Documentation ¶
Overview ¶
Package bindata converts any file into manageable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice.
The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call.
Debug vs Release builds ¶
When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change.
This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from.
An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets.
Lower memory footprint ¶
The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies.
The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode.
Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue.
The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements.
For instance, consider the following two examples:
This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`:
func myfile() []byte { return []byte{0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a} }
Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error.
var _myfile = "\x89\x50\x4e\x47\x0d\x0a\x1a" func myfile() []byte { var empty [0]byte sx := (*reflect.StringHeader)(unsafe.Pointer(&_myfile)) b := empty[:] bx := (*reflect.SliceHeader)(unsafe.Pointer(&b)) bx.Data = sx.Data bx.Len = len(_myfile) bx.Cap = bx.Len return b }
Optional compression ¶
The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API.
This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data.
The default behaviour of the program is to use compression.
Path prefix stripping ¶
The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desirable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a [regular expression](https://github.com/google/re2/wiki/Syntax) string, which will be used to match a portion of the map keys and function names that should be stripped out.
For example, running without the `-prefix` flag, we get:
$ go-bindata /path/to/templates/ _bindata["/path/to/templates/foo.html"] = path_to_templates_foo_html
Running with the `-prefix` flag, we get:
$ go-bindata -prefix "/.*\/some/" /a/path/to/some/templates/ _bindata["templates/foo.html"] = templates_foo_html
Build tags ¶
With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags.
The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Splitting generated file ¶
When you want to embed big files or plenty of files, then the generated output is really big (maybe over 3Mo). Even if the generated file shouldn't be read, you probably need use analysis tool or an editor which can become slower with a such file.
Generating big files can be avoided with `-split` command line option. In that case, the given output is a directory path, the tool will generate one source file per file to embed, and it will generate a common file nammed `common.go` which contains commons parts like API.
Index ¶
Constants ¶
const ( // DefPackageName define default package name. DefPackageName = "main" // DefOutputName define default generated file name. DefOutputName = "bindata.go" // Default prefix for asset functions DefAssetPrefixName = "bindata" )
Variables ¶
var ( ErrNoInput = errors.New("no input") ErrNoPackageName = errors.New("missing package name") ErrCWD = errors.New("unable to determine current working directory") )
List of errors.
Functions ¶
Types ¶
type Config ¶
type Config struct { // Name of the package to use. Defaults to 'main'. Package string // Tags specify a set of optional build tags, which should be // included in the generated output. The tags are appended to a // `// +build` line in the beginning of the output file // and must follow the build tags syntax specified by the go tool. Tags string // Input defines the directory path, containing all asset files as // well as whether to recursively process assets in any sub directories. Input []InputConfig // Output defines the output file for the generated code. // If left empty, this defaults to 'bindata.go' in the current // working directory and the current directory in case of having true // to `Split` config. Output string // This defines the string that is prepended to asset functions. // This can be used to export these functions directly. AssetPrefix string // Prefix defines a regular expression which should used to strip // substrings from all file names when generating the keys in the table of // contents. For example, running without the `-prefix` flag, we get: // // $ go-bindata /path/to/templates // go_bindata["/path/to/templates/foo.html"] = _path_to_templates_foo_html // // Running with the `-prefix` flag, we get: // // $ go-bindata -prefix "/.*/some/" /a/path/to/some/templates/ // _bindata["templates/foo.html"] = templates_foo_html Prefix *regexp.Regexp // Ignores any filenames matching the regex pattern specified, e.g. // path/to/file.ext will ignore only that file, or \\.gitignore // will match any .gitignore file. // // This parameter can be provided multiple times. Ignore []*regexp.Regexp // Include contains list of regex to filter input files. Include []*regexp.Regexp // When nonzero, use this as mode for all files. Mode uint // When nonzero, use this as unix timestamp for all files. ModTime int64 // When true, size, mode and modtime are not preserved from files NoMetadata bool // NoMemCopy will alter the way the output file is generated. // // It will employ a hack that allows us to read the file data directly from // the compiled program's `.rodata` section. This ensures that when we call // call our generated function, we omit unnecessary mem copies. // // The downside of this, is that it requires dependencies on the `reflect` and // `unsafe` packages. These may be restricted on platforms like AppEngine and // thus prevent you from using this mode. // // Another disadvantage is that the byte slice we create, is strictly read-only. // For most use-cases this is not a problem, but if you ever try to alter the // returned byte slice, a runtime panic is thrown. Use this mode only on target // platforms where memory constraints are an issue. // // The default behaviour is to use the old code generation method. This // prevents the two previously mentioned issues, but will employ at least one // extra memcopy and thus increase memory requirements. // // For instance, consider the following two examples: // // This would be the default mode, using an extra memcopy but gives a safe // implementation without dependencies on `reflect` and `unsafe`: // // func myfile() []byte { // return []byte{0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a} // } // // Here is the same functionality, but uses the `.rodata` hack. // The byte slice returned from this example can not be written to without // generating a runtime error. // // var _myfile = "\x89\x50\x4e\x47\x0d\x0a\x1a" // // func myfile() []byte { // var empty [0]byte // sx := (*reflect.StringHeader)(unsafe.Pointer(&_myfile)) // b := empty[:] // bx := (*reflect.SliceHeader)(unsafe.Pointer(&b)) // bx.Data = sx.Data // bx.Len = len(_myfile) // bx.Cap = bx.Len // return b // } NoMemCopy bool // NoCompress means the assets are /not/ GZIP compressed before being turned // into Go code. The generated function will automatically unzip // the file data when called. Defaults to false. NoCompress bool // Perform a debug build. This generates an asset file, which // loads the asset contents directly from disk at their original // location, instead of embedding the contents in the code. // // This is mostly useful if you anticipate that the assets are // going to change during your development cycle. You will always // want your code to access the latest version of the asset. // Only in release mode, will the assets actually be embedded // in the code. The default behaviour is Release mode. Debug bool // Perform a dev build, which is nearly identical to the debug option. The // only difference is that instead of absolute file paths in generated code, // it expects a variable, `rootDir`, to be set in the generated code's // package (the author needs to do this manually), which it then prepends to // an asset's name to construct the file path on disk. // // This is mainly so you can push the generated code file to a shared // repository. Dev bool // Split the output into several files. Every embedded file is bound into // a specific file, and a common file is also generated containing API and // other common parts. // If true, the output config is a directory and not a file. Split bool // MD5Checksum is a flag that, when set to true, indicates to calculate // MD5 checksums for files. MD5Checksum bool // Verbose flag to display verbose output. Verbose bool // contains filtered or unexported fields }
Config defines a set of options for the asset conversion.
type InputConfig ¶
type InputConfig struct { // Path defines a directory containing asset files to be included // in the generated output. Path string // Recursive defines whether subdirectories of path // should be recursively included in the conversion. Recursive bool }
InputConfig defines options on an asset directory to be convert.
func CreateInputConfig ¶
func CreateInputConfig(path string) InputConfig