ed

package
v0.0.0-...-1e2cef0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 10, 2023 License: GPL-2.0, GPL-3.0 Imports: 9 Imported by: 0

Documentation

Overview

Package ed MPC ed algorithm

Index

Constants

This section is empty.

Variables

View Source
var A = FieldElement{
	486662, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}

A is a constant in the Montgomery-form of curve25519.

View Source
var SqrtM1 = FieldElement{
	-32595792, -7943725, 9377950, 3500415, 12389472, -272473, -25146209, -2005654, 326686, 11406482,
}

SqrtM1 is the square-root of -1 in the field.

Functions

func CachedGroupElementCMove

func CachedGroupElementCMove(t, u *CachedGroupElement, b int32)

CachedGroupElementCMove mov cache group element

func Combine

func Combine(shares [][32]byte, ids [][32]byte) [32]byte

Combine Calculate the function value of Lagrange polynomial

func Commit

func Commit(secret [32]byte) ([32]byte, [64]byte, error)

Commit get commitment by secret

func FeAdd

func FeAdd(dst, a, b *FieldElement)

FeAdd add

func FeCMove

func FeCMove(f, g *FieldElement, b int32)

FeCMove Replace (f,g) with (g,g) if b == 1; replace (f,g) with (f,g) if b == 0.

Preconditions: b in {0,1}.

func FeCombine

func FeCombine(h *FieldElement, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9 int64)

FeCombine combine

func FeCopy

func FeCopy(dst, src *FieldElement)

FeCopy copy

func FeFromBytes

func FeFromBytes(dst *FieldElement, src *[32]byte)

FeFromBytes from baytes

func FeInvert

func FeInvert(out, z *FieldElement)

FeInvert invert

func FeIsNegative

func FeIsNegative(f *FieldElement) byte

FeIsNegative si negative

func FeIsNonZero

func FeIsNonZero(f *FieldElement) int32

FeIsNonZero is not zero

func FeMul

func FeMul(h, f, g *FieldElement)

FeMul calculates h = f * g Can overlap h with f or g.

Preconditions:

|f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.

Postconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

Notes on implementation strategy:

Using schoolbook multiplication. Karatsuba would save a little in some cost models.

Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than 64-bit postcomputations.

There is one remaining multiplication by 19 in the carry chain; one *19 precomputation can be merged into this, but the resulting data flow is considerably less clean.

There are 12 carries below. 10 of them are 2-way parallelizable and vectorizable. Can get away with 11 carries, but then data flow is much deeper.

With tighter constraints on inputs, can squeeze carries into int32.

func FeNeg

func FeNeg(h, f *FieldElement)

FeNeg sets h = -f Preconditions:

|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

Postconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

func FeOne

func FeOne(fe *FieldElement)

FeOne one

func FeSquare

func FeSquare(h, f *FieldElement)

FeSquare calculates h = f*f. Can overlap h with f.

Preconditions:

|f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.

Postconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

func FeSquare2

func FeSquare2(h, f *FieldElement)

FeSquare2 sets h = 2 * f * f Can overlap h with f. Preconditions:

|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.

Postconditions:

|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.

See fe_mul.c for discussion of implementation strategy.

func FeSub

func FeSub(dst, a, b *FieldElement)

FeSub sub

func FeToBytes

func FeToBytes(s *[32]byte, h *FieldElement)

FeToBytes marshals h to s. Preconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

Write p=2^255-19; q=floor(h/p). Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).

Proof:

Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.

Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
Then 0<y<1.

Write r=h-pq.
Have 0<=r<=p-1=2^255-20.
Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.

Write x=r+19(2^-255)r+y.
Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.

Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.

func FeZero

func FeZero(fe *FieldElement)

FeZero zero

func GeAdd

GeAdd point calculate: C = A + B

func GeDoubleScalarMultVartime

func GeDoubleScalarMultVartime(r *ProjectiveGroupElement, a *[32]byte, A *ExtendedGroupElement, b *[32]byte)

GeDoubleScalarMultVartime sets r = a*A + b*B where a = a[0]+256*a[1]+...+256^31 a[31]. and b = b[0]+256*b[1]+...+256^31 b[31]. B is the Ed25519 base point (x,4/5) with x positive.

func GeScalarMult

func GeScalarMult(h *ExtendedGroupElement, a *[32]byte, p *ExtendedGroupElement)

GeScalarMult point calculate: h = a * p

func GeScalarMultBase

func GeScalarMultBase(h *ExtendedGroupElement, a *[32]byte)

GeScalarMultBase computes h = a*B, where

a = a[0]+256*a[1]+...+256^31 a[31]
B is the Ed25519 base point (x,4/5) with x positive.

Preconditions:

a[31] <= 127

func GetBigIntOrder

func GetBigIntOrder() *big.Int

GetBigIntOrder get Order of edwards25519 order [4]uint64 {0x1000000000000000, 0x0000000000000000, 0x14def9dea2f79cd6, 0x5812631a5cf5d3ed} = 2^252+27742317777372353535851937790883648493

func GetBytesOrder

func GetBytesOrder() [32]byte

GetBytesOrder get bytes order

func PreComputedGroupElementCMove

func PreComputedGroupElementCMove(t, u *PreComputedGroupElement, b int32)

PreComputedGroupElementCMove pre move computed group element

func Prove

func Prove(sk [32]byte) ([64]byte, error)

Prove Generate SK zero knowledge proof data

func Prove2

func Prove2(sk [32]byte, pk [32]byte) ([64]byte, error)

Prove2 Generate SK zero knowledge proof data,include pk

func ScAdd

func ScAdd(c, a, b *[32]byte)

ScAdd c = a + b

func ScMinimal

func ScMinimal(scalar *[32]byte) bool

ScMinimal returns true if the given scalar is less than the order of the curve.

func ScModInverse

func ScModInverse(a, order [32]byte) [32]byte

ScModInverse mod inverse

func ScMul

func ScMul(c, a, b *[32]byte)

ScMul c = a * b

func ScMulAdd

func ScMulAdd(s, a, b, c *[32]byte)

ScMulAdd The scalars are GF(2^252 + 27742317777372353535851937790883648493). Input:

a[0]+256*a[1]+...+256^31*a[31] = a
b[0]+256*b[1]+...+256^31*b[31] = b
c[0]+256*c[1]+...+256^31*c[31] = c

Output:

s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l
where l = 2^252 + 27742317777372353535851937790883648493.

func ScMulSub

func ScMulSub(s, a, b, c *[32]byte)

ScMulSub s = ab - c

func ScReduce

func ScReduce(out *[32]byte, s *[64]byte)

ScReduce Input:

s[0]+256*s[1]+...+256^63*s[63] = s

Output:

s[0]+256*s[1]+...+256^31*s[31] = s mod l
where l = 2^252 + 27742317777372353535851937790883648493.

func ScReverse

func ScReverse(s *[32]byte)

ScReverse little endian -> big endian or big endian -> little endian

func ScSub

func ScSub(c, a, b *[32]byte)

ScSub c = a - b, can not calculate a < b

func Verify

func Verify(C [32]byte, D [64]byte) bool

Verify Verify commitment data

func VerifyVss

func VerifyVss(share [32]byte, id [32]byte, cfsBBytes [][32]byte) bool

VerifyVss verify secret sharing value

func VerifyZk

func VerifyZk(signature [64]byte, pk [32]byte) bool

VerifyZk verify SK zero knowledge proof data

func VerifyZk2

func VerifyZk2(signature [64]byte, pk [32]byte) bool

VerifyZk2 verify SK zero knowledge proof data,include pk

func Vss

func Vss(secret [32]byte, ids [][32]byte, t int, n int) ([][32]byte, [][32]byte, [][32]byte, error)

Vss Calculate secret sharing value

func Vss2

func Vss2(secret [32]byte, t int, n int, uids map[string][32]byte) ([][32]byte, [][32]byte, map[string][32]byte, error)

Vss2 Calculate secret sharing value

Types

type CachedGroupElement

type CachedGroupElement struct {
	Z, T2d FieldElement
	// contains filtered or unexported fields
}

CachedGroupElement cache group element

func (*CachedGroupElement) Zero

func (q *CachedGroupElement) Zero()

Zero zero

type CompletedGroupElement

type CompletedGroupElement struct {
	X, Y, Z, T FieldElement
}

CompletedGroupElement computed group element

func (*CompletedGroupElement) ToExtended

func (p *CompletedGroupElement) ToExtended(r *ExtendedGroupElement)

ToExtended to extended

func (*CompletedGroupElement) ToProjective

func (p *CompletedGroupElement) ToProjective(r *ProjectiveGroupElement)

ToProjective to projective

type ExtendedGroupElement

type ExtendedGroupElement struct {
	X, Y, Z, T FieldElement
}

ExtendedGroupElement extended group element

func (*ExtendedGroupElement) Double

Double Double

func (*ExtendedGroupElement) FromBytes

func (p *ExtendedGroupElement) FromBytes(s *[32]byte) bool

FromBytes from bytes

func (*ExtendedGroupElement) ToBytes

func (p *ExtendedGroupElement) ToBytes(s *[32]byte)

ToBytes to bytes

func (*ExtendedGroupElement) ToCached

func (p *ExtendedGroupElement) ToCached(r *CachedGroupElement)

ToCached to cache

func (*ExtendedGroupElement) ToProjective

func (p *ExtendedGroupElement) ToProjective(r *ProjectiveGroupElement)

ToProjective to projective

func (*ExtendedGroupElement) Zero

func (p *ExtendedGroupElement) Zero()

Zero zero

type FieldElement

type FieldElement [10]int32

FieldElement represents an element of the field GF(2^255 - 19). An element t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on context.

type PreComputedGroupElement

type PreComputedGroupElement struct {
	// contains filtered or unexported fields
}

PreComputedGroupElement pre-computed group element

func (*PreComputedGroupElement) Zero

func (p *PreComputedGroupElement) Zero()

Zero zero

type ProjectiveGroupElement

type ProjectiveGroupElement struct {
	X, Y, Z FieldElement
}

ProjectiveGroupElement projective group element

func (*ProjectiveGroupElement) Double

Double Double

func (*ProjectiveGroupElement) ToBytes

func (p *ProjectiveGroupElement) ToBytes(s *[32]byte)

ToBytes to bytes

func (*ProjectiveGroupElement) Zero

func (p *ProjectiveGroupElement) Zero()

Zero zero

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL