parquet-go

module
v1.3.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 24, 2019 License: Apache-2.0

README

parquet-go v1.3.0

Travis Status for xitongsys/parquet-go godoc for xitongsys/parquet-go

parquet-go is a pure-go implementation of reading and writing the parquet format file.

  • Support Read/Write Nested/Flat Parquet File
  • Simple to use
  • High performance

Install

Add the parquet-go library to your $GOPATH/src and install dependencies:

go get github.com/xitongsys/parquet-go/...

Look at examples in example/.

cd parquet-go/
dep ensure
cd example/
go run local_flat.go

Type

There are two types in Parquet: Primitive Type and Logical Type. Logical types are stored as primitive types. The following list is the currently implemented data types:

Parquet Type Primitive Type Go Type
BOOLEAN BOOLEAN bool
INT32 INT32 int32
INT64 INT64 int64
INT96 INT96 string
FLOAT FLOAT float32
DOUBLE DOUBLE float64
BYTE_ARRAY BYTE_ARRAY string
FIXED_LEN_BYTE_ARRAY FIXED_LEN_BYTE_ARRAY string
UTF8 BYTE_ARRAY string
INT_8 INT32 int32
INT_16 INT32 int32
INT_32 INT32 int32
INT_64 INT64 int64
UINT_8 INT32 uint32
UINT_16 INT32 uint32
UINT_32 INT32 uint32
UINT_64 INT64 uint64
DATE INT32 int32
TIME_MILLIS INT32 int32
TIME_MICROS INT64 int64
TIMESTAMP_MILLIS INT64 int64
TIMESTAMP_MICROS INT64 int64
INTERVAL FIXED_LEN_BYTE_ARRAY string
DECIMAL INT32,INT64,FIXED_LEN_BYTE_ARRAY,BYTE_ARRAY int32,int64,string,string
LIST slice
MAP map
Tips
  • Although DECIMAL can be stored as INT32,INT64,FIXED_LEN_BYTE_ARRAY,BYTE_ARRAY, Currently I suggest to use FIXED_LEN_BYTE_ARRAY.

Encoding

PLAIN:

All types

PLAIN_DICTIONARY:

All types

DELTA_BINARY_PACKED:

INT32, INT64, INT_8, INT_16, INT_32, INT_64, UINT_8, UINT_16, UINT_32, UINT_64, TIME_MILLIS, TIME_MICROS, TIMESTAMP_MILLIS, TIMESTAMP_MICROS

DELTA_BYTE_ARRAY:

BYTE_ARRAY, UTF8

DELTA_LENGTH_BYTE_ARRAY:

BYTE_ARRAY, UTF8

Tips
  • Some platforms don't support all kinds of encodings. If you are not sure, just use PLAIN and PLAIN_DICTIONARY.

Repetition Type

There are three repetition types in Parquet: REQUIRED, OPTIONAL, REPEATED.

Repetition Type Example Description
REQUIRED V1 int32 `parquet:"name=v1, type=INT32"` No extra description
OPTIONAL V1 *int32 `parquet:"name=v1, type=INT32"` Declare as pointer
REPEATED V1 []int32 `parquet:"name=v1, type=INT32, repetitontype=REPEATED"` Add 'repetitiontype=REPEATED' in tags
Tips
  • The difference between a List and a REPEATED variable is the 'repetitiontype' in tags. Although both of them are stored as slice in go, they are different in parquet. You can find the detail of List in parquet at here. I suggest just use a List.

Example of Type and Encoding

Bool              bool    `parquet:"name=bool, type=BOOLEAN"`
Int32             int32   `parquet:"name=int32, type=INT32"`
Int64             int64   `parquet:"name=int64, type=INT64"`
Int96             string  `parquet:"name=int96, type=INT96"`
Float             float32 `parquet:"name=float, type=FLOAT"`
Double            float64 `parquet:"name=double, type=DOUBLE"`
ByteArray         string  `parquet:"name=bytearray, type=BYTE_ARRAY"`
FixedLenByteArray string  `parquet:"name=FixedLenByteArray, type=FIXED_LEN_BYTE_ARRAY, length=10"`

Utf8            string `parquet:"name=utf8, type=UTF8, encoding=PLAIN_DICTIONARY"`
Int_8           int32  `parquet:"name=int_8, type=INT_8"`
Int_16          int32  `parquet:"name=int_16, type=INT_16"`
Int_32          int32  `parquet:"name=int_32, type=INT_32"`
Int_64          int64  `parquet:"name=int_64, type=INT_64"`
Uint_8          uint32 `parquet:"name=uint_8, type=UINT_8"`
Uint_16         uint32 `parquet:"name=uint_16, type=UINT_16"`
Uint_32         uint32 `parquet:"name=uint_32, type=UINT_32"`
Uint_64         uint64 `parquet:"name=uint_64, type=UINT_64"`
Date            int32  `parquet:"name=date, type=DATE"`
TimeMillis      int32  `parquet:"name=timemillis, type=TIME_MILLIS"`
TimeMicros      int64  `parquet:"name=timemicros, type=TIME_MICROS"`
TimestampMillis int64  `parquet:"name=timestampmillis, type=TIMESTAMP_MILLIS"`
TimestampMicros int64  `parquet:"name=timestampmicros, type=TIMESTAMP_MICROS"`
Interval        string `parquet:"name=interval, type=INTERVAL"`

Decimal1 int32  `parquet:"name=decimal1, type=DECIMAL, scale=2, precision=9, basetype=INT32"`
Decimal2 int64  `parquet:"name=decimal2, type=DECIMAL, scale=2, precision=18, basetype=INT64"`
Decimal3 string `parquet:"name=decimal3, type=DECIMAL, scale=2, precision=10, basetype=FIXED_LEN_BYTE_ARRAY, length=12"`
Decimal4 string `parquet:"name=decimal4, type=DECIMAL, scale=2, precision=20, basetype=BYTE_ARRAY"`

Map      map[string]int32 `parquet:"name=map, type=MAP, keytype=UTF8, valuetype=INT32"`
List     []string         `parquet:"name=list, type=LIST, valuetype=UTF8"`
Repeated []int32          `parquet:"name=repeated, type=INT32, repetitiontype=REPEATED"`

ParquetFile

Read/Write a parquet file need a ParquetFile interface implemented

type ParquetFile interface {
	io.Seeker
	io.Reader
	io.Writer
	io.Closer
	Open(name string) (ParquetFile, error)
	Create(name string) (ParquetFile, error)
}

Using this interface, parquet-go can read/write parquet file on different platforms. All the file sources are at parquet-go-source. Now it supports(local/hdfs/s3/gcs/memory).

Writer

Three Writers are supported: ParquetWriter, JSONWriter, CSVWriter.

Reader

Two Readers are supported: ParquetReader, ColumnReader

  • ParquetReader is used to read predefined Golang structs Example of ParquetReader

  • ColumnReader is used to read some columns. The read function return 3 slices([value], [RepetitionLevel], [DefinitionLevel]) of the records. Example of ColumnReader

Tips
  • If the parquet file is very big (even the size of parquet file is small, the uncompressed size may be very large), please don't read all rows at one time, which may induce the OOM. You can read a small portion of the data at a time like a stream-oriented file.

Schema

There are three methods to define the schema: go struct tags, Json, CSV metadata. Only items in schema will be written and others will be ignored.

Tag
type Student struct {
	Name   string  `parquet:"name=name, type=UTF8, encoding=PLAIN_DICTIONARY"`
	Age    int32   `parquet:"name=age, type=INT32"`
	Id     int64   `parquet:"name=id, type=INT64"`
	Weight float32 `parquet:"name=weight, type=FLOAT"`
	Sex    bool    `parquet:"name=sex, type=BOOLEAN"`
	Day    int32   `parquet:"name=day, type=DATE"`
}

Example of tags

JSON

JSON schema can be used to define some complicated schema, which can't be defined by tag.

type Student struct {
	Name    string
	Age     int32
	Id      int64
	Weight  float32
	Sex     bool
	Classes []string
	Scores  map[string][]float32

	Friends []struct {
		Name string
		Id   int64
	}
	Teachers []struct {
		Name string
		Id   int64
	}
}

var jsonSchema string = `
{
  "Tag": "name=parquet-go-root, repetitiontype=REQUIRED",
  "Fields": [
    {"Tag": "name=name, inname=Name, type=UTF8, repetitiontype=REQUIRED"},
    {"Tag": "name=age, inname=Age, type=INT32, repetitiontype=REQUIRED"},
    {"Tag": "name=id, inname=Id, type=INT64, repetitiontype=REQUIRED"},
    {"Tag": "name=weight, inname=Weight, type=FLOAT, repetitiontype=REQUIRED"},
    {"Tag": "name=sex, inname=Sex, type=BOOLEAN, repetitiontype=REQUIRED"},

    {"Tag": "name=classes, inname=Classes, type=LIST, repetitiontype=REQUIRED",
     "Fields": [{"Tag": "name=element, type=UTF8, repetitiontype=REQUIRED"}]
    },
    {
      "Tag": "name=scores, inname=Scores, type=MAP, repetitiontype=REQUIRED",
      "Fields": [
        {"Tag": "name=key, type=UTF8, repetitiontype=REQUIRED"},
        {"Tag": "name=value, type=LIST, repetitiontype=REQUIRED",
         "Fields": [{"Tag": "name=element, type=FLOAT, repetitiontype=REQUIRED"}]
        }
      ]
    },
    {
      "Tag": "name=friends, inname=Friends, type=LIST, repetitiontype=REQUIRED",
      "Fields": [
       {"Tag": "name=element, repetitiontype=REQUIRED",
        "Fields": [
         {"Tag": "name=name, inname=Name, type=UTF8, repetitiontype=REQUIRED"},
         {"Tag": "name=id, inname=Id, type=INT64, repetitiontype=REQUIRED"}
        ]}
      ]
    },
    {
      "Tag": "name=teachers, inname=Teachers, repetitiontype=REPEATED",
      "Fields": [
        {"Tag": "name=name, inname=Name, type=UTF8, repetitiontype=REQUIRED"},
        {"Tag": "name=id, inname=Id, type=INT64, repetitiontype=REQUIRED"}
      ]
    }
  ]
}
`

Example of JSON schema

CSV metadata
md := []string{
	"name=Name, type=UTF8, encoding=PLAIN_DICTIONARY",
	"name=Age, type=INT32",
	"name=Id, type=INT64",
	"name=Weight, type=FLOAT",
	"name=Sex, type=BOOLEAN",
}

Example of CSV metadata

Parallel

Read/Write initial functions have a parallel parameters np which is the number of goroutines in reading/writing.

func NewParquetReader(pFile ParquetFile.ParquetFile, obj interface{}, np int64) (*ParquetReader, error)
func NewParquetWriter(pFile ParquetFile.ParquetFile, obj interface{}, np int64) (*ParquetWriter, error)
func NewJSONWriter(jsonSchema string, pfile ParquetFile.ParquetFile, np int64) (*JSONWriter, error)
func NewCSVWriter(md []string, pfile ParquetFile.ParquetFile, np int64) (*CSVWriter, error)

Read/Write Example

Following is a simple example of read/write parquet file on local disk. It can be found in example directory:

package main

import (
	"log"
	"time"

	"github.com/xitongsys/parquet-go-source/local"
	"github.com/xitongsys/parquet-go/reader"
	"github.com/xitongsys/parquet-go/writer"
	"github.com/xitongsys/parquet-go/parquet"
)

type Student struct {
	Name    string  `parquet:"name=name, type=UTF8, encoding=PLAIN_DICTIONARY"`
	Age     int32   `parquet:"name=age, type=INT32"`
	Id      int64   `parquet:"name=id, type=INT64"`
	Weight  float32 `parquet:"name=weight, type=FLOAT"`
	Sex     bool    `parquet:"name=sex, type=BOOLEAN"`
	Day     int32   `parquet:"name=day, type=DATE"`
	Ignored int32   //without parquet tag and won't write
}

func main() {
	var err error
	fw, err := local.NewLocalFileWriter("flat.parquet")
	if err != nil {
		log.Println("Can't create local file", err)
		return
	}

	//write
	pw, err := writer.NewParquetWriter(fw, new(Student), 4)
	if err != nil {
		log.Println("Can't create parquet writer", err)
		return
	}

	pw.RowGroupSize = 128 * 1024 * 1024 //128M
	pw.CompressionType = parquet.CompressionCodec_SNAPPY
	num := 100
	for i := 0; i < num; i++ {
		stu := Student{
			Name:   "StudentName",
			Age:    int32(20 + i%5),
			Id:     int64(i),
			Weight: float32(50.0 + float32(i)*0.1),
			Sex:    bool(i%2 == 0),
			Day:    int32(time.Now().Unix() / 3600 / 24),
		}
		if err = pw.Write(stu); err != nil {
			log.Println("Write error", err)
		}
	}
	if err = pw.WriteStop(); err != nil {
		log.Println("WriteStop error", err)
		return
	}
	log.Println("Write Finished")
	fw.Close()

	///read
	fr, err := local.NewLocalFileReader("flat.parquet")
	if err != nil {
		log.Println("Can't open file")
		return
	}

	pr, err := reader.NewParquetReader(fr, new(Student), 4)
	if err != nil {
		log.Println("Can't create parquet reader", err)
		return
	}
	num = int(pr.GetNumRows())
	for i := 0; i < num/10; i++ {
		if i%2 == 0 {
			pr.SkipRows(10) //skip 10 rows
			continue
		}
		stus := make([]Student, 10) //read 10 rows
		if err = pr.Read(&stus); err != nil {
			log.Println("Read error", err)
		}
		log.Println(stus)
	}

	pr.ReadStop()
	fr.Close()
}

Tool

  • parquet-tools: Command line tools that aid in the inspection of Parquet files

Please start to use it and give feedback or start it! Help is needed and anything is welcome.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL