Documentation ¶
Overview ¶
Package contrib is the GoCV wrapper around OpenCV Contrib.
For further details, please see: https://github.com/opencv/opencv_contrib
Index ¶
- type AverageHash
- type BlockMeanHash
- type BlockMeanHashMode
- type ColorMomentHash
- type ImgHashBase
- type LBPHFaceRecognizer
- func (fr *LBPHFaceRecognizer) GetNeighbors() int
- func (fr *LBPHFaceRecognizer) LoadFile(fname string)
- func (fr *LBPHFaceRecognizer) Predict(sample gocv.Mat) int
- func (fr *LBPHFaceRecognizer) PredictExtendedResponse(sample gocv.Mat) PredictResponse
- func (fr *LBPHFaceRecognizer) SaveFile(fname string)
- func (fr *LBPHFaceRecognizer) SetNeighbors(neighbors int)
- func (fr *LBPHFaceRecognizer) SetRadius(radius int)
- func (fr *LBPHFaceRecognizer) SetThreshold(threshold float32)
- func (fr *LBPHFaceRecognizer) Train(images []gocv.Mat, labels []int)
- func (fr *LBPHFaceRecognizer) Update(newImages []gocv.Mat, newLabels []int)
- type MarrHildrethHash
- type PHash
- type PredictResponse
- type RadialVarianceHash
- type SIFT
- type SURF
- type Tracker
- type TrackerBoosting
- type TrackerCSRT
- type TrackerKCF
- type TrackerMIL
- type TrackerMOSSE
- type TrackerMedianFlow
- type TrackerTLD
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type AverageHash ¶
type AverageHash struct{}
AverageHash is implementation of the AverageHash algorithm.
func (AverageHash) Compare ¶
func (hash AverageHash) Compare(a, b gocv.Mat) float64
Compare compares the hash value between a and b using AverageHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#a444a3e9ec792cf029385809393f84ad5
func (AverageHash) Compute ¶
func (hash AverageHash) Compute(input gocv.Mat, output *gocv.Mat)
Compute computes hash of the input image using AverageHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#ae2d9288db370089dfd8aab85d5e0b0f3
type BlockMeanHash ¶
type BlockMeanHash struct {
Mode BlockMeanHashMode
}
BlockMeanHash is implementation of the BlockMeanHash algorithm.
func (BlockMeanHash) Compare ¶
func (hash BlockMeanHash) Compare(a, b gocv.Mat) float64
Compare compares the hash value between a and b using BlockMeanHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#a444a3e9ec792cf029385809393f84ad5
func (BlockMeanHash) Compute ¶
func (hash BlockMeanHash) Compute(input gocv.Mat, output *gocv.Mat)
Compute computes hash of the input image using BlockMeanHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#ae2d9288db370089dfd8aab85d5e0b0f3
type BlockMeanHashMode ¶
type BlockMeanHashMode int
const ( BlockMeanHashMode0 BlockMeanHashMode = iota BlockMeanHashMode1 BlockMeanHashModeDefault = BlockMeanHashMode0 )
type ColorMomentHash ¶
type ColorMomentHash struct{}
ColorMomentHash is implementation of the ColorMomentHash algorithm.
func (ColorMomentHash) Compare ¶
func (hash ColorMomentHash) Compare(a, b gocv.Mat) float64
Compare compares the hash value between a and b using ColorMomentHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#a444a3e9ec792cf029385809393f84ad5
func (ColorMomentHash) Compute ¶
func (hash ColorMomentHash) Compute(input gocv.Mat, output *gocv.Mat)
Compute computes hash of the input image using ColorMomentHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#ae2d9288db370089dfd8aab85d5e0b0f3
type ImgHashBase ¶
type ImgHashBase interface { Compare(a, b gocv.Mat) float64 Compute(inputArr gocv.Mat, outputArr *gocv.Mat) }
ImgHashBase defines the interface used for all of the img_hash algorithms.
type LBPHFaceRecognizer ¶
type LBPHFaceRecognizer struct {
// contains filtered or unexported fields
}
LBPHFaceRecognizer is a wrapper for the OpenCV Local Binary Patterns Histograms face recognizer.
func NewLBPHFaceRecognizer ¶
func NewLBPHFaceRecognizer() *LBPHFaceRecognizer
NewLBPHFaceRecognizer creates a new LBPH Recognizer model.
For further information, see: https://docs.opencv.org/master/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
func (*LBPHFaceRecognizer) GetNeighbors ¶
func (fr *LBPHFaceRecognizer) GetNeighbors() int
GetNeighbors returns the neighbors value of the model.
For further information, see: https://docs.opencv.org/master/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html#a50a3e2ca6e8464166e153c9df84b0a77
func (*LBPHFaceRecognizer) LoadFile ¶
func (fr *LBPHFaceRecognizer) LoadFile(fname string)
LoadFile loads a trained model data from file.
For further information, see: https://docs.opencv.org/master/dd/d65/classcv_1_1face_1_1FaceRecognizer.html#acc42e5b04595dba71f0777c7179af8c3
func (*LBPHFaceRecognizer) Predict ¶
func (fr *LBPHFaceRecognizer) Predict(sample gocv.Mat) int
Predict predicts a label for a given input image. It returns the label for correctly predicted image or -1 if not found.
For further information, see: https://docs.opencv.org/master/dd/d65/classcv_1_1face_1_1FaceRecognizer.html#aa2d2f02faffab1bf01317ae6502fb631
func (*LBPHFaceRecognizer) PredictExtendedResponse ¶
func (fr *LBPHFaceRecognizer) PredictExtendedResponse(sample gocv.Mat) PredictResponse
PredictExtendedResponse returns a label and associated confidence (e.g. distance) for a given input image. It is the extended version of `Predict()`.
For further information, see: https://docs.opencv.org/master/dd/d65/classcv_1_1face_1_1FaceRecognizer.html#ab0d593e53ebd9a0f350c989fcac7f251
func (*LBPHFaceRecognizer) SaveFile ¶
func (fr *LBPHFaceRecognizer) SaveFile(fname string)
SaveFile saves the trained model data to file.
For further information, see: https://docs.opencv.org/master/dd/d65/classcv_1_1face_1_1FaceRecognizer.html#a2adf2d555550194244b05c91fefcb4d6
func (*LBPHFaceRecognizer) SetNeighbors ¶
func (fr *LBPHFaceRecognizer) SetNeighbors(neighbors int)
SetNeighbors sets the neighbors value of the model, i.e. the number of sample points to build a Circular Local Binary Pattern from. Note that wrong neighbors can raise OpenCV exception!
For further information, see: https://docs.opencv.org/master/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html#ab225f7bf353ce8697a506eda10124a92
func (*LBPHFaceRecognizer) SetRadius ¶
func (fr *LBPHFaceRecognizer) SetRadius(radius int)
SetRadius sets the radius used for building the Circular Local Binary Pattern.
For further information, see: https://docs.opencv.org/master/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html#a62d94c75cade902fd3b487b1ef9883fc
func (*LBPHFaceRecognizer) SetThreshold ¶
func (fr *LBPHFaceRecognizer) SetThreshold(threshold float32)
SetThreshold sets the threshold value of the model, i.e. the threshold applied in the prediction.
For further information, see: https://docs.opencv.org/master/dd/d65/classcv_1_1face_1_1FaceRecognizer.html#a3182081e5f8023e658ad8ab96656dd63
func (*LBPHFaceRecognizer) Train ¶
func (fr *LBPHFaceRecognizer) Train(images []gocv.Mat, labels []int)
Train loaded model with images and their labels
func (*LBPHFaceRecognizer) Update ¶
func (fr *LBPHFaceRecognizer) Update(newImages []gocv.Mat, newLabels []int)
Update updates the existing trained model with new images and labels.
For further information, see: https://docs.opencv.org/master/dd/d65/classcv_1_1face_1_1FaceRecognizer.html#a8a4e73ea878dcd0c235d0487189d25f3
type MarrHildrethHash ¶
MarrHildrethHash is implementation of the MarrHildrethHash algorithm.
func NewMarrHildrethHash ¶
func NewMarrHildrethHash() MarrHildrethHash
func (MarrHildrethHash) Compare ¶
func (hash MarrHildrethHash) Compare(a, b gocv.Mat) float64
Compare compares the hash value between a and b using MarrHildrethHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#a444a3e9ec792cf029385809393f84ad5
func (MarrHildrethHash) Compute ¶
func (hash MarrHildrethHash) Compute(input gocv.Mat, output *gocv.Mat)
Compute computes hash of the input image using MarrHildrethHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#ae2d9288db370089dfd8aab85d5e0b0f3
type PHash ¶
type PHash struct{}
PHash is implementation of the PHash algorithm.
func (PHash) Compare ¶
Compare compares the hash value between a and b using PHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#a444a3e9ec792cf029385809393f84ad5
type PredictResponse ¶
PredictResponse represents a predicted label and associated confidence.
type RadialVarianceHash ¶
RadialVarianceHash is implementation of the RadialVarianceHash algorithm.
func NewRadialVarianceHash ¶
func NewRadialVarianceHash() RadialVarianceHash
func (RadialVarianceHash) Compare ¶
func (hash RadialVarianceHash) Compare(a, b gocv.Mat) float64
Compare compares the hash value between a and b using RadialVarianceHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#a444a3e9ec792cf029385809393f84ad5
func (RadialVarianceHash) Compute ¶
func (hash RadialVarianceHash) Compute(input gocv.Mat, output *gocv.Mat)
Compute computes hash of the input image using RadialVarianceHash.
For further information, see: https://docs.opencv.org/master/de/d29/classcv_1_1img__hash_1_1ImgHashBase.html#ae2d9288db370089dfd8aab85d5e0b0f3
type SIFT ¶
type SIFT struct {
// contains filtered or unexported fields
}
SIFT is a wrapper around the cv::SIFT algorithm.
func NewSIFT ¶
func NewSIFT() SIFT
NewSIFT returns a new SIFT algorithm.
For further details, please see: https://docs.opencv.org/master/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html
func (*SIFT) Detect ¶
Detect keypoints in an image using SIFT.
For further details, please see: https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
func (*SIFT) DetectAndCompute ¶
DetectAndCompute detects and computes keypoints in an image using SIFT.
For further details, please see: https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
type SURF ¶
type SURF struct {
// contains filtered or unexported fields
}
SURF is a wrapper around the cv::SURF algorithm.
func NewSURF ¶
func NewSURF() SURF
NewSURF returns a new SURF algorithm.
For further details, please see: https://docs.opencv.org/master/d5/df7/classcv_1_1xfeatures2d_1_1SURF.html
func (*SURF) Detect ¶
Detect keypoints in an image using SURF.
For further details, please see: https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
func (*SURF) DetectAndCompute ¶
DetectAndCompute detects and computes keypoints in an image using SURF.
For further details, please see: https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
type Tracker ¶
type Tracker interface { // Close closes, as Trackers need to be Closed manually. // Close() error // Init initializes the tracker with a known bounding box that surrounded the target. // Note: this can only be called once. If you lose the object, you have to Close() the instance, // create a new one, and call Init() on it again. // // see: https://docs.opencv.org/master/d0/d0a/classcv_1_1Tracker.html#a4d285747589b1bdd16d2e4f00c3255dc // Init(image gocv.Mat, boundingBox image.Rectangle) bool // Update updates the tracker, returns a new bounding box and a boolean determining whether the tracker lost the target. // // see: https://docs.opencv.org/master/d0/d0a/classcv_1_1Tracker.html#a549159bd0553e6a8de356f3866df1f18 // Update(image gocv.Mat) (image.Rectangle, bool) }
Tracker is the base interface for object tracking.
see: https://docs.opencv.org/master/d0/d0a/classcv_1_1Tracker.html
func NewTrackerBoosting ¶
func NewTrackerBoosting() Tracker
NewTrackerBoosting returns a new TrackerBoosting.
func NewTrackerMedianFlow ¶
func NewTrackerMedianFlow() Tracker
NewTrackerMedianFlow returns a new TrackerMedianFlow.
type TrackerBoosting ¶
type TrackerBoosting struct {
// contains filtered or unexported fields
}
TrackerBoosting is a real-time object tracker based on a novel on-line version of the AdaBoost algorithm.
For further details, please see: https://docs.opencv.org/master/d1/d1a/classcv_1_1TrackerBoosting.html
func (TrackerBoosting) Close ¶
func (trk TrackerBoosting) Close() error
Close closes the TrackerBoosting.
type TrackerCSRT ¶
type TrackerCSRT struct {
// contains filtered or unexported fields
}
TrackerCSRT is an implementation of Discriminative Correlation Filter Tracker with Channel and Spatial Reliability.
For further details, please see: https://docs.opencv.org/master/d2/da2/classcv_1_1TrackerCSRT.html
type TrackerKCF ¶
type TrackerKCF struct {
// contains filtered or unexported fields
}
TrackerKCF is a Tracker based on KCF, which is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
For further details, please see: https://docs.opencv.org/master/d2/dff/classcv_1_1TrackerKCF.html
type TrackerMIL ¶
type TrackerMIL struct {
// contains filtered or unexported fields
}
TrackerMIL is a Tracker that uses the MIL algorithm. MIL trains a classifier in an online manner to separate the object from the background. Multiple Instance Learning avoids the drift problem for a robust tracking.
For further details, please see: https://docs.opencv.org/master/d0/d26/classcv_1_1TrackerMIL.html
type TrackerMOSSE ¶
type TrackerMOSSE struct {
// contains filtered or unexported fields
}
TrackerMOSSE uses Visual Object Tracking using Adaptive Correlation Filters. Note, that this tracker only works on graysccale images.
For further details, please see: https://docs.opencv.org/master/d0/d02/classcv_1_1TrackerMOSSE.html
type TrackerMedianFlow ¶
type TrackerMedianFlow struct {
// contains filtered or unexported fields
}
TrackerMedianFlow is a Tracker implementation suitable for very smooth and predictable movements when the object is visible throughout the whole sequence.
For further details, please see: https://docs.opencv.org/master/d7/d86/classcv_1_1TrackerMedianFlow.html
func (TrackerMedianFlow) Close ¶
func (trk TrackerMedianFlow) Close() error
Close closes the Tracker.
type TrackerTLD ¶
type TrackerTLD struct {
// contains filtered or unexported fields
}
TrackerTLD is a novel tracking framework that explicitly decomposes the long-term tracking task into tracking, learning and detection.
For further details, please see: https://docs.opencv.org/master/dc/d1c/classcv_1_1TrackerTLD.html