matrix

package module
v1.1.3 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Apr 11, 2019 License: MIT Imports: 6 Imported by: 0

README

go-matrix


About

HAPPY NEW YEAR!

MATRIX MAINNET is finally coming as a new year gift!

This MATRIX repository introduced so many distinct features and implements the MATRIX cryptocurrency, which maintains a separate ledger from other mainstream networks.

Highlights
  • High-performace TPS
  • Highly-regulated network hierarchy
  • Support various transaction types: One2Many, AI transactions as well as support for rich texts, images and videos, scheduled transactions (regular scheduled transactions and transactions reversible within a 24-hour window), authorized entrusts (gas), Revocable transactions.
  • AI Features: Formal Verification(Trial)、Natural Language Input、AI server
  • Rewards and penalties
  • VRF consensus: real random number generation and use
  • VIP Layers
  • Multi-Currency support
  • Super Block
  • HPoW Consensus
  • 高性能 TPS
  • 一对多交易、定时交易、24小时可撤销交易、委托gas代付交易等
  • 智慧合约
  • 人工智能支持
  • 多币种支持
  • 子链兑换
  • AI Server(姿态识别、物体识别、医疗诊断)
  • 交易白名单
  • 奖惩机制
  • VIP 分层
  • VRF 真随机数
  • 超级区块机制
Blockchain Explorer

http://tom.matrix.io/home

MATRIX WEB WALLET

https://wallet.matrix.io/

Getting Started

Welcome! This guide is intended to get you running on the MATRIX network. To ensure your client behaves gracefully throughout the setup process, please check your system meets the following requirements:

OS Windows, Linux
CPU 8 Core (Intel(R) Xeon(R) CPU X5670 @2.93GHz)
RAM 12G
Free HD 300G
Bandwidth 20M
Build from Source

First of all, you need to clone the source code from MATRIX repository:

Git clone https://github.com/MatrixAINetwork/go-matrix.git, or

wget https://github.com/MatrixAINetwork/go-matrix/archive/master.zip

  • Branch: Master

  • Tag: v1.1.2

Building gman requires both a Go (version 1.7 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run your 'make gman' command

You can also obtain our compiled gman from github https://github.com/MatrixAINetwork/GMAN_CLIENT/tree/master/MAINNET/4.11

Starting up your member nodes (Linux & Mac) - for deposited users

Step 1: Check out what you need to prepare (most of them can be obtaind from go-matrix repository)

/gman: exe file

/MANGenesis.json: genesis file

/chaindata: a folder which you should create

man.json: common profile which shall be put under /chaindata

Step 2: Run Initiate command

./gman  --datadir  ./chaindata/   init    ./MANGenesis.json

Step 3: Visit our web wallet to create a new wallet address, and save your keystore file as well as password.

Please refer to ['Guide to Web Wallet']

Carry out your deposit actions if you want to run for a miner or validator node (you can find steps on the above guide)

Step 4: Copy your keystore file to folder keystore which is generated at Step 2 (/chaindata/keystore)

Step 5: Create a file named signAccount.json under root, and its content is like:

[
  {
    "Address":" MAN.gQAAHUeTBxvgbzf8tFgUtavDceJP ",
    "Password":" pass123456"
  }

]

Then, run:

./gman --datadir ./chaindata aes --aesin ./signAccount.json --aesout entrust.json

Upon the window prompt, you will be asked to set a password (which should contain upper-case letter[s], lower-case letter[s], number[s] and special character[s])

Step 6: Copy the generated entrust.json to root

Step 7: Start gman

./gman --datadir ./chaindata --networkid 1 --debug --verbosity 5  --manAddress [your man.address here] --entrust ./entrust.json --gcmode archive --outputinfo 1 --syncmode full 

for example, 

./gman --datadir ./chaindata --networkid 1 --debug --verbosity 5 --manAddress MAN.gQAAHUeTBxvgbzf8tFgUtavDceJP --entrust ./entrust.json --gcmode archive --outputinfo 1 --syncmode full

In this step, you will need to input the password set in step 5.

Step 8: Run 'Attach': ./gman attach /chaindata/gman.ipc (gman.ipc is generated under /chaindata when starting gman)

Starting up your member nodes (Linux & Mac) - for non-deposited users

Step 1: Check out what you need to prepare (most of them can be obtaind from go-matrix repository)

/gman: exe file

/MANGenesis.json: genesis file

/chaindata: a folder which you should create

man.json: common profile which shall be put under /chaindata

Step 2: Run Initiate command

./gman  --datadir  ./chaindata/   init    ./MANGenesis.json

Step 3: Start ./gman --datadir ./chaindata --networkid 1 --outputinfo 1 --syncmode 'full'

Starting up your member nodes (Windows) - for deposited users

Step 1: Check out what you need to prepare (most of them can be obtaind from go-matrix repository)

/gman: exe file

/MANGenesis.json: genesis file

/chaindata: a folder which you should create

man.json: common profile which shall be put under /chaindata

Step 2: Run Initiate command

gman.exe --datadir chaindata\ init MANGenesis.json

Step 3: Create a file named signAccount.json, whose contents are:

[
  {
    "Address":"MAN.2skMrkoEkecKjJLPz6qTdi8B3NgjU ",
    "Password":"haolin0123"
  }

]

Step 4: Run:

gman.exe --datadir chaindata aes --aesin signAccount.json --aesout entrust.json

Upon the window prompt, you will be asked to set a password (which should contain upper-case letter[s], lower-case letter[s], number[s] and special character[s])

Step 5: Start gman

gman --datadir chaindata  --networkid 1 --debug --verbosity 5  --manAddress  MAN.2skMrkoEkecKjJLPz6qTdi8B3NgjU --entrust entrust.json --gcmode archive --outputinfo 1 --syncmode full

In this step, you will need to input the password set in step 5.

Step 8: Open another window

gman attach ipc:\\.\pipe\gman.ipc 

gman.ipc is generated under /chaindata when starting gman)

Starting up your member nodes (Windows) - for non-deposited users

Step 1: Check out what you need to prepare (most of them can be obtaind from go-matrix repository)

/gman: exe file

/MANGenesis.json: genesis file

/chaindata: a folder which you should create

man.json: common profile which shall be put under /chaindata

Step 2: Run Initiate command

gman.exe --datadir chaindata\ init MANGenesis.json

Step 3: Start gman

gman --datadir chaindata  --networkid 1 --outputinfo 1 -- syncmode full
License

Copyright 2018-2019 The MATRIX Authors

The go-matrix library is licensed under MIT.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Documentation

Overview

Package matrix defines interfaces for interacting with Matrix.

Index

Constants

This section is empty.

Variables

View Source
var NotFound = errors.New("not found")

NotFound is returned by API methods if the requested item does not exist.

Functions

This section is empty.

Types

type CallMsg

type CallMsg struct {
	From     common.Address  // the sender of the 'transaction'
	To       *common.Address // the destination contract (nil for contract creation)
	Gas      uint64          // if 0, the call executes with near-infinite gas
	GasPrice *big.Int        // wei <-> gas exchange ratio
	Value    *big.Int        // amount of wei sent along with the call
	Data     []byte          // input data, usually an ABI-encoded contract method invocation
}

CallMsg contains parameters for contract calls.

type ChainReader

type ChainReader interface {
	BlockByHash(ctx context.Context, hash common.Hash) (*types.Block, error)
	BlockByNumber(ctx context.Context, number *big.Int) (*types.Block, error)
	HeaderByHash(ctx context.Context, hash common.Hash) (*types.Header, error)
	HeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error)
	TransactionCount(ctx context.Context, blockHash common.Hash) (uint, error)
	TransactionInBlock(ctx context.Context, blockHash common.Hash, index uint) (*types.Transaction, error)

	// This method subscribes to notifications about changes of the head block of
	// the canonical chain.
	SubscribeNewHead(ctx context.Context, ch chan<- *types.Header) (Subscription, error)
}

ChainReader provides access to the blockchain. The methods in this interface access raw data from either the canonical chain (when requesting by block number) or any blockchain fork that was previously downloaded and processed by the node. The block number argument can be nil to select the latest canonical block. Reading block headers should be preferred over full blocks whenever possible.

The returned error is NotFound if the requested item does not exist.

type ChainStateReader

type ChainStateReader interface {
	BalanceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (*big.Int, error)
	StorageAt(ctx context.Context, account common.Address, key common.Hash, blockNumber *big.Int) ([]byte, error)
	CodeAt(ctx context.Context, account common.Address, blockNumber *big.Int) ([]byte, error)
	NonceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (uint64, error)
}

ChainStateReader wraps access to the state trie of the canonical blockchain. Note that implementations of the interface may be unable to return state values for old blocks. In many cases, using CallContract can be preferable to reading raw contract storage.

type ChainSyncReader

type ChainSyncReader interface {
	SyncProgress(ctx context.Context) (*SyncProgress, error)
}

ChainSyncReader wraps access to the node's current sync status. If there's no sync currently running, it returns nil.

type ContractCaller

type ContractCaller interface {
	CallContract(ctx context.Context, call CallMsg, blockNumber *big.Int) ([]byte, error)
}

A ContractCaller provides contract calls, essentially transactions that are executed by the EVM but not mined into the blockchain. ContractCall is a low-level method to execute such calls. For applications which are structured around specific contracts, the abigen tool provides a nicer, properly typed way to perform calls.

type FilterQuery

type FilterQuery struct {
	FromBlock *big.Int         // beginning of the queried range, nil means genesis block
	ToBlock   *big.Int         // end of the range, nil means latest block
	Addresses []common.Address // restricts matches to events created by specific contracts

	// The Topic list restricts matches to particular event topics. Each event has a list
	// of topics. Topics matches a prefix of that list. An empty element slice matches any
	// topic. Non-empty elements represent an alternative that matches any of the
	// contained topics.
	//
	// Examples:
	// {} or nil          matches any topic list
	// {{A}}              matches topic A in first position
	// {{}, {B}}          matches any topic in first position, B in second position
	// {{A}}, {B}}        matches topic A in first position, B in second position
	// {{A, B}}, {C, D}}  matches topic (A OR B) in first position, (C OR D) in second position
	Topics [][]common.Hash
}

FilterQuery contains options for contract log filtering.

type GasEstimator

type GasEstimator interface {
	EstimateGas(ctx context.Context, call CallMsg) (uint64, error)
}

GasEstimator wraps EstimateGas, which tries to estimate the gas needed to execute a specific transaction based on the pending state. There is no guarantee that this is the true gas limit requirement as other transactions may be added or removed by miners, but it should provide a basis for setting a reasonable default.

type GasPricer

type GasPricer interface {
	SuggestGasPrice(ctx context.Context) (*big.Int, error)
}

GasPricer wraps the gas price oracle, which monitors the blockchain to determine the optimal gas price given current fee market conditions.

type LogFilterer

type LogFilterer interface {
	FilterLogs(ctx context.Context, q FilterQuery) ([]types.Log, error)
	SubscribeFilterLogs(ctx context.Context, q FilterQuery, ch chan<- types.Log) (Subscription, error)
}

LogFilterer provides access to contract log events using a one-off query or continuous event subscription.

Logs received through a streaming query subscription may have Removed set to true, indicating that the log was reverted due to a chain reorganisation.

type PendingContractCaller

type PendingContractCaller interface {
	PendingCallContract(ctx context.Context, call CallMsg) ([]byte, error)
}

PendingContractCaller can be used to perform calls against the pending state.

type PendingStateEventer

type PendingStateEventer interface {
	SubscribePendingTransactions(ctx context.Context, ch chan<- *types.Transaction) (Subscription, error)
}

A PendingStateEventer provides access to real time notifications about changes to the pending state.

type PendingStateReader

type PendingStateReader interface {
	PendingBalanceAt(ctx context.Context, account common.Address) (*big.Int, error)
	PendingStorageAt(ctx context.Context, account common.Address, key common.Hash) ([]byte, error)
	PendingCodeAt(ctx context.Context, account common.Address) ([]byte, error)
	PendingNonceAt(ctx context.Context, account common.Address) (uint64, error)
	PendingTransactionCount(ctx context.Context) (uint, error)
}

A PendingStateReader provides access to the pending state, which is the result of all known executable transactions which have not yet been included in the blockchain. It is commonly used to display the result of ’unconfirmed’ actions (e.g. wallet value transfers) initiated by the user. The PendingNonceAt operation is a good way to retrieve the next available transaction nonce for a specific account.

type StateReader added in v1.1.1

type StateReader interface {
	State() (*state.StateDBManage, error)
	StateAt(root []common.CoinRoot) (*state.StateDBManage, error)
	//StateAtNumber(number uint64) (*state.StateDBManage, error)
	StateAtBlockHash(hash common.Hash) (*state.StateDBManage, error)
}

type Subscription

type Subscription interface {
	// Unsubscribe cancels the sending of events to the data channel
	// and closes the error channel.
	Unsubscribe()
	// Err returns the subscription error channel. The error channel receives
	// a value if there is an issue with the subscription (e.g. the network connection
	// delivering the events has been closed). Only one value will ever be sent.
	// The error channel is closed by Unsubscribe.
	Err() <-chan error
}

Subscription represents an event subscription where events are delivered on a data channel.

type SyncProgress

type SyncProgress struct {
	StartingBlock uint64 // Block number where sync began
	CurrentBlock  uint64 // Current block number where sync is at
	HighestBlock  uint64 // Highest alleged block number in the chain
	PulledStates  uint64 // Number of state trie entries already downloaded
	KnownStates   uint64 // Total number of state trie entries known about
}

SyncProgress gives progress indications when the node is synchronising with the Matrix network.

type TransactionReader

type TransactionReader interface {
	// TransactionByHash checks the pool of pending transactions in addition to the
	// blockchain. The isPending return value indicates whether the transaction has been
	// mined yet. Note that the transaction may not be part of the canonical chain even if
	// it's not pending.
	TransactionByHash(ctx context.Context, txHash common.Hash) (tx *types.Transaction, isPending bool, err error)
	// TransactionReceipt returns the receipt of a mined transaction. Note that the
	// transaction may not be included in the current canonical chain even if a receipt
	// exists.
	TransactionReceipt(ctx context.Context, txHash common.Hash) (*types.Receipt, error)
}

TransactionReader provides access to past transactions and their receipts. Implementations may impose arbitrary restrictions on the transactions and receipts that can be retrieved. Historic transactions may not be available.

Avoid relying on this interface if possible. Contract logs (through the LogFilterer interface) are more reliable and usually safer in the presence of chain reorganisations.

The returned error is NotFound if the requested item does not exist.

type TransactionSender

type TransactionSender interface {
	SendTransaction(ctx context.Context, tx *types.Transaction) error
}

TransactionSender wraps transaction sending. The SendTransaction method injects a signed transaction into the pending transaction pool for execution. If the transaction was a contract creation, the TransactionReceipt method can be used to retrieve the contract address after the transaction has been mined.

The transaction must be signed and have a valid nonce to be included. Consumers of the API can use package accounts to maintain local private keys and need can retrieve the next available nonce using PendingNonceAt.

Directories

Path Synopsis
Package accounts implements high level Matrix account management.
Package accounts implements high level Matrix account management.
abi
Package abi implements the Matrix ABI (Application Binary Interface).
Package abi implements the Matrix ABI (Application Binary Interface).
abi/bind
Package bind generates Matrix contract Go bindings.
Package bind generates Matrix contract Go bindings.
keystore
Package keystore implements encrypted storage of secp256k1 private keys.
Package keystore implements encrypted storage of secp256k1 private keys.
usbwallet
Package usbwallet implements support for USB hardware wallets.
Package usbwallet implements support for USB hardware wallets.
usbwallet/internal/trezor
Package trezor contains the wire protocol wrapper in Go.
Package trezor contains the wire protocol wrapper in Go.
Package common contains various helper functions.
Package common contains various helper functions.
bitutil
Package bitutil implements fast bitwise operations.
Package bitutil implements fast bitwise operations.
compiler
Package compiler wraps the Solidity compiler executable (solc).
Package compiler wraps the Solidity compiler executable (solc).
hexutil
Package hexutil implements hex encoding with 0x prefix.
Package hexutil implements hex encoding with 0x prefix.
math
Package math provides integer math utilities.
Package math provides integer math utilities.
mclock
package mclock is a wrapper for a monotonic clock source
package mclock is a wrapper for a monotonic clock source
Package consensus implements different Matrix consensus engines.
Package consensus implements different Matrix consensus engines.
clique
Package clique implements the proof-of-authority consensus engine.
Package clique implements the proof-of-authority consensus engine.
manash
Package manash implements the manash proof-of-work consensus engine.
Package manash implements the manash proof-of-work consensus engine.
Package core implements the Matrix consensus protocol.
Package core implements the Matrix consensus protocol.
asm
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
bloombits
Package bloombits implements bloom filtering on batches of data.
Package bloombits implements bloom filtering on batches of data.
rawdb
Package rawdb contains a collection of low level database accessors.
Package rawdb contains a collection of low level database accessors.
state
Package state provides a caching layer atop the Matrix state trie.
Package state provides a caching layer atop the Matrix state trie.
types
Package types contains data types related to Matrix consensus.
Package types contains data types related to Matrix consensus.
vm
Package vm implements the Matrix Virtual Machine.
Package vm implements the Matrix Virtual Machine.
vm/runtime
Package runtime provides a basic execution model for executing EVM code.
Package runtime provides a basic execution model for executing EVM code.
Package crc8 implements the 8-bit cyclic redundancy check, or CRC-8, checksum.
Package crc8 implements the 8-bit cyclic redundancy check, or CRC-8, checksum.
aes
bn256
Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
bn256/cloudflare
Package bn256 implements a particular bilinear group at the 128-bit security level.
Package bn256 implements a particular bilinear group at the 128-bit security level.
bn256/google
Package bn256 implements a particular bilinear group at the 128-bit security level.
Package bn256 implements a particular bilinear group at the 128-bit security level.
secp256k1
Package secp256k1 wraps the bitcoin secp256k1 C library.
Package secp256k1 wraps the bitcoin secp256k1 C library.
sha3
Package sha3 implements the SHA-3 fixed-output-length hash functions and the SHAKE variable-output-length hash functions defined by FIPS-202.
Package sha3 implements the SHA-3 fixed-output-length hash functions and the SHAKE variable-output-length hash functions defined by FIPS-202.
vrf
election
Package event deals with subscriptions to real-time events.
Package event deals with subscriptions to real-time events.
filter
Package filter implements event filters.
Package filter implements event filters.
internal
debug
Package debug interfaces Go runtime debugging facilities.
Package debug interfaces Go runtime debugging facilities.
guide
Package guide is a small test suite to ensure snippets in the dev guide work.
Package guide is a small test suite to ensure snippets in the dev guide work.
jsre
Package jsre provides execution environment for JavaScript.
Package jsre provides execution environment for JavaScript.
jsre/deps
Package deps contains the console JavaScript dependencies Go embedded.
Package deps contains the console JavaScript dependencies Go embedded.
manapi
Package manapi implements the general Matrix API functions.
Package manapi implements the general Matrix API functions.
web3ext
package web3ext contains gman specific web3.js extensions.
package web3ext contains gman specific web3.js extensions.
log
man
Package man implements the Matrix protocol.
Package man implements the Matrix protocol.
downloader
Package downloader contains the manual full chain synchronisation.
Package downloader contains the manual full chain synchronisation.
fetcher
Package fetcher contains the block announcement based synchronisation.
Package fetcher contains the block announcement based synchronisation.
filters
Package filters implements an matrix filtering system for block, transactions and log events.
Package filters implements an matrix filtering system for block, transactions and log events.
tracers
Package tracers is a collection of JavaScript transaction tracers.
Package tracers is a collection of JavaScript transaction tracers.
tracers/internal/tracers
Package tracers contains the actual JavaScript tracer assets.
Package tracers contains the actual JavaScript tracer assets.
Package manclient provides a client for the Matrix RPC API.
Package manclient provides a client for the Matrix RPC API.
Package manstats implements the network stats reporting service.
Package manstats implements the network stats reporting service.
exp
Package miner implements Matrix block creation and mining.
Package miner implements Matrix block creation and mining.
p2p
discover
Package discover implements the Node Discovery Protocol.
Package discover implements the Node Discovery Protocol.
enr
Package enr implements Matrix Node Records as defined in EIP-778.
Package enr implements Matrix Node Records as defined in EIP-778.
nat
Package nat provides access to common network port mapping protocols.
Package nat provides access to common network port mapping protocols.
netutil
Package netutil contains extensions to the net package.
Package netutil contains extensions to the net package.
protocols
Package protocols is an extension to p2p.
Package protocols is an extension to p2p.
simulations
Package simulations simulates p2p networks.
Package simulations simulates p2p networks.
Package node sets up multi-protocol Matrix nodes.
Package node sets up multi-protocol Matrix nodes.
random
cfg
Package rlp implements the RLP serialization format.
Package rlp implements the RLP serialization format.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
run
gman
gman is the official command-line client for Matrix.
gman is the official command-line client for Matrix.
internal/browser
Package browser provides utilities for interacting with users' browsers.
Package browser provides utilities for interacting with users' browsers.
utils
Package utils contains internal helper functions for go-matrix commands.
Package utils contains internal helper functions for go-matrix commands.
Package tests implements execution of Matrix JSON tests.
Package tests implements execution of Matrix JSON tests.
Package trie implements Merkle Patricia Tries.
Package trie implements Merkle Patricia Tries.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL