godes

package module
v0.0.0-...-dcb9b91 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 10, 2021 License: MIT Imports: 8 Imported by: 0

README

Godes

Open Source Library to Build Discrete Event Simulation Models in Go/Golang (http://golang.org/)

Copyright (c) 2013-2015 Alex Goussiatiner agoussia@yahoo.com

Features

Godes is the general-purpose simulation library which includes the simulation engine and building blocks for modeling a wide variety of systems at varying levels of details.

Active Objects

All active objects shall implement the RunnerInterface and have Run() method. For each active object Godes creates a goroutine - lightweight thread.

Random Generators

Godes contains set of built-in functions for generating random numbers for commonly used probability distributions. Each of the distrubutions in Godes has one or more parameter values associated with it: Uniform (Min, Max), Normal (Mean and Standard Deviation), Exponential (Lambda), Triangular(Min, Mode, Max)

Queues

Godes implements operations with FIFO and LIFO queues

BooleanControl

Godes uses BooleanControl variable as a lock for synchronizing execution of multiple runners

StatCollector

The Object calculates and prints statistical parameters for set of samples collected during the simulation.

Library Docs

GoDoc

Advantages

  • Godes is easy to learn for the people familiar with the Go and the elementary simulation concept.
  • Godes model executes fast as Go compiles to machine code. Its performace is similar to C++ in performance.
  • Godes model is multiplatform as Go compiler targets the Linux, Mac OS X, FreeBSD, Microsoft Windows,etc.
  • Godes model can be embedded in various computer systems and over the network.
  • Speed of the Godes model compilation is high.
  • Variety of the IDE with debuggers are available for Go and Godes as well.
  • The Godes sumulation model can use all of the GO's features and libraries.
  • Code Security - the Godes includes the source code for the library and Go is an open source project supported by Google.
  • Godes is free open source software under MIT license.

Installation

$ go get github.com/ProfHercules/godes

Examples

Example 0. Restaurant.Godes Basics
Proces Description

During the working day the visitors are entering the restaurant at random intervals and immediately get the table. The inter arrival interval is the random variable with uniform distribution from 0 to 70 minutes. The last visitor gets admitted not later than 8 hours after the opening. The simulation itself is terminated when the last visitors enters the restaurant.

package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)

// the arrival and service are two random number generators for the uniform  distribution
var arrival *godes.UniformDistr = godes.NewUniformDistr(true)

// the Visitor is a Runner
// any type of the Runner should be defined as struct
// with the *godes.Runner as anonimous field
type Visitor struct {
	*godes.Runner
	number int
}

var visitorsCount int = 0

func (vst *Visitor) Run() { // Any runner should have the Run method
	fmt.Printf(" %-6.3f \t Visitor # %v arrives \n", godes.GetSystemTime(), vst.number)
}
func main() {
	var shutdown_time float64 = 8 * 60
	godes.Run()
	for {
		//godes.Stime is the current simulation time
		if godes.GetSystemTime() < shutdown_time {
			//the function acivates the Runner
			godes.AddRunner(&Visitor{&godes.Runner{}, visitorsCount})
			//this advance the system time
			godes.Advance(arrival.Get(0, 70))
			visitorsCount++
		} else {
			break
		}
	}
	// waits for all the runners to finish the Run()
	godes.WaitUntilDone()
}
/* 	OUTPUT:
 0.000  	 Visitor # 0 arrives
 37.486 	 Visitor # 1 arrives
 98.737 	 Visitor # 2 arrives
 107.468 	 Visitor # 3 arrives
 149.471 	 Visitor # 4 arrives
 207.523 	 Visitor # 5 arrives
 230.922 	 Visitor # 6 arrives
 261.770 	 Visitor # 7 arrives
 269.668 	 Visitor # 8 arrives
 310.261 	 Visitor # 9 arrives
 338.323 	 Visitor # 10 arrives
 397.720 	 Visitor # 11 arrives
 409.123 	 Visitor # 12 arrives
 436.817 	 Visitor # 13 arrives
 447.731 	 Visitor # 14 arrives
*/

Example 1. Restaurant. Godes Boolean Controls
Proces Description

The restaurant has only one table to sit on. During the working day the visitors are entering the restaurant at random intervals and wait for the table to be available. The inter arrival interval is the random variable with uniform distribution from 0 to 70 minutes.The time spent in the restaurant is the random variable with uniform distribution from 10 to 60 minutes. The last visitor gets admitted not later than 8 hours after the opening. The simulation itself is terminated when the last visitors has left the restaurant.

package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)

// the arrival and service are two random number generators for the uniform  distribution
var arrival *godes.UniformDistr = godes.NewUniformDistr(true)
var service *godes.UniformDistr = godes.NewUniformDistr(true)

// tableBusy is the boolean control variable than can be accessed and changed by number of Runners
var tableBusy *godes.BooleanControl = godes.NewBooleanControl()

// the Visitor is a Runner
// any type of the Runner should be defined as struct // with the *godes.Runner as anonimous field
type Visitor struct {
	*godes.Runner
	number int
}

var visitorsCount int = 0

func (vst Visitor) Run() { // Any runner should have the Run method
	fmt.Printf("%-6.3f \t Visitor %v arrives \n", godes.GetSystemTime(), vst.number)
	tableBusy.Wait(false) // this will wait till the tableBusy control becomes false
	tableBusy.Set(true)   // sets the tableBusy control to true - the table is busy
	fmt.Printf("%-6.3f \t Visitor %v gets the table \n", godes.GetSystemTime(), vst.number)
	godes.Advance(service.Get(10, 60)) //the function advance the simulation time by the value in the argument
	tableBusy.Set(false)               // sets the tableBusy control to false - the table is idle
	fmt.Printf("%-6.3f \t Visitor %v leaves \n", godes.GetSystemTime(), vst.number)
}
func main() {
	var shutdown_time float64 = 8 * 60
	godes.Run()
	for {
		//godes.GetSystemTime() is the current simulation time
		if godes.GetSystemTime() < shutdown_time {
			//the function acivates the Runner
			godes.AddRunner(Visitor{&godes.Runner{}, visitorsCount})
			godes.Advance(arrival.Get(0, 70))
			visitorsCount++
		} else {
			break
		}
	}
	godes.WaitUntilDone() // waits for all the runners to finish the Run()
}
/* OUTPUT
0.000  	 Visitor 0 arrives
0.000  	 Visitor 0 gets the table
13.374 	 Visitor 0 leaves
37.486 	 Visitor 1 arrives
37.486 	 Visitor 1 gets the table
60.558 	 Visitor 1 leaves
98.737 	 Visitor 2 arrives
98.737 	 Visitor 2 gets the table
107.468  Visitor 3 arrives
146.824  Visitor 2 leaves
146.824  Visitor 3 gets the table
149.471  Visitor 4 arrives
171.623  Visitor 3 leaves
171.623  Visitor 4 gets the table
187.234  Visitor 4 leaves
207.523  Visitor 5 arrives
207.523  Visitor 5 gets the table
230.922  Visitor 6 arrives
245.859  Visitor 5 leaves
245.859  Visitor 6 gets the table
261.770  Visitor 7 arrives
269.668  Visitor 8 arrives
272.368  Visitor 6 leaves
272.368  Visitor 7 gets the table
290.484  Visitor 7 leaves
290.484  Visitor 8 gets the table
310.261  Visitor 9 arrives
333.570  Visitor 8 leaves
333.570  Visitor 9 gets the table
338.323  Visitor 10 arrives
354.874  Visitor 9 leaves
354.874  Visitor 10 gets the table
393.826  Visitor 10 leaves
397.720  Visitor 11 arrives
397.720  Visitor 11 gets the table
409.123  Visitor 12 arrives
436.817  Visitor 13 arrives
447.731  Visitor 14 arrives
455.705  Visitor 11 leaves
455.705  Visitor 13 gets the table
482.955  Visitor 13 leaves
482.955  Visitor 12 gets the table
496.034  Visitor 12 leaves
496.034  Visitor 14 gets the table
555.822  Visitor 14 leaves
*/

Example 2. Restaurant. Godes Queues
Proces Description

During the four working hours the visitors are entering the restaurant at random intervals and form the arrival queue. The inter arrival interval is the random variable with uniform distribution from 0 to 30 minutes. The restaurant employs two waiters who are servicing one visitor in a time. The service time is the random variable with uniform distribution from 10 to 60 minutes. The simulation itself is terminated when

  • Simulation time passes the four hours
  • Both waiters have finished servicing
  • There are no visitors in the arrival queue.

The model calculates the average (arithmetic mean) of the visitors waiting time

package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)

// the arrival and service are two random number generators for the uniform  distribution
var arrival *godes.UniformDistr = godes.NewUniformDistr(true)
var service *godes.UniformDistr = godes.NewUniformDistr(true)

// true when waiter should act
var waitersSwt *godes.BooleanControl = godes.NewBooleanControl()

// FIFO Queue for the arrived
var visitorArrivalQueue *godes.FIFOQueue = godes.NewFIFOQueue("arrivalQueue")

// the Visitor is a Passive Object
type Visitor struct {
	id int
}

// the Waiter is a Runner
type Waiter struct {
	*godes.Runner
	id int
}

var visitorsCount int = 0
var shutdown_time float64 = 4 * 60

func (waiter *Waiter) Run() {

	for {
		waitersSwt.Wait(true)
		if visitorArrivalQueue.Len() > 0 {
			visitor := visitorArrivalQueue.Get()
			if visitorArrivalQueue.Len() == 0 {
				waitersSwt.Set(false)
			}
			fmt.Printf("%-6.3f \t Visitor %v is invited by waiter %v  \n", godes.GetSystemTime(), visitor.(Visitor).id, waiter.id)
			godes.Advance(service.Get(10, 60)) //advance the simulation time by the visitor service time
			fmt.Printf("%-6.3f \t Visitor %v leaves \n", godes.GetSystemTime(), visitor.(Visitor).id)

		}
		if godes.GetSystemTime() > shutdown_time && visitorArrivalQueue.Len() == 0 {
			fmt.Printf("%-6.3f \t Waiter  %v ends the work \n", godes.GetSystemTime(), waiter.id)
			break
		}
	}
}

func main() {

	for i := 0; i < 2; i++ {
		godes.AddRunner(&Waiter{&godes.Runner{}, i})
	}
	godes.Run()
	for {

		visitorArrivalQueue.Place(Visitor{visitorsCount})
		fmt.Printf("%-6.3f \t Visitor %v arrives \n", godes.GetSystemTime(), visitorsCount)
		waitersSwt.Set(true)
		godes.Advance(arrival.Get(0, 30))
		visitorsCount++
		if godes.GetSystemTime() > shutdown_time {
			break
		}
	}
	waitersSwt.Set(true)
	godes.WaitUntilDone() // waits for all the runners to finish the Run()
	fmt.Printf("Average Waiting Time %6.3f  \n", visitorArrivalQueue.GetAverageTime())
}
/* OUTPUT
0.000  	 	Visitor 0 arrives
0.000  	 	Visitor 0 is invited by waiter 0
13.374 		Visitor 0 leaves
16.066 	 	Visitor 1 arrives
16.066 		Visitor 1 is invited by waiter 1
39.137 	 	Visitor 1 leaves
42.316 		Visitor 2 arrives
42.316 	 	Visitor 2 is invited by waiter 1
46.058 	 	Visitor 3 arrives
46.058 	 	Visitor 3 is invited by waiter 0
64.059 	 	Visitor 4 arrives
70.857 	 	Visitor 3 leaves
70.857 	 	Visitor 4 is invited by waiter 0
86.468 	 	Visitor 4 leaves
88.938 	 	Visitor 5 arrives
88.938 		Visitor 5 is invited by waiter 0
90.403 	 	Visitor 2 leaves
98.966 	 	Visitor 6 arrives
98.966 	 	Visitor 6 is invited by waiter 1
112.187 	Visitor 7 arrives
115.572 	Visitor 8 arrives
125.475 	Visitor 6 leaves
125.475 	Visitor 7 is invited by waiter 1
127.275 	Visitor 5 leaves
127.275 	Visitor 8 is invited by waiter 0
132.969 	Visitor 9 arrives
143.591 	Visitor 7 leaves
143.591 	Visitor 9 is invited by waiter 1
144.995 	Visitor 10 arrives
164.895 	Visitor 9 leaves
164.895 	Visitor 10 is invited by waiter 1
170.361 	Visitor 8 leaves
170.451 	Visitor 11 arrives
170.451 	Visitor 11 is invited by waiter 0
175.338 	Visitor 12 arrives
187.207 	Visitor 13 arrives
191.885 	Visitor 14 arrives
203.848 	Visitor 10 leaves
203.848 	Visitor 12 is invited by waiter 1
213.596 	Visitor 15 arrives
228.436 	Visitor 11 leaves
228.436 	Visitor 13 is invited by waiter 0
231.098 	Visitor 12 leaves
231.098 	Visitor 14 is invited by waiter 1
231.769 	Visitor 16 arrives
241.515 	Visitor 13 leaves
241.515 	Visitor 15 is invited by waiter 0
287.864 	Visitor 15 leaves
287.864 	Visitor 16 is invited by waiter 0
290.886 	Visitor 14 leaves
290.886 	Waiter  1 ends the work
330.903 	Visitor 16 leaves
330.903 	Waiter  0 ends the work
Average Waiting Time 15.016
*/

Example 3. Restaurant. Multiple Runs
Proces Description

This is the same process as in Example 2. Simulation is repeated 5 times.

package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)

// the arrival and service are two random number generators for the uniform  distribution
var arrival *godes.UniformDistr = godes.NewUniformDistr(true)
var service *godes.UniformDistr = godes.NewUniformDistr(true)

// true when waiter should act
var waitersSwt *godes.BooleanControl = godes.NewBooleanControl()

// FIFO Queue for the arrived
var visitorArrivalQueue *godes.FIFOQueue = godes.NewFIFOQueue("0")

// the Visitor is a Passive Object
type Visitor struct {
	id int
}

// the Waiter is a Runner
type Waiter struct {
	*godes.Runner
	id int
}

var visitorsCount int = 0
var shutdown_time float64 = 4 * 60

func (waiter *Waiter) Run() {
	for {
		waitersSwt.Wait(true)
		if visitorArrivalQueue.Len() > 0 {
			visitorArrivalQueue.Get()
			if visitorArrivalQueue.Len() == 0 {
				waitersSwt.Set(false)
			}
			godes.Advance(service.Get(10, 60)) //advance the simulation time by the visitor service time

		}
		if godes.GetSystemTime() > shutdown_time && visitorArrivalQueue.Len() == 0 {
			break
		}

	}
}

func main() {
	for runs := 0; runs < 5; runs++ {
		for i := 0; i < 2; i++ {
			godes.AddRunner(&Waiter{&godes.Runner{}, i})
		}
		godes.Run()
		for {
			visitorArrivalQueue.Place(Visitor{visitorsCount})
			waitersSwt.Set(true)
			godes.Advance(arrival.Get(0, 30))
			visitorsCount++
			if godes.GetSystemTime() > shutdown_time {
				break
			}
		}
		waitersSwt.Set(true)
		godes.WaitUntilDone() // waits for all the runners to finish the Run()
		fmt.Printf(" Run # %v \t Average Time in Queue=%6.3f \n", runs, visitorArrivalQueue.GetAverageTime())
		//clear after each run
		waitersSwt.Clear()
		visitorArrivalQueue.Clear()
		godes.Clear()

	}
}
/* OUTPUT

 Run # 0 	 Average Time in Queue=15.016
 Run # 1 	 Average Time in Queue=17.741
 Run # 2 	 Average Time in Queue=49.046
 Run # 3 	 Average Time in Queue=30.696
 Run # 4 	 Average Time in Queue=14.777
*/


Example 4. Machine Shop. Godes Interrupt and Resume Feature.
Proces Description

A workshop has n identical machines. A stream of jobs (enough to keep the machines busy) arrives. Each machine breaks down periodically. Repairs are carried out by one repairman. The repairman continues them when he is done with the machine repair. The workshop works continuously.

package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)

const PT_MEAN = 10.0          //	Avg. processing time in minutes
const PT_SIGMA = 2.0          //	Sigma of processing time
const MTTF = 300.0            // 	Mean time to failure in minutes
const REPAIR_TIME = 30.0      //	Time it takes to repair a machine in minutes
const REPAIR_TIME_SIGMA = 1.0 //	Sigma of repair time

const NUM_MACHINES = 10
const SHUT_DOWN_TIME = 4 * 7 * 24 * 60

// random generator for the processing time - normal distribution
var processingGen *godes.NormalDistr = godes.NewNormalDistr(true)

// random generator for the  time   until the next failure for a machine - exponential distribution
var breaksGen *godes.ExpDistr = godes.NewExpDistr(true)

// true when repairman is available for carrying a repair
var repairManAvailableSwt *godes.BooleanControl = godes.NewBooleanControl()

type Machine struct {
	*godes.Runner
	partsCount int
	number     int
	finished   bool
}

func (machine *Machine) Run() {
	for {
		godes.Advance(processingGen.Get(PT_MEAN, PT_SIGMA))
		machine.partsCount++
		if godes.GetSystemTime() > SHUT_DOWN_TIME {
			machine.finished = true
			break
		}

	}
	fmt.Printf(" Machine # %v %v \n", machine.number, machine.partsCount)
}

type MachineRepair struct {
	*godes.Runner
	machine *Machine
}

func (machineRepair *MachineRepair) Run() {
	machine := machineRepair.machine
	for {
		godes.Advance(breaksGen.Get(1 / MTTF))
		if machine.finished {
			break
		}

		interrupted := godes.GetSystemTime()
		godes.Interrupt(machine)
		repairManAvailableSwt.Wait(true)
		if machine.finished {
			break
		}
		repairManAvailableSwt.Set(false)
		godes.Advance(processingGen.Get(REPAIR_TIME, REPAIR_TIME_SIGMA))
		if machine.finished {
			break
		}
		//release repairman
		repairManAvailableSwt.Set(true)
		//resume machine and change the scheduled time to compensate delay
		godes.Resume(machine, godes.GetSystemTime()-interrupted)

	}

}

func main() {

	godes.Run()
	repairManAvailableSwt.Set(true)
	var m *Machine
	for i := 0; i < NUM_MACHINES; i++ {
		m = &Machine{&godes.Runner{}, 0, i, false}
		godes.AddRunner(m)
		godes.AddRunner(&MachineRepair{&godes.Runner{}, m})
	}
	godes.WaitUntilDone()
}
/* OUTPUT
 Machine # 1 3382
 Machine # 7 3255
 Machine # 4 3343
 Machine # 5 3336
 Machine # 6 3248
 Machine # 0 3369
 Machine # 2 3378
 Machine # 9 3342
 Machine # 8 3362
 Machine # 3 3213
*/

Example 5. Bank Counter. Godes Wait with Timeout Feature.
Proces Description

This example models a bank counter and customers arriving at random times. Each customer has a certain patience. It waits to get to the counter until she’s at the end of her tether. If she gets to the counter, she uses it for a while before releasing it.

package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)

const NEW_CUSTOMERS = 5          // Total number of customers
const INTERVAL_CUSTOMERS = 12.00 // Generate new customers roughly every x minites
const SERVICE_TIME = 12.0
const MIN_PATIENCE = 1 // Min. customer patience
const MAX_PATIENCE = 3 // Max. customer patience

// random generator for the arrival interval - expovariate distribution
var arrivalGen *godes.ExpDistr = godes.NewExpDistr(true)

// random generator for the patience time time - uniform distribution
var patienceGen *godes.UniformDistr = godes.NewUniformDistr(true)

// random generator for the  service time - expovariate distribution
var serviceGen *godes.ExpDistr = godes.NewExpDistr(true)

// true when Counter
var counterAvailable *godes.BooleanControl = godes.NewBooleanControl()

type Customer struct {
	*godes.Runner
	name int
}

func (customer *Customer) Run() {

	arrivalTime := godes.GetSystemTime()
	patience := patienceGen.Get(MIN_PATIENCE, MAX_PATIENCE)
	fmt.Printf("  %6.3f  Customer %v : Here I am   My patience=%6.3f  \n", godes.GetSystemTime(), customer.name, patience)

	counterAvailable.WaitAndTimeout(true, patience)
	if !counterAvailable.GetState() {
		fmt.Printf("  %6.3f  Customer %v : Reneged after  %6.3f \n", godes.GetSystemTime(), customer.name, godes.GetSystemTime()-arrivalTime)
	} else {
		counterAvailable.Set(false)

		fmt.Printf("  %6.3f  Customer %v : Waited %6.3f \n", godes.GetSystemTime(), customer.name, godes.GetSystemTime()-arrivalTime)
		godes.Advance(serviceGen.Get(1 / SERVICE_TIME))
		fmt.Printf("  %6.3f  Customer %v : Finished \n", godes.GetSystemTime(), customer.name)
		counterAvailable.Set(true)
	}

}

func main() {
	counterAvailable.Set(true)
	godes.Run()
	for i := 0; i < NEW_CUSTOMERS; i++ {
		godes.AddRunner(&Customer{&godes.Runner{}, i})
		godes.Advance(arrivalGen.Get(1 / INTERVAL_CUSTOMERS))
	}

	godes.WaitUntilDone()

}
/* OUTPUT
0.000  	Customer 0 : Here I am   My patience= 1.135
0.000  	Customer 0 : Waited  0.000
5.536  	Customer 0 : Finished
11.141  Customer 1 : Here I am   My patience= 1.523
11.141  Customer 1 : Waited  0.000
34.482  Customer 2 : Here I am   My patience= 2.523
36.123  Customer 1 : Finished
36.123  Customer 2 : Waited  1.641
38.869  Customer 2 : Finished
39.943  Customer 3 : Here I am   My patience= 1.592
39.943  Customer 3 : Waited  0.000
49.113  Customer 4 : Here I am   My patience= 1.224
50.337  Customer 4 : Reneged after   1.224
59.948  Customer 3 : Finished
*/

Example 6. Bank. Sngle Run, FIFO Queue, Parallel Resources, StatCollector
Proces Description

A bank employs three tellers and the customers form a queue for all three tellers. The doors of the bank close after eight hours. The simulation is ended when the last customer has been served.

Task

Execute single simulation run, calculate average, standard deviation, confidence interval, lower and upper bounds, minimum and maximum values for the following performance measures: total elapsed time, queue length, queueing time service time.

Model Features
  • FIFO Queue. The customer object is placed in the FIFO arrival queue as soon as the customer is created.
  • Parallel Resources. The application constructs Tellers object to model tellers as a set of resources. The object 'provides' tellers to the customer located in the Queue head and "releases" the teller when customer is serviced. Maximum 3 tellers can be provided simultaneously. The interlocking between catching request is performed using godes BooleanControl object.
  • Collection and processing of statistics. While finishing a customer run the application creates data arrays for each measure. At the end of simulation, the application creates StatCollector object and performs descriptive statistical analysis. The following statistical parameters are calculated for each measure array: Observ - number of observations, Average - average (mean) value, Std Dev- standard deviation, L-Bound-lower bound of the confidence interval with 95% probability, U-Bound-upper bound of the confidence interval with 95% probability, Minimum value,Maximum value
package main

import (
	"fmt"
	"github.com/ProfHercules/godes"
)
//Input Parameters
const (
	ARRIVAL_INTERVAL = 0.5
	SERVICE_TIME = 1.3
	SHUTDOWN_TIME = 8 * 60.
)
// the arrival and service are two random number generators for the exponential  distribution
var arrival *godes.ExpDistr = godes.NewExpDistr(true)
var service *godes.ExpDistr = godes.NewExpDistr(true)
// true when any counter is available
var counterSwt *godes.BooleanControl = godes.NewBooleanControl()
// FIFO Queue for the arrived customers
var customerArrivalQueue *godes.FIFOQueue = godes.NewFIFOQueue("0")


var tellers *Tellers
var measures [][]float64
var titles = []string{
	"Elapsed Time",
	"Queue Length",
	"Queueing Time",
	"Service Time",
}

var availableTellers int = 0;
// the Tellers is a Passive Object represebting resource
type Tellers struct {
	max     int
}

func (tellers *Tellers) Catch(customer *Customer) {
	for {
		counterSwt.Wait(true)
		if customerArrivalQueue.GetHead().(*Customer).id == customer.id {
			break
		} else {
			godes.Yield()
		}
	}
	availableTellers++
	if availableTellers == tellers.max {
		counterSwt.Set(false)
	}
}

func (tellers *Tellers) Release() {
	availableTellers--
	counterSwt.Set(true)
}

// the Customer is a Runner
type Customer struct {
	*godes.Runner
	id int
}

func (customer *Customer) Run() {
	a0 := godes.GetSystemTime()
	tellers.Catch(customer)
	a1 := godes.GetSystemTime()
	customerArrivalQueue.Get()
	qlength := float64(customerArrivalQueue.Len())
	godes.Advance(service.Get(1. / SERVICE_TIME))
	a2 := godes.GetSystemTime()
	tellers.Release()
	collectionArray := []float64{a2 - a0, qlength, a1 - a0, a2 - a1}
	measures = append(measures, collectionArray)
}
func main() {
	measures = [][]float64{}
	tellers = &Tellers{3}
	godes.Run()
	counterSwt.Set(true)
	count := 0
	for {
		customer := &Customer{&godes.Runner{}, count}
		customerArrivalQueue.Place(customer)
		godes.AddRunner(customer)
		godes.Advance(arrival.Get(1. / ARRIVAL_INTERVAL))
		if godes.GetSystemTime() > SHUTDOWN_TIME {
			break
		}
		count++
	}
	godes.WaitUntilDone() // waits for all the runners to finish the Run()
	collector := godes.NewStatCollector(titles, measures)
	collector.PrintStat()
	fmt.Printf("Finished \n")
}
/* OUTPUT
Variable		#	Average	Std Dev	L-Bound	U-Bound	Minimum	Maximum
Elapsed Time	944	 2.591	 1.959	 2.466	 2.716	 0.005	11.189
Queue Length	944	 2.411	 3.069	 2.215	 2.607	 0.000	13.000
Queueing Time	944	 1.293	 1.533	 1.195	 1.391	 0.000	 6.994
Service Time	944	 1.298	 1.247	 1.219	 1.378	 0.003	 7.824
*/
Example 7. Bank. Multiple Runs, FIFO Queue, Parallel Resources, StatCollector
Procces Description

See example 6.

Task

Execute multiple simulation runs, calculate Average, Standard Deviation, confidence intervall lower and upper bounds,minimu and maximum for the following performance measures: total elapsed time, queue length, queueing time, service time.

package main
import (
	"fmt"
	"github.com/ProfHercules/godes"

)

//Input Parameters
const (
	ARRIVAL_INTERVAL = 0.5
	SERVICE_TIME     = 1.3
	SHUTDOWN_TIME    = 8 * 60.
	INDEPENDENT_RUNS = 100
)

// the arrival and service are two random number generators for the exponential  distribution
var arrival *godes.ExpDistr = godes.NewExpDistr(true)
var service *godes.ExpDistr = godes.NewExpDistr(true)

// true when any counter is available
var counterSwt *godes.BooleanControl = godes.NewBooleanControl()

// FIFO Queue for the arrived customers
var customerArrivalQueue *godes.FIFOQueue = godes.NewFIFOQueue("0")

var tellers *Tellers
var statistics [][]float64
var replicationStats [][]float64
var titles = []string{
	"Elapsed Time",
	"Queue Length",
	"Queueing Time",
	"Service Time",
}

var availableTellers int = 0

// the Tellers is a Passive Object represebting resource
type Tellers struct {
	max int
}

func (tellers *Tellers) Catch(customer *Customer) {
	for {
		counterSwt.Wait(true)
		if customerArrivalQueue.GetHead().(*Customer).GetId() == customer.GetId() {
			break
		} else {
			godes.Yield()
		}
	}
	availableTellers++
	if availableTellers == tellers.max {
		counterSwt.Set(false)
	}
}

func (tellers *Tellers) Release() {
	availableTellers--
	counterSwt.Set(true)
}

// the Customer is a Runner
type Customer struct {
	*godes.Runner
	id int
}

func (customer *Customer) Run() {
	a0 := godes.GetSystemTime()
	tellers.Catch(customer)
	a1 := godes.GetSystemTime()
	customerArrivalQueue.Get()
	qlength := float64(customerArrivalQueue.Len())
	godes.Advance(service.Get(1. / SERVICE_TIME))
	a2 := godes.GetSystemTime()
	tellers.Release()
	collectionArray := []float64{a2 - a0, qlength, a1 - a0, a2 - a1}
	replicationStats = append(replicationStats, collectionArray)
}

func (customer *Customer) GetId() int{
	return customer.id
}



func main() {
	statistics = [][]float64{}

	tellers = &Tellers{3}
	for i := 0; i < INDEPENDENT_RUNS; i++ {
		replicationStats = [][]float64{}
		godes.Run()
		counterSwt.Set(true)
		customerArrivalQueue.Clear()
		count := 0
		for {
			customer := &Customer{&godes.Runner{}, count}
			customerArrivalQueue.Place(customer)
			godes.AddRunner(customer)
			godes.Advance(arrival.Get(1. / ARRIVAL_INTERVAL))
			if godes.GetSystemTime() > SHUTDOWN_TIME {
				break
			}
			count++
		}
		godes.WaitUntilDone() // waits for all the runners to finish the Run()
		godes.Clear()
		replicationCollector := godes.NewStatCollector(titles, replicationStats)

		collectionArray := []float64{
			replicationCollector.GetAverage(0),
			replicationCollector.GetAverage(1),
			replicationCollector.GetAverage(2),
			replicationCollector.GetAverage(3),
		}
		statistics = append(statistics, collectionArray)
	}

	collector := godes.NewStatCollector(titles, statistics)
	collector.PrintStat()
	fmt.Printf("Finished \n")
}
/* OUTPUT
Variable	#	Average	Std Dev	L-Bound	U-Bound	Minimum	Maximum
Elapsed Time	100	 3.672	 1.217	 3.433	 3.910	 1.980	 8.722
Queue Length	100	 4.684	 2.484	 4.197	 5.171	 1.539	14.615
Queueing Time	100	 2.368	 1.194	 2.134	 2.602	 0.810	 7.350
Service Time	100	 1.304	 0.044	 1.295	 1.312	 1.170	 1.432
Finished
*/

Documentation

Overview

Copyright 2015 Alex Goussiatiner. All rights reserved. Use of this source code is governed by a MIT license that can be found in the LICENSE file.

Godes is the general-purpose simulation library which includes the simulation engine and building blocks for modeling a wide variety of systems at varying levels of details.

Godes Main Features:

1.Active Objects: All active objects in Godes shall implement the RunnerInterface

2.Random Generators: Godes contains set of built-in functions for generating random numbers for commonly used probability distributions. Each of the distrubutions in Godes has one or more parameter values associated with it:Uniform (Min, Max), Normal (Mean and Standard Deviation), Exponential (Lambda), Triangular(Min, Mode, Max)

3.Queues: Godes implements operations with FIFO and LIFO queues

4.BooleanControl : Godes uses BooleanControl variables as a locks for syncronizing execution of multiple runners

5.StatCollector: The object calculates and prints statistical parameters for set of samples collected during the simulation.

See examples for usage.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func AddRunner

func AddRunner(runner RunnerInterface)

AddRunner adds the runner obejct into model

func Advance

func Advance(interval float64)

Advance the simulation time

func Clear

func Clear()

Clear the model between the runs

func GetCurComputerTime

func GetCurComputerTime() int64

func GetSystemTime

func GetSystemTime() float64

GetSystemTime retuns the current simulation time

func Interrupt

func Interrupt(runner RunnerInterface)

Interrupt holds the runner execution

func Mean

func Mean(nums []float64) (mean float64)

Mean returns float mean value

func MinMax

func MinMax(nums []float64) (minimum float64, maximum float64)

MinMax returns minimum and maximum values amongst sample

func NormalConfidenceInterval

func NormalConfidenceInterval(nums []float64) (lower float64, upper float64)

NormalConfidenceInterval returns Confidence Interval

func Resume

func Resume(runner RunnerInterface, timeChange float64)

Resume restarts the runner execution

func Run

func Run()

Run starts the simulation model. Must be called explicitly.

func StandardDeviation

func StandardDeviation(nums []float64) (dev float64)

StandardDeviation returns STD

func Verbose

func Verbose(v bool)

Verbose sets the model in the verbose mode

func WaitUntilDone

func WaitUntilDone()

WaitUntilDone stops the main goroutine and waits until all the runners finished executing the Run()

func Yield

func Yield()

Yield stops the runner for short time

Types

type BooleanControl

type BooleanControl struct {
	// contains filtered or unexported fields
}

BooleanControl is a boolean control variable

func NewBooleanControl

func NewBooleanControl() *BooleanControl

NewBooleanControl constructs a BooleanControl

func (*BooleanControl) Clear

func (bc *BooleanControl) Clear()

Clear sets the bc value to default false

func (*BooleanControl) GetState

func (bc *BooleanControl) GetState() bool

getState returns value of bc

func (*BooleanControl) Set

func (bc *BooleanControl) Set(b bool)

Set changes the value of bc

func (*BooleanControl) Wait

func (bc *BooleanControl) Wait(b bool)

Wait stops the runner untill the BooleanControll bc is set to true

func (*BooleanControl) WaitAndTimeout

func (bc *BooleanControl) WaitAndTimeout(b bool, timeOut float64)

Wait stops the runner untill the BooleanControll bc is set to true or timeout

type ExpDistr

type ExpDistr struct {
	// contains filtered or unexported fields
}

ExpDistr represents the generator for the exponential distribution

func NewExpDistr

func NewExpDistr(repetion bool) *ExpDistr

NewExpDistr initiats the generator for the exponential distribution If repetition flag is true, the generator will generate the same sequences for every execution

func (*ExpDistr) Get

func (b *ExpDistr) Get(lambda float64) float64

Get returns new radom value from the exponential distribution generator

type FIFOQueue

type FIFOQueue struct {
	Queue
}

FIFOQueue represents a FIFO queue

func NewFIFOQueue

func NewFIFOQueue(mid string) *FIFOQueue

NewFIFOQueue itializes the FIFO queue

type LIFOQueue

type LIFOQueue struct {
	Queue
}

LIFOQueue represents a LIFO queue

func NewLIFOQueue

func NewLIFOQueue(mid string) *LIFOQueue

NewLIFOQueue itializes the LIFO queue

type NormalDistr

type NormalDistr struct {
	// contains filtered or unexported fields
}

NormalDistr represents the generator for the normal distribution

func NewNormalDistr

func NewNormalDistr(repetion bool) *NormalDistr

NewNormalDistr initiats the generator for the normal distribution

func (*NormalDistr) Get

func (b *NormalDistr) Get(mean float64, sigma float64) float64

Get returns new radom value from the normal distribution generator

type Queue

type Queue struct {
	// contains filtered or unexported fields
}

Queue represents a FIFO or LIFO queue

func (*Queue) Clear

func (q *Queue) Clear()

Clear reinitiates the queue

func (*Queue) Get

func (q *Queue) Get() interface{}

Get returns an object and removes it from the queue

func (*Queue) GetAverageNumber

func (q *Queue) GetAverageNumber() float64

GetAverageTime is average elapsed time for an object in the queue

func (*Queue) GetAverageTime

func (q *Queue) GetAverageTime() float64

GetAverageTime is average elapsed time for an object in the queue

func (*Queue) GetHead

func (q *Queue) GetHead() interface{}

GetHead returns the head object (doesn't remove it from the queue)

func (*Queue) Len

func (q *Queue) Len() int

Len returns number of objects in the queue

func (*Queue) Place

func (q *Queue) Place(entity interface{})

Place adds an object to the queue

type Runner

type Runner struct {
	// contains filtered or unexported fields
}

func (*Runner) GetMovingTime

func (b *Runner) GetMovingTime() float64

func (*Runner) IsShedulled

func (b *Runner) IsShedulled() bool

func (*Runner) Run

func (b *Runner) Run()

func (*Runner) String

func (b *Runner) String() string

type RunnerInterface

type RunnerInterface interface {
	Run()
	// contains filtered or unexported methods
}

type StatCollector

type StatCollector struct {
	// contains filtered or unexported fields
}

StatCollector is a wrapper which contains set of samples for statistical analyses

func NewStatCollector

func NewStatCollector(measures []string, samples [][]float64) *StatCollector

NewStatCollector creates a wrapper for samples data

func (*StatCollector) GetAverage

func (collector *StatCollector) GetAverage(measureInd int) float64

GetAverage returns average of a sample

func (*StatCollector) GetLowBoundCI

func (collector *StatCollector) GetLowBoundCI(measureInd int) float64

GetLowBoundCI returns low bound of confidence interval for sample

func (*StatCollector) GetMaximum

func (collector *StatCollector) GetMaximum(measureInd int) float64

GetMaximum returns maximum value for a sample

func (*StatCollector) GetMinimum

func (collector *StatCollector) GetMinimum(measureInd int) float64

GetMinimum returns minimum value for a sample

func (*StatCollector) GetSize

func (collector *StatCollector) GetSize(measureInd int) int

GetSize returns size of a sample

func (*StatCollector) GetStandardDeviation

func (collector *StatCollector) GetStandardDeviation(measureInd int) float64

GetStandardDeviation returns standard deviation of a sample

func (*StatCollector) GetStat

func (collector *StatCollector) GetStat(measureInd int) (int64, float64, float64, float64, float64, float64, float64)

GetStat returns size of the sample, average, standard deviation, low bound and uppe bounds of confidence inteval, minimum and maximum values

func (*StatCollector) GetUpperBoundCI

func (collector *StatCollector) GetUpperBoundCI(measureInd int) float64

GetUpperBoundCI returns upper bound of confidence interval for sample

func (*StatCollector) Print

func (collector *StatCollector) Print(statWriter *bufio.Writer, measuresSwt bool, avgSwt bool, stdDevSwt bool, lBooundSwt bool, uBoundSwt bool, minSwt bool, maxSwt bool) (err error)

Print calculates statistical parameters and output them to *bufio.Writer parameters flags are allowed

func (*StatCollector) PrintStat

func (collector *StatCollector) PrintStat()

PrintStat calculates and prints statistical parameters

type TimeoutRunner

type TimeoutRunner struct {
	*Runner
	// contains filtered or unexported fields
}

func (*TimeoutRunner) Run

func (timeOut *TimeoutRunner) Run()

type TriangularDistr

type TriangularDistr struct {
	// contains filtered or unexported fields
}

TriangularDistr represents the generator for the triangular distribution

func NewTriangularDistr

func NewTriangularDistr(repetion bool) *TriangularDistr

NewTriangularDistr initiats the generator for the triangular distribution If repetition flag is true, the generator will generate the same sequences for every execution

func (*TriangularDistr) Get

func (bd *TriangularDistr) Get(a float64, b float64, c float64) float64

Get returns new radom value from the triangular distribution generator

type UniformDistr

type UniformDistr struct {
	// contains filtered or unexported fields
}

UniformDistr represents the generator for the uniform distribution

func NewUniformDistr

func NewUniformDistr(repetion bool) *UniformDistr

NewUniformDistr initiats the generator for the uniform distribution

func (*UniformDistr) Get

func (b *UniformDistr) Get(min float64, max float64) float64

Get returns new radom value from the uniform distribution generator

Directories

Path Synopsis
examples

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL