity() bool

Test this=O?

func (*ECP8) Mul

func (E *ECP8) Mul(e *BIG) *ECP8

Public version

func (*ECP8) Sub

func (E *ECP8) Sub(Q *ECP8) int

set this-=Q

func (*ECP8) ToBytes

func (E *ECP8) ToBytes(b []byte, compress bool)

convert to byte array

func (*ECP8) ToString

func (E *ECP8) ToString() string

convert this to hex string

type FP

type FP struct {
	XES int32
	// contains filtered or unexported fields
}

func FP_fromBytes

func FP_fromBytes(b []byte) *FP

func NewFP

func NewFP() *FP

func NewFPbig

func NewFPbig(a *BIG) *FP

func NewFPcopy

func NewFPcopy(a *FP) *FP

func NewFPint

func NewFPint(a int) *FP

func NewFPrand

func NewFPrand(rng *core.RAND) *FP

func RHS

func RHS(x *FP) *FP

Calculate RHS of curve equation

func (*FP) Equals

func (F *FP) Equals(a *FP) bool

return TRUE if this==a

func (*FP) ToBytes

func (F *FP) ToBytes(b []byte)

func (*FP) ToString

func (F *FP) ToString() string

type FP16

type FP16 struct {
	// contains filtered or unexported fields
}

func FP16_fromBytes

func FP16_fromBytes(bf []byte) *FP16

func NewFP16

func NewFP16() *FP16

func NewFP16copy

func NewFP16copy(x *FP16) *FP16

func NewFP16fp8

func NewFP16fp8(c *FP8) *FP16

func NewFP16fp8s

func NewFP16fp8s(c *FP8, d *FP8) *FP16

func NewFP16int

func NewFP16int(a int) *FP16

Constructors

func (*FP16) Equals

func (F *FP16) Equals(x *FP16) bool

test this=x?

func (*FP16) ToBytes

func (F *FP16) ToBytes(bf []byte)

type FP2

type FP2 struct {
	// contains filtered or unexported fields
}

func ECP8_frob_constants

func ECP8_frob_constants() [3]*FP2

func FP2_fromBytes

func FP2_fromBytes(bf []byte) *FP2

func NewFP2

func NewFP2() *FP2

func NewFP2big

func NewFP2big(c *BIG) *FP2

func NewFP2bigs

func NewFP2bigs(c *BIG, d *BIG) *FP2

func NewFP2copy

func NewFP2copy(x *FP2) *FP2

func NewFP2fp

func NewFP2fp(c *FP) *FP2

func NewFP2fps

func NewFP2fps(c *FP, d *FP) *FP2

func NewFP2int

func NewFP2int(a int) *FP2

Constructors

func NewFP2ints

func NewFP2ints(a int, b int) *FP2

func NewFP2rand

func NewFP2rand(rng *core.RAND) *FP2

func (*FP2) Equals

func (F *FP2) Equals(x *FP2) bool

test this=x

func (*FP2) GetA

func (F *FP2) GetA() *BIG

extract a

func (*FP2) GetB

func (F *FP2) GetB() *BIG

extract b

func (*FP2) ToBytes

func (F *FP2) ToBytes(bf []byte)

func (*FP2) ToString

func (F *FP2) ToString() string

output to hex string

type FP4

type FP4 struct {
	// contains filtered or unexported fields
}

func FP4_fromBytes

func FP4_fromBytes(bf []byte) *FP4

func NewFP4

func NewFP4() *FP4

func NewFP4copy

func NewFP4copy(x *FP4) *FP4

func NewFP4fp

func NewFP4fp(c *FP) *FP4

func NewFP4fp2

func NewFP4fp2(c *FP2) *FP4

func NewFP4fp2s

func NewFP4fp2s(c *FP2, d *FP2) *FP4

func NewFP4int

func NewFP4int(a int) *FP4

Constructors

func NewFP4ints

func NewFP4ints(a int, b int) *FP4

Constructors

func NewFP4rand

func NewFP4rand(rng *core.RAND) *FP4

func (*FP4) Equals

func (F *FP4) Equals(x *FP4) bool

test this=x?

func (*FP4) ToBytes

func (F *FP4) ToBytes(bf []byte)

type FP48

type FP48 struct {
	// contains filtered or unexported fields
}

func Ate

func Ate(P1 *ECP8, Q1 *ECP) *FP48

Optimal R-ate pairing

func Ate2

func Ate2(P1 *ECP8, Q1 *ECP, R1 *ECP8, S1 *ECP) *FP48

Optimal R-ate double pairing e(P,Q).e(R,S)

func FP48_fromBytes

func FP48_fromBytes(w []byte) *FP48

convert from byte array to FP48

func Fexp

func Fexp(m *FP48) *FP48

final exponentiation - keep separate for multi-pairings and to avoid thrashing stack

func GTpow

func GTpow(d *FP48, e *BIG) *FP48

f=f^e Note that this method requires a lot of RAM!

func Initmp

func Initmp() []*FP48

prepare for multi-pairing

func Miller

func Miller(r []*FP48) *FP48

basic Miller loop

func NewFP48

func NewFP48() *FP48

func NewFP48copy

func NewFP48copy(x *FP48) *FP48

func NewFP48fp16

func NewFP48fp16(d *FP16) *FP48

Constructors

func NewFP48fp16s

func NewFP48fp16s(d *FP16, e *FP16, f *FP16) *FP48

func NewFP48int

func NewFP48int(d int) *FP48

func (*FP48) Copy

func (F *FP48) Copy(x *FP48)

copy this=x

func (*FP48) Equals

func (F *FP48) Equals(x *FP48) bool

return 1 if x==y, else 0

func (*FP48) Inverse

func (F *FP48) Inverse()

this=1/this

func (*FP48) Isunity

func (F *FP48) Isunity() bool

test x==1 ?

func (*FP48) Mul

func (F *FP48) Mul(y *FP48)

FP48 full multiplication this=this*y

func (*FP48) Pow

func (F *FP48) Pow(e *BIG) *FP48

this=this^e

func (*FP48) ToBytes

func (F *FP48) ToBytes(w []byte)

convert this to byte array

func (*FP48) ToString

func (F *FP48) ToString() string

convert to hex string

type FP8

type FP8 struct {
	// contains filtered or unexported fields
}

func FP8_fromBytes

func FP8_fromBytes(bf []byte) *FP8

func NewFP8

func NewFP8() *FP8

func NewFP8copy

func NewFP8copy(x *FP8) *FP8

func NewFP8fp

func NewFP8fp(c *FP) *FP8

func NewFP8fp4

func NewFP8fp4(c *FP4) *FP8

func NewFP8fp4s

func NewFP8fp4s(c *FP4, d *FP4) *FP8

func NewFP8int

func NewFP8int(a int) *FP8

Constructors

func NewFP8ints

func NewFP8ints(a int, b int) *FP8

Constructors

func NewFP8rand

func NewFP8rand(rng *core.RAND) *FP8

func RHS8

func RHS8(x *FP8) *FP8

Calculate RHS of twisted curve equation x^3+B/i

func (*FP8) Equals

func (F *FP8) Equals(x *FP8) bool

test this=x?

func (*FP8) ToBytes

func (F *FP8) ToBytes(bf []byte)

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL