Documentation ¶
Overview ¶
Package smx509 implements a subset of the X.509 standard.
It allows parsing and generating certificates, certificate signing requests, certificate revocation lists, and encoded public and private keys. It provides a certificate verifier, complete with a chain builder.
The package targets the X.509 technical profile defined by the IETF (RFC 2459/3280/5280), and as further restricted by the CA/Browser Forum Baseline Requirements. There is minimal support for features outside of these profiles, as the primary goal of the package is to provide compatibility with the publicly trusted TLS certificate ecosystem and its policies and constraints.
On macOS and Windows, certificate verification is handled by system APIs, but the package aims to apply consistent validation rules across operating systems.
Index ¶
- Constants
- Variables
- func CreateCertificate(rand io.Reader, template, parent *Certificate, pub, priv any) ([]byte, error)
- func CreateCertificateRequest(rand io.Reader, template *x509.CertificateRequest, priv any) (csr []byte, err error)
- func CreateRevocationList(rand io.Reader, template *x509.RevocationList, issuer *Certificate, ...) ([]byte, error)
- func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error)deprecated
- func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error)deprecated
- func IsEncryptedPEMBlock(b *pem.Block) booldeprecated
- func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)
- func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte
- func MarshalPKCS1PublicKey(key *rsa.PublicKey) []byte
- func MarshalPKCS8PrivateKey(key any) ([]byte, error)
- func MarshalPKIXPublicKey(pub any) ([]byte, error)
- func MarshalSM2PrivateKey(key *sm2.PrivateKey) ([]byte, error)
- func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error)deprecated
- func ParseDERCRL(derBytes []byte) (*pkix.CertificateList, error)deprecated
- func ParseECPrivateKey(der []byte) (*ecdsa.PrivateKey, error)
- func ParsePKCS1PrivateKey(der []byte) (*rsa.PrivateKey, error)
- func ParsePKCS1PublicKey(der []byte) (*rsa.PublicKey, error)
- func ParsePKCS8PrivateKey(der []byte) (key any, err error)
- func ParsePKIXPublicKey(derBytes []byte) (pub any, err error)
- func ParseSM2PrivateKey(der []byte) (*sm2.PrivateKey, error)
- func ParseSM9PrivateKey(der []byte) (key interface{}, err error)
- func ParseTypedECPrivateKey(der []byte) (interface{}, error)
- type CertPool
- type Certificate
- func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) errordeprecated
- func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) error
- func (c *Certificate) CheckSignatureFrom(parent *Certificate) error
- func (c *Certificate) CreateCRL(rand io.Reader, priv any, revokedCerts []pkix.RevokedCertificate, ...) (crlBytes []byte, err error)deprecated
- func (c *Certificate) Equal(other *Certificate) bool
- func (c *Certificate) ToX509() *x509.Certificate
- func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error)
- func (c *Certificate) VerifyHostname(h string) error
- type CertificateInvalidError
- type CertificateRequest
- type ConstraintViolationError
- type ExtKeyUsage
- type GMKeyType
- type HostnameError
- type InsecureAlgorithmError
- type InvalidReason
- type KeyUsage
- type PEMCipher
- type PublicKeyAlgorithm
- type SignatureAlgorithm
- type SystemRootsError
- type UnhandledCriticalExtension
- type UnknownAuthorityError
- type VerifyOptions
Constants ¶
const ( NotGMKey = GMKeyType("NOT_GN_KEY") SM2Key = GMKeyType("SM2") SM9Key = GMKeyType("SM9") )
const ( NotAuthorizedToSign = x509.NotAuthorizedToSign Expired = x509.Expired CANotAuthorizedForThisName = x509.CANotAuthorizedForThisName TooManyIntermediates = x509.TooManyIntermediates IncompatibleUsage = x509.IncompatibleUsage NameMismatch = x509.NameMismatch NameConstraintsWithoutSANs = x509.NameConstraintsWithoutSANs UnconstrainedName = x509.UnconstrainedName TooManyConstraints = x509.TooManyConstraints CANotAuthorizedForExtKeyUsage = x509.CANotAuthorizedForExtKeyUsage )
const ( UnknownSignatureAlgorithm = x509.UnknownSignatureAlgorithm MD2WithRSA = x509.MD2WithRSA // Unsupported. MD5WithRSA = x509.MD5WithRSA // Only supported for signing, not verification. SHA1WithRSA = x509.SHA1WithRSA // Only supported for signing, and verification of CRLs, CSRs, and OCSP responses. SHA256WithRSA = x509.SHA256WithRSA SHA384WithRSA = x509.SHA384WithRSA SHA512WithRSA = x509.SHA512WithRSA DSAWithSHA1 = x509.DSAWithSHA1 // Unsupported. DSAWithSHA256 = x509.DSAWithSHA256 // Unsupported. ECDSAWithSHA1 = x509.ECDSAWithSHA1 // Only supported for signing, and verification of CRLs, CSRs, and OCSP responses. ECDSAWithSHA256 = x509.ECDSAWithSHA256 ECDSAWithSHA384 = x509.ECDSAWithSHA384 ECDSAWithSHA512 = x509.ECDSAWithSHA512 SHA256WithRSAPSS = x509.SHA256WithRSAPSS SHA384WithRSAPSS = x509.SHA384WithRSAPSS SHA512WithRSAPSS = x509.SHA512WithRSAPSS PureEd25519 = x509.PureEd25519 SM2WithSM3 x509.SignatureAlgorithm = 99 )
const ( UnknownPublicKeyAlgorithm = x509.UnknownPublicKeyAlgorithm RSA = x509.RSA DSA = x509.DSA ECDSA = x509.ECDSA Ed25519 = x509.Ed25519 )
const ( KeyUsageDigitalSignature = x509.KeyUsageDigitalSignature KeyUsageContentCommitment = x509.KeyUsageContentCommitment KeyUsageKeyEncipherment = x509.KeyUsageKeyEncipherment KeyUsageDataEncipherment = x509.KeyUsageDataEncipherment KeyUsageKeyAgreement = x509.KeyUsageKeyAgreement KeyUsageCertSign = x509.KeyUsageCertSign KeyUsageCRLSign = x509.KeyUsageCRLSign KeyUsageEncipherOnly = x509.KeyUsageEncipherOnly KeyUsageDecipherOnly = x509.KeyUsageDecipherOnly )
const ( ExtKeyUsageAny = x509.ExtKeyUsageAny ExtKeyUsageServerAuth = x509.ExtKeyUsageServerAuth ExtKeyUsageClientAuth = x509.ExtKeyUsageClientAuth ExtKeyUsageCodeSigning = x509.ExtKeyUsageCodeSigning ExtKeyUsageEmailProtection = x509.ExtKeyUsageEmailProtection ExtKeyUsageIPSECEndSystem = x509.ExtKeyUsageIPSECEndSystem ExtKeyUsageIPSECTunnel = x509.ExtKeyUsageIPSECTunnel ExtKeyUsageIPSECUser = x509.ExtKeyUsageIPSECUser ExtKeyUsageTimeStamping = x509.ExtKeyUsageTimeStamping ExtKeyUsageOCSPSigning = x509.ExtKeyUsageOCSPSigning ExtKeyUsageMicrosoftServerGatedCrypto = x509.ExtKeyUsageMicrosoftServerGatedCrypto ExtKeyUsageNetscapeServerGatedCrypto = x509.ExtKeyUsageNetscapeServerGatedCrypto ExtKeyUsageMicrosoftCommercialCodeSigning = x509.ExtKeyUsageMicrosoftCommercialCodeSigning ExtKeyUsageMicrosoftKernelCodeSigning = x509.ExtKeyUsageMicrosoftKernelCodeSigning )
Variables ¶
var ErrUnsupportedAlgorithm = errors.New("x509: cannot verify signature: algorithm unimplemented")
ErrUnsupportedAlgorithm results from attempting to perform an operation that involves algorithms that are not currently implemented.
var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
IncorrectPasswordError is returned when an incorrect password is detected.
Functions ¶
func CreateCertificate ¶
func CreateCertificate(rand io.Reader, template, parent *Certificate, pub, priv any) ([]byte, error)
CreateCertificate creates a new X.509 v3 certificate based on a template. The following members of template are currently used:
- AuthorityKeyId
- BasicConstraintsValid
- CRLDistributionPoints
- DNSNames
- EmailAddresses
- ExcludedDNSDomains
- ExcludedEmailAddresses
- ExcludedIPRanges
- ExcludedURIDomains
- ExtKeyUsage
- ExtraExtensions
- IPAddresses
- IsCA
- IssuingCertificateURL
- KeyUsage
- MaxPathLen
- MaxPathLenZero
- NotAfter
- NotBefore
- OCSPServer
- PermittedDNSDomains
- PermittedDNSDomainsCritical
- PermittedEmailAddresses
- PermittedIPRanges
- PermittedURIDomains
- PolicyIdentifiers
- SerialNumber
- SignatureAlgorithm
- Subject
- SubjectKeyId
- URIs
- UnknownExtKeyUsage
The certificate is signed by parent. If parent is equal to template then the certificate is self-signed. The parameter pub is the public key of the certificate to be generated and priv is the private key of the signer.
The returned slice is the certificate in DER encoding.
The currently supported key types are *rsa.PublicKey, *ecdsa.PublicKey and ed25519.PublicKey. pub must be a supported key type, and priv must be a crypto.Signer with a supported public key.
The AuthorityKeyId will be taken from the SubjectKeyId of parent, if any, unless the resulting certificate is self-signed. Otherwise the value from template will be used.
If SubjectKeyId from template is empty and the template is a CA, SubjectKeyId will be generated from the hash of the public key.
func CreateCertificateRequest ¶
func CreateCertificateRequest(rand io.Reader, template *x509.CertificateRequest, priv any) (csr []byte, err error)
CreateCertificateRequest creates a new certificate request based on a template. The following members of template are used:
- SignatureAlgorithm
- Subject
- DNSNames
- EmailAddresses
- IPAddresses
- URIs
- ExtraExtensions
- Attributes (deprecated)
priv is the private key to sign the CSR with, and the corresponding public key will be included in the CSR. It must implement crypto.Signer and its Public() method must return a *rsa.PublicKey or a *ecdsa.PublicKey or a ed25519.PublicKey. (A *rsa.PrivateKey, *ecdsa.PrivateKey or ed25519.PrivateKey satisfies this.)
The returned slice is the certificate request in DER encoding.
func CreateRevocationList ¶
func CreateRevocationList(rand io.Reader, template *x509.RevocationList, issuer *Certificate, priv crypto.Signer) ([]byte, error)
CreateRevocationList creates a new X.509 v2 Certificate Revocation List, according to RFC 5280, based on template.
The CRL is signed by priv which should be the private key associated with the public key in the issuer certificate.
The issuer may not be nil, and the crlSign bit must be set in KeyUsage in order to use it as a CRL issuer.
The issuer distinguished name CRL field and authority key identifier extension are populated using the issuer certificate. issuer must have SubjectKeyId set.
func DecryptPEMBlock
deprecated
DecryptPEMBlock takes a PEM block encrypted according to RFC 1423 and the password used to encrypt it and returns a slice of decrypted DER encoded bytes. It inspects the DEK-Info header to determine the algorithm used for decryption. If no DEK-Info header is present, an error is returned. If an incorrect password is detected an IncorrectPasswordError is returned. Because of deficiencies in the format, it's not always possible to detect an incorrect password. In these cases no error will be returned but the decrypted DER bytes will be random noise.
Deprecated: Legacy PEM encryption as specified in RFC 1423 is insecure by design. Since it does not authenticate the ciphertext, it is vulnerable to padding oracle attacks that can let an attacker recover the plaintext.
func EncryptPEMBlock
deprecated
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error)
EncryptPEMBlock returns a PEM block of the specified type holding the given DER encoded data encrypted with the specified algorithm and password according to RFC 1423.
Deprecated: Legacy PEM encryption as specified in RFC 1423 is insecure by design. Since it does not authenticate the ciphertext, it is vulnerable to padding oracle attacks that can let an attacker recover the plaintext.
func IsEncryptedPEMBlock
deprecated
IsEncryptedPEMBlock returns whether the PEM block is password encrypted according to RFC 1423.
Deprecated: Legacy PEM encryption as specified in RFC 1423 is insecure by design. Since it does not authenticate the ciphertext, it is vulnerable to padding oracle attacks that can let an attacker recover the plaintext.
func MarshalECPrivateKey ¶
func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)
MarshalECPrivateKey converts an EC private key to SEC 1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY". For a more flexible key format which is not EC specific, use MarshalPKCS8PrivateKey.
func MarshalPKCS1PrivateKey ¶
func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte
MarshalPKCS1PrivateKey converts an RSA private key to PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PRIVATE KEY". For a more flexible key format which is not RSA specific, use MarshalPKCS8PrivateKey.
func MarshalPKCS1PublicKey ¶
MarshalPKCS1PublicKey converts an RSA public key to PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PUBLIC KEY".
func MarshalPKCS8PrivateKey ¶
MarshalPKCS8PrivateKey converts a private key to PKCS #8, ASN.1 DER form.
The following key types are currently supported: *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey (not a pointer), *sm2.PrivateKey, *sm9.SignPrivateKey, *sm9.EncryptPrivateKey, *sm9.SignMasterPrivateKey, *sm9.EncryptMasterPrivateKey, and *ecdh.PrivateKey. Unsupported key types result in an error.
This kind of key is commonly encoded in PEM blocks of type "PRIVATE KEY".
func MarshalPKIXPublicKey ¶
MarshalPKIXPublicKey converts a public key to PKIX, ASN.1 DER form. The encoded public key is a SubjectPublicKeyInfo structure (see RFC 5280, Section 4.1).
The following key types are currently supported: *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey (not a pointer), and *ecdh.PublicKey. Unsupported key types result in an error.
This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
func MarshalSM2PrivateKey ¶
func MarshalSM2PrivateKey(key *sm2.PrivateKey) ([]byte, error)
MarshalSM2PrivateKey converts method to marshal sm2 private key directly
func ParseCRL
deprecated
func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error)
ParseCRL parses a CRL from the given bytes. It's often the case that PEM encoded CRLs will appear where they should be DER encoded, so this function will transparently handle PEM encoding as long as there isn't any leading garbage.
Deprecated: Use ParseRevocationList instead.
func ParseDERCRL
deprecated
func ParseDERCRL(derBytes []byte) (*pkix.CertificateList, error)
ParseDERCRL parses a DER encoded CRL from the given bytes.
Deprecated: Use ParseRevocationList instead.
func ParseECPrivateKey ¶
func ParseECPrivateKey(der []byte) (*ecdsa.PrivateKey, error)
ParseECPrivateKey parses an EC private key in SEC 1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY".
func ParsePKCS1PrivateKey ¶
func ParsePKCS1PrivateKey(der []byte) (*rsa.PrivateKey, error)
ParsePKCS1PrivateKey parses an RSA private key in PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PRIVATE KEY".
func ParsePKCS1PublicKey ¶
ParsePKCS1PublicKey parses an RSA public key in PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PUBLIC KEY".
func ParsePKCS8PrivateKey ¶
ParsePKCS8PrivateKey parses an unencrypted private key in PKCS #8, ASN.1 DER form.
It returns a *rsa.PrivateKey, a *ecdsa.PrivateKey, a ed25519.PrivateKey (not a pointer), *sm2.PrivateKey, *sm9.SignPrivateKey, *sm9.EncryptPrivateKey, *sm9.SignMasterPrivateKey, *sm9.EncryptMasterPrivateKey, or a *ecdh.PrivateKey (for X25519). More types might be supported in the future.
This kind of key is commonly encoded in PEM blocks of type "PRIVATE KEY".
func ParsePKIXPublicKey ¶
ParsePKIXPublicKey parses a public key in PKIX, ASN.1 DER form. The encoded public key is a SubjectPublicKeyInfo structure (see RFC 5280, Section 4.1).
It returns a *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey (not a pointer), or *ecdh.PublicKey (for X25519). More types might be supported in the future.
This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
func ParseSM2PrivateKey ¶
func ParseSM2PrivateKey(der []byte) (*sm2.PrivateKey, error)
ParseSM2PrivateKey parses an SM2 private key in SEC 1, ASN.1 DER form.
func ParseSM9PrivateKey ¶
func ParseTypedECPrivateKey ¶
ParseTypedECPrivateKey parses an EC private key in SEC 1, ASN.1 DER form.
It returns a *ecdsa.PrivateKey or a *sm2.PrivateKey.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY".
Types ¶
type CertPool ¶
type CertPool struct {
// contains filtered or unexported fields
}
CertPool is a set of certificates.
func SystemCertPool ¶
SystemCertPool returns a copy of the system cert pool.
On Unix systems other than macOS the environment variables SSL_CERT_FILE and SSL_CERT_DIR can be used to override the system default locations for the SSL certificate file and SSL certificate files directory, respectively. The latter can be a colon-separated list.
Any mutations to the returned pool are not written to disk and do not affect any other pool returned by SystemCertPool.
New changes in the system cert pool might not be reflected in subsequent calls.
func (*CertPool) AddCert ¶
func (s *CertPool) AddCert(cert *Certificate)
AddCert adds a certificate to a pool.
func (*CertPool) AppendCertsFromPEM ¶
AppendCertsFromPEM attempts to parse a series of PEM encoded certificates. It appends any certificates found to s and reports whether any certificates were successfully parsed.
On many Linux systems, /etc/ssl/cert.pem will contain the system wide set of root CAs in a format suitable for this function.
type Certificate ¶
type Certificate x509.Certificate
A Certificate represents an X.509 certificate.
func ParseCertificate ¶
func ParseCertificate(der []byte) (*Certificate, error)
ParseCertificate parses a single certificate from the given ASN.1 DER data.
func ParseCertificates ¶
func ParseCertificates(der []byte) ([]*Certificate, error)
ParseCertificates parses one or more certificates from the given ASN.1 DER data. The certificates must be concatenated with no intermediate padding.
func (*Certificate) CheckCRLSignature
deprecated
func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) error
CheckCRLSignature checks that the signature in crl is from c.
Deprecated: Use RevocationList.CheckSignatureFrom instead.
func (*Certificate) CheckSignature ¶
func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) error
CheckSignature verifies that signature is a valid signature over signed from c's public key.
This is a low-level API that performs no validity checks on the certificate.
MD5WithRSA signatures are rejected, while SHA1WithRSA and ECDSAWithSHA1 signatures are currently accepted.
func (*Certificate) CheckSignatureFrom ¶
func (c *Certificate) CheckSignatureFrom(parent *Certificate) error
CheckSignatureFrom verifies that the signature on c is a valid signature from parent.
This is a low-level API that performs very limited checks, and not a full path verifier. Most users should use Certificate.Verify instead.
func (*Certificate) CreateCRL
deprecated
func (c *Certificate) CreateCRL(rand io.Reader, priv any, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error)
CreateCRL returns a DER encoded CRL, signed by this Certificate, that contains the given list of revoked certificates.
Deprecated: this method does not generate an RFC 5280 conformant X.509 v2 CRL. To generate a standards compliant CRL, use CreateRevocationList instead.
func (*Certificate) Equal ¶
func (c *Certificate) Equal(other *Certificate) bool
func (*Certificate) ToX509 ¶
func (c *Certificate) ToX509() *x509.Certificate
ToX509 convert smx509.Certificate reference to x509.Certificate
func (*Certificate) Verify ¶
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error)
Verify attempts to verify c by building one or more chains from c to a certificate in opts.Roots, using certificates in opts.Intermediates if needed. If successful, it returns one or more chains where the first element of the chain is c and the last element is from opts.Roots.
If opts.Roots is nil, the platform verifier might be used, and verification details might differ from what is described below. If system roots are unavailable the returned error will be of type SystemRootsError.
Name constraints in the intermediates will be applied to all names claimed in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim example.com if an intermediate doesn't permit it, even if example.com is not the name being validated. Note that DirectoryName constraints are not supported.
Name constraint validation follows the rules from RFC 5280, with the addition that DNS name constraints may use the leading period format defined for emails and URIs. When a constraint has a leading period it indicates that at least one additional label must be prepended to the constrained name to be considered valid.
Extended Key Usage values are enforced nested down a chain, so an intermediate or root that enumerates EKUs prevents a leaf from asserting an EKU not in that list. (While this is not specified, it is common practice in order to limit the types of certificates a CA can issue.)
Certificates that use SHA1WithRSA and ECDSAWithSHA1 signatures are not supported, and will not be used to build chains.
Certificates other than c in the returned chains should not be modified.
WARNING: this function doesn't do any revocation checking.
func (*Certificate) VerifyHostname ¶
func (c *Certificate) VerifyHostname(h string) error
VerifyHostname returns nil if c is a valid certificate for the named host. Otherwise it returns an error describing the mismatch.
IP addresses can be optionally enclosed in square brackets and are checked against the IPAddresses field. Other names are checked case insensitively against the DNSNames field. If the names are valid hostnames, the certificate fields can have a wildcard as the left-most label.
Note that the legacy Common Name field is ignored.
type CertificateInvalidError ¶
type CertificateInvalidError = x509.CertificateInvalidError
type CertificateRequest ¶
type CertificateRequest x509.CertificateRequest
CertificateRequest represents a PKCS #10, certificate signature request.
func ParseCertificateRequest ¶
func ParseCertificateRequest(asn1Data []byte) (*CertificateRequest, error)
ParseCertificateRequest parses a single certificate request from the given ASN.1 DER data.
func (*CertificateRequest) CheckSignature ¶
func (c *CertificateRequest) CheckSignature() error
CheckSignature reports whether the signature on c is valid.
func (*CertificateRequest) ToX509 ¶
func (c *CertificateRequest) ToX509() *x509.CertificateRequest
ToX509 convert smx509.CertificateRequest reference to x509.CertificateRequest
type ConstraintViolationError ¶
type ConstraintViolationError struct{}
ConstraintViolationError results when a requested usage is not permitted by a certificate. For example: checking a signature when the public key isn't a certificate signing key.
func (ConstraintViolationError) Error ¶
func (ConstraintViolationError) Error() string
type ExtKeyUsage ¶
type ExtKeyUsage = x509.ExtKeyUsage
ExtKeyUsage represents an extended set of actions that are valid for a given key. Each of the ExtKeyUsage* constants define a unique action.
type HostnameError ¶
type HostnameError = x509.HostnameError
type InsecureAlgorithmError ¶
type InsecureAlgorithmError SignatureAlgorithm
An InsecureAlgorithmError indicates that the SignatureAlgorithm used to generate the signature is not secure, and the signature has been rejected.
To temporarily restore support for SHA-1 signatures, include the value "x509sha1=1" in the GODEBUG environment variable. Note that this option will be removed in a future release.
func (InsecureAlgorithmError) Error ¶
func (e InsecureAlgorithmError) Error() string
type InvalidReason ¶
type InvalidReason int
type KeyUsage ¶
KeyUsage represents the set of actions that are valid for a given key. It's a bitmap of the KeyUsage* constants.
type PEMCipher ¶
type PEMCipher int
const ( PEMCipherDES PEMCipher PEMCipher3DES PEMCipherAES128 PEMCipherAES192 PEMCipherAES256 PEMCipherSM4 // >>> add for sm2 )
Possible values for the EncryptPEMBlock encryption algorithm.
type PublicKeyAlgorithm ¶
type PublicKeyAlgorithm = x509.PublicKeyAlgorithm
type SignatureAlgorithm ¶
type SignatureAlgorithm x509.SignatureAlgorithm
func (SignatureAlgorithm) String ¶
func (algo SignatureAlgorithm) String() string
type SystemRootsError ¶
type SystemRootsError = x509.SystemRootsError
type UnhandledCriticalExtension ¶
type UnhandledCriticalExtension struct{}
func (UnhandledCriticalExtension) Error ¶
func (h UnhandledCriticalExtension) Error() string
type UnknownAuthorityError ¶
type UnknownAuthorityError struct { Cert *Certificate // contains filtered or unexported fields }
UnknownAuthorityError results when the certificate issuer is unknown
func (UnknownAuthorityError) Error ¶
func (e UnknownAuthorityError) Error() string
type VerifyOptions ¶
type VerifyOptions struct { // DNSName, if set, is checked against the leaf certificate with // Certificate.VerifyHostname or the platform verifier. DNSName string // Intermediates is an optional pool of certificates that are not trust // anchors, but can be used to form a chain from the leaf certificate to a // root certificate. Intermediates *CertPool // Roots is the set of trusted root certificates the leaf certificate needs // to chain up to. If nil, the system roots or the platform verifier are used. Roots *CertPool // CurrentTime is used to check the validity of all certificates in the // chain. If zero, the current time is used. CurrentTime time.Time // KeyUsages specifies which Extended Key Usage values are acceptable. A // chain is accepted if it allows any of the listed values. An empty list // means ExtKeyUsageServerAuth. To accept any key usage, include ExtKeyUsageAny. KeyUsages []ExtKeyUsage // MaxConstraintComparisions is the maximum number of comparisons to // perform when checking a given certificate's name constraints. If // zero, a sensible default is used. This limit prevents pathological // certificates from consuming excessive amounts of CPU time when // validating. It does not apply to the platform verifier. MaxConstraintComparisions int }
VerifyOptions contains parameters for Certificate.Verify.
Source Files ¶
Directories ¶
Path | Synopsis |
---|---|
internal
|
|
macos
Package macOS provides cgo-less wrappers for Core Foundation and Security.framework, similarly to how package syscall provides access to libSystem.dylib.
|
Package macOS provides cgo-less wrappers for Core Foundation and Security.framework, similarly to how package syscall provides access to libSystem.dylib. |