iterators

package
v0.112.2 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Feb 16, 2023 License: Apache-2.0 Imports: 8 Imported by: 0

Documentation

Overview

Package iterators provide iterator implementations.

Summary

An iterator goal is to decouple the facts about the origin of the data, to the consumer who use the data. Most common scenario is to hide the fact if data is from a Certain DB, STDIN or from somewhere else. This helps to design data consumers that doesn't rely on the data source concrete implementation, while still able to do composition and different kind of actions on the received data stream. An Interface represent multiple data that can be 0 and infinite. As a general rule of thumb, if the consumer is not the final destination of the data stream, the consumer should use the pipeline pattern, in order to avoid bottleneck with local resources.

frameless.Iterator define a separate object that encapsulates accessing and traversing an aggregate object. Clients use an iterator to access and traverse an aggregate without knowing its representation (data structures). frameless.Iterator design inspirited by https://golang.org/pkg/encoding/json/#Decoder

Why an Object with empty interface instead of type safe channels to represent streams

There are multiple approach to the same problem, and I only prefer this approach, because the error handling is easier trough this. In channel based pipeline pattern, you have to make sure that the information about the error is passed trough either trough some kind of separate error channel, or trough the message object it self that being passed around. If the pipeline can be composited during a certain use case, you can pass around a context.Context object to represent this. In the case of Interface pattern, this failure communicated during the individual iteration, which leaves it up to you to propagate the error forward, or handle at the place.

Resources

https://en.wikipedia.org/wiki/Iterator_pattern https://en.wikipedia.org/wiki/Pipeline_(software)

Index

Examples

Constants

View Source
const Break errorutil.Error = `iterators:break`

Variables

This section is empty.

Functions

func Collect

func Collect[T any](i Iterator[T]) (vs []T, err error)

func Count

func Count[T any](i Iterator[T]) (total int, err error)

Count will iterate over and count the total iterations number

Good when all you want is count all the elements in an iterator but don't want to do anything else.

func First

func First[T any](i Iterator[T]) (value T, found bool, err error)

First decode the first next value of the iterator and close the iterator

func ForEach

func ForEach[T any](i Iterator[T], fn func(T) error) (rErr error)

func Last

func Last[T any](i Iterator[T]) (value T, found bool, err error)

func Must added in v0.107.0

func Must[T any](v T, err error) T

func Pipe

func Pipe[T any]() (*PipeIn[T], *PipeOut[T])

Pipe return a receiver and a sender. This can be used with resources that

Example
package main

import (
	"github.com/adamluzsi/frameless/ports/iterators"
)

func main() {
	var (
		i *iterators.PipeIn[int]
		o *iterators.PipeOut[int]
	)

	i, o = iterators.Pipe[int]()
	_ = i // use it to send values
	_ = o // use it to consume values on each iteration (iter.Next())
}
Output:

func Reduce

func Reduce[
	T, Result any,
	BLK func(Result, T) Result |
		func(Result, T) (Result, error),
](i Iterator[T], initial Result, blk BLK) (rv Result, rErr error)

Types

type BatchConfig

type BatchConfig struct {
	// Size is the max amount of element that a batch will contains.
	// Default batch Size is 100.
	Size int
	// Timeout is batching wait timout duration that the batching process is willing to wait for, before starting to build a new batch.
	// Default batch Timeout is 100 Millisecond.
	Timeout time.Duration
}

type BatchIter

type BatchIter[T any] struct {
	Iterator Iterator[T]
	Config   BatchConfig
	// contains filtered or unexported fields
}

func Batch

func Batch[T any](i Iterator[T], c BatchConfig) *BatchIter[T]

func (*BatchIter[T]) Close

func (i *BatchIter[T]) Close() error

func (*BatchIter[T]) Err

func (i *BatchIter[T]) Err() error

Err return the cause if for some reason by default the More return false all the time

func (*BatchIter[T]) Init

func (i *BatchIter[T]) Init()

func (*BatchIter[T]) Next

func (i *BatchIter[T]) Next() bool

func (*BatchIter[T]) Value

func (i *BatchIter[T]) Value() []T

Value returns the current value in the iterator. The action should be repeatable without side effect.

type Callback

type Callback struct {
	OnClose func(io.Closer) error
}

type CallbackIterator

type CallbackIterator[T any] struct {
	Iterator[T]
	Callback
}

func (*CallbackIterator[T]) Close

func (i *CallbackIterator[T]) Close() error

type ConcurrentAccessIterator

type ConcurrentAccessIterator[T any] struct {
	Iterator[T]
	// contains filtered or unexported fields
}

func WithConcurrentAccess

func WithConcurrentAccess[T any](i Iterator[T]) *ConcurrentAccessIterator[T]

WithConcurrentAccess allows you to convert any iterator into one that is safe to use from concurrent access. The caveat with this is that this protection only allows 1 Decode call for each Next call.

func (*ConcurrentAccessIterator[T]) Next

func (i *ConcurrentAccessIterator[T]) Next() bool

func (*ConcurrentAccessIterator[T]) Value

func (i *ConcurrentAccessIterator[T]) Value() T

type EmptyIter

type EmptyIter[T any] struct{}

EmptyIter iterator can help achieve Null Object Pattern when no value is logically expected and iterator should be returned

func Empty

func Empty[T any]() *EmptyIter[T]

Empty iterator is used to represent nil result with Null object pattern

Example
package main

import (
	"github.com/adamluzsi/frameless/ports/iterators"
)

func main() {
	iterators.Empty[any]()
}
Output:

func (*EmptyIter[T]) Close

func (i *EmptyIter[T]) Close() error

func (*EmptyIter[T]) Err

func (i *EmptyIter[T]) Err() error

func (*EmptyIter[T]) Next

func (i *EmptyIter[T]) Next() bool

func (*EmptyIter[T]) Value

func (i *EmptyIter[T]) Value() T

type Encoder

type Encoder interface {
	//
	// Encode encode a simple message back to the wrapped communication channel
	//	message is an interface type because the channel communication layer and content and the serialization is up to the Encoder to implement
	//
	// If the message is a complex type that has multiple fields,
	// an exported struct that represent the content must be declared at the controller level
	// and all the presenters must based on that input for they test
	Encode(interface{}) error
}

Encoder is a scope isolation boundary. One use-case for this is for example the Presenter object that encapsulate the external resource presentation mechanism from it's user.

Scope:

receive Entities, that will be used by the creator of the Encoder

type EncoderFunc

type EncoderFunc func(interface{}) error

EncoderFunc is a wrapper to convert standalone functions into a presenter

func (EncoderFunc) Encode

func (lambda EncoderFunc) Encode(i interface{}) error

Encode implements the Encoder Interface

type ErrorIter

type ErrorIter[T any] struct {
	// contains filtered or unexported fields
}

ErrorIter iterator can be used for returning an error wrapped with iterator interface. This can be used when external resource encounter unexpected non recoverable error during query execution.

func Error

func Error[T any](err error) *ErrorIter[T]

Error returns an Interface that only can do is returning an Err and never have next element

func (*ErrorIter[T]) Close

func (i *ErrorIter[T]) Close() error

func (*ErrorIter[T]) Err

func (i *ErrorIter[T]) Err() error

func (*ErrorIter[T]) Next

func (i *ErrorIter[T]) Next() bool

func (*ErrorIter[T]) Value

func (i *ErrorIter[T]) Value() T

type FilterIter

type FilterIter[T any] struct {
	Iterator Iterator[T]
	Filter   func(T) bool
	// contains filtered or unexported fields
}

func Filter

func Filter[T any](i Iterator[T], filter func(T) bool) *FilterIter[T]
Example
package main

import (
	"log"

	"github.com/adamluzsi/frameless/ports/iterators"
)

func main() {
	var iter iterators.Iterator[int]
	iter = iterators.Slice([]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9})
	iter = iterators.Filter[int](iter, func(n int) bool { return n > 2 })

	defer iter.Close()
	for iter.Next() {
		n := iter.Value()
		_ = n
	}
	if err := iter.Err(); err != nil {
		log.Fatal(err)
	}
}
Output:

func (*FilterIter[T]) Close

func (i *FilterIter[T]) Close() error

func (*FilterIter[T]) Err

func (i *FilterIter[T]) Err() error

func (*FilterIter[T]) Next

func (i *FilterIter[T]) Next() bool

func (*FilterIter[T]) Value

func (i *FilterIter[T]) Value() T

type FuncIter

type FuncIter[T any] struct {
	NextFn func() (v T, more bool, err error)
	// contains filtered or unexported fields
}

func Func

func Func[T any](next func() (v T, more bool, err error)) *FuncIter[T]

func (*FuncIter[T]) Close

func (i *FuncIter[T]) Close() error

func (*FuncIter[T]) Err

func (i *FuncIter[T]) Err() error

func (*FuncIter[T]) Next

func (i *FuncIter[T]) Next() bool

func (*FuncIter[T]) Value

func (i *FuncIter[T]) Value() T

type Iterator

type Iterator[V any] interface {
	// Closer is required to make it able to cancel iterators where resources are being used behind the scene
	// for all other cases where the underling io is handled on a higher level, it should simply return nil
	io.Closer
	// Err return the error cause.
	Err() error
	// Next will ensure that Value returns the next item when executed.
	// If the next value is not retrievable, Next should return false and ensure Err() will return the error cause.
	Next() bool
	// Value returns the current value in the iterator.
	// The action should be repeatable without side effects.
	Value() V
}

Iterator define a separate object that encapsulates accessing and traversing an aggregate object. Clients use an iterator to access and traverse an aggregate without knowing its representation (data structures). Interface design inspirited by https://golang.org/pkg/encoding/json/#Decoder https://en.wikipedia.org/wiki/Iterator_pattern

Example
package main

import (
	"github.com/adamluzsi/frameless/ports/iterators"
)

func main() {
	var iter iterators.Iterator[int]
	defer iter.Close()
	for iter.Next() {
		v := iter.Value()
		_ = v
	}
	if err := iter.Err(); err != nil {
		// handle error
	}
}
Output:

func Errorf

func Errorf[T any](format string, a ...interface{}) Iterator[T]

Errorf behaves exactly like fmt.Errorf but returns the error wrapped as iterator

func Limit added in v0.91.0

func Limit[V any](iter Iterator[V], n int) Iterator[V]

func Offset added in v0.91.0

func Offset[V any](iter Iterator[V], offset int) Iterator[V]

func WithCallback

func WithCallback[T any](i Iterator[T], c Callback) Iterator[T]

type MapIter

type MapIter[T any, V any] struct {
	Iterator  Iterator[T]
	Transform MapTransformFunc[T, V]
	// contains filtered or unexported fields
}

func Map

func Map[T any, V any](iter Iterator[T], transform MapTransformFunc[T, V]) *MapIter[T, V]

Map allows you to do additional transformation on the values. This is useful in cases, where you have to alter the input value, or change the type all together. Like when you read lines from an input stream, and then you map the line content to a certain data structure, in order to not expose what steps needed in order to deserialize the input stream, thus protect the business rules from this information.

func (*MapIter[T, V]) Close

func (i *MapIter[T, V]) Close() error

func (*MapIter[T, V]) Err

func (i *MapIter[T, V]) Err() error

func (*MapIter[T, V]) Next

func (i *MapIter[T, V]) Next() bool

func (*MapIter[T, V]) Value

func (i *MapIter[T, V]) Value() V

type MapTransformFunc

type MapTransformFunc[T any, V any] func(T) (V, error)

type PipeIn

type PipeIn[T any] struct {
	// contains filtered or unexported fields
}

PipeIn provides access to feed a pipe receiver with entities

func (*PipeIn[T]) Close

func (f *PipeIn[T]) Close() error

Close will close the feed and err channels, which eventually notify the receiver that no more value expected

func (*PipeIn[T]) Error

func (f *PipeIn[T]) Error(err error)

Error send an error object to the PipeOut side, so it will be accessible with iterator.Err()

func (*PipeIn[T]) Value

func (f *PipeIn[T]) Value(v T) (ok bool)

Value send value to the PipeOut.Value. It returns if sending was possible.

type PipeOut

type PipeOut[T any] struct {
	// contains filtered or unexported fields
}

PipeOut implements iterator interface while it's still being able to receive values, used for streaming

func (*PipeOut[T]) Close

func (i *PipeOut[T]) Close() error

Close sends a signal back that no more value should be sent because receiver stop listening

func (*PipeOut[T]) Err

func (i *PipeOut[T]) Err() error

Err returns an error object that the pipe sender want to present for the pipe receiver

func (*PipeOut[T]) Next

func (i *PipeOut[T]) Next() bool

Next set the current entity for the next value returns false if no next value

func (*PipeOut[T]) Value

func (i *PipeOut[T]) Value() T

Value will link the current buffered value to the pointer value that is given as "e"

type SQLRowMapper

type SQLRowMapper[T any] interface {
	Map(s SQLRowScanner) (T, error)
}

type SQLRowMapperFunc

type SQLRowMapperFunc[T any] func(SQLRowScanner) (T, error)

func (SQLRowMapperFunc[T]) Map

func (fn SQLRowMapperFunc[T]) Map(s SQLRowScanner) (T, error)

type SQLRowScanner

type SQLRowScanner interface {
	Scan(...interface{}) error
}

type SQLRowsIter

type SQLRowsIter[T any] struct {
	Rows   sqlRows
	Mapper SQLRowMapper[T]
	// contains filtered or unexported fields
}

SQLRowsIter allow you to use the same iterator pattern with sql.Rows structure. it allows you to do dynamic filtering, pipeline/middleware pattern on your sql results by using this wrapping around it. it also makes testing easier with the same Interface interface.

func SQLRows

func SQLRows[T any](rows sqlRows, mapper SQLRowMapper[T]) *SQLRowsIter[T]
Example
package main

import (
	"context"
	"database/sql"

	"github.com/adamluzsi/frameless/ports/iterators"
)

func main() {
	var (
		ctx context.Context
		db  *sql.DB
	)
	userIDs, err := db.QueryContext(ctx, `SELECT id FROM users`)

	if err != nil {
		panic(err)
	}

	type mytype struct {
		asdf string
	}

	iter := iterators.SQLRows[mytype](userIDs, iterators.SQLRowMapperFunc[mytype](func(scanner iterators.SQLRowScanner) (mytype, error) {
		var value mytype
		if err := scanner.Scan(&value.asdf); err != nil {
			return mytype{}, err
		}
		return value, nil
	}))

	defer iter.Close()
	for iter.Next() {
		v := iter.Value()
		_ = v
	}
	if err := iter.Err(); err != nil {
		panic(err)
	}
}
Output:

func (*SQLRowsIter[T]) Close

func (i *SQLRowsIter[T]) Close() error

func (*SQLRowsIter[T]) Err

func (i *SQLRowsIter[T]) Err() error

func (*SQLRowsIter[T]) Next

func (i *SQLRowsIter[T]) Next() bool

func (*SQLRowsIter[T]) Value

func (i *SQLRowsIter[T]) Value() T

type ScannerIter

type ScannerIter[T string | []byte] struct {
	*bufio.Scanner
	Closer io.Closer
	// contains filtered or unexported fields
}

func BufioScanner added in v0.107.0

func BufioScanner[T string | []byte](s *bufio.Scanner, closer io.Closer) *ScannerIter[T]

func (*ScannerIter[T]) Close

func (i *ScannerIter[T]) Close() error

func (*ScannerIter[T]) Err

func (i *ScannerIter[T]) Err() error

func (*ScannerIter[T]) Next

func (i *ScannerIter[T]) Next() bool

func (*ScannerIter[T]) Value

func (i *ScannerIter[T]) Value() T

type SingleValueIter

type SingleValueIter[T any] struct {
	V T
	// contains filtered or unexported fields
}

func SingleValue

func SingleValue[T any](v T) *SingleValueIter[T]

SingleValue creates an iterator that can return one single element and will ensure that Next can only be called once.

func (*SingleValueIter[T]) Close

func (i *SingleValueIter[T]) Close() error

func (*SingleValueIter[T]) Err

func (i *SingleValueIter[T]) Err() error

func (*SingleValueIter[T]) Next

func (i *SingleValueIter[T]) Next() bool

func (*SingleValueIter[T]) Value

func (i *SingleValueIter[T]) Value() T

type SliceIter

type SliceIter[T any] struct {
	Slice []T
	// contains filtered or unexported fields
}

func Slice

func Slice[T any](slice []T) *SliceIter[T]

func (*SliceIter[T]) Close

func (i *SliceIter[T]) Close() error

func (*SliceIter[T]) Err

func (i *SliceIter[T]) Err() error

func (*SliceIter[T]) Next

func (i *SliceIter[T]) Next() bool

func (*SliceIter[T]) Value

func (i *SliceIter[T]) Value() T

type StubIter

type StubIter[T any] struct {
	Iterator  Iterator[T]
	StubValue func() T
	StubClose func() error
	StubNext  func() bool
	StubErr   func() error
}

func Stub

func Stub[T any](i Iterator[T]) *StubIter[T]

func (*StubIter[T]) Close

func (m *StubIter[T]) Close() error

func (*StubIter[T]) Err

func (m *StubIter[T]) Err() error

func (*StubIter[T]) Next

func (m *StubIter[T]) Next() bool

func (*StubIter[T]) ResetClose

func (m *StubIter[T]) ResetClose()

func (*StubIter[T]) ResetErr

func (m *StubIter[T]) ResetErr()

func (*StubIter[T]) ResetNext

func (m *StubIter[T]) ResetNext()

func (*StubIter[T]) ResetValue

func (m *StubIter[T]) ResetValue()

func (*StubIter[T]) Value

func (m *StubIter[T]) Value() T

Directories

Path Synopsis

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL