geek-cache
a distributed read-only cache, based groupcache, using etcd as a registry, supports efficient concurrent reading.
Install
The package supports 3 last Go versions and requires a Go version with modules support.
go get github.com/Makonike/geek-cache
Usage
Be sure to install etcd v3(port 2379), grpcurl(for your tests), protobuf v3.
Config
In your application, you can configure like following:
func NewServer(self string, opts ...ServerOptions) (*Server, error)
server, err := geek.NewServer(addr, geek.ServiceName("your-service-name"))
registry.GlobalClientConfig = &clientv3.Config{
Endpoints: []string{"127.0.0.1:2379"}, // etcd address
DialTimeout: 5 * time.Second, // the timeout for failing to establish a connection
}
picker := geek.NewClientPicker(addr, geek.PickerServiceName("geek-cache"))
Test
Write the following code for testing.
main.go
package main
import (
"flag"
"fmt"
"log"
"github.com/Makonike/geek-cache/geek"
)
func main() {
var port int
flag.IntVar(&port, "port", 8001, "Geecache server port")
flag.Parse()
// mock database or other dataSource
var mysql = map[string]string{
"Tom": "630",
"Tom1": "631",
"Tom2": "632",
}
// NewGroup create a Group which means a kind of sources
// contain a func that used when misses cache
g := geek.NewGroup("scores", 2<<10, geek.GetterFunc(
func(key string) ([]byte, error) {
log.Println("[SlowDB] search key", key)
if v, ok := mysql[key]; ok {
return []byte(v), nil
}
return nil, fmt.Errorf("%s not found", key)
}))
addrMap := map[int]string{
8001: "8001",
8002: "8002",
8003: "8003",
}
var addr string = "127.0.0.1:" + addrMap[port]
server, err := geek.NewServer(addr)
if err != nil {
log.Fatal(err)
}
addrs := make([]string, 0)
for _, addr := range addrMap {
addrs = append(addrs, "127.0.0.1:"+addr)
}
// set client address
picker := geek.NewClientPicker(addr)
picker.SetSimply(addrs...)
g.RegisterPeers(picker)
for {
err = server.Start()
if err != nil {
log.Println(err.Error())
return
}
}
}
a.sh
#!/bin/bash
trap "rm server;kill 0" EXIT
go build -o server
./server -port=8001 &
./server -port=8002 &
./server -port=8003 &
echo ">>> start test"
grpcurl -plaintext -d '{"group":"scores", "key": "Tom"}' 127.0.0.1:8001 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom1"}' 127.0.0.1:8001 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom2"}' 127.0.0.1:8001 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom"}' 127.0.0.1:8002 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom1"}' 127.0.0.1:8002 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom2"}' 127.0.0.1:8002 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom"}' 127.0.0.1:8003 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom1"}' 127.0.0.1:8003 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom2"}' 127.0.0.1:8003 pb.GroupCache/Get
kill -9 `lsof -ti:8002`;
sleep 3
grpcurl -plaintext -d '{"group":"scores", "key": "Tom"}' 127.0.0.1:8001 pb.GroupCache/Get
grpcurl -plaintext -d '{"group":"scores", "key": "Tom"}' 127.0.0.1:8003 pb.GroupCache/Get
wait
Running the shell, then you can see the results following.
$ ./a.sh
2023/02/21 10:33:04 [127.0.0.1:8002] register service success
2023/02/21 10:33:04 [127.0.0.1:8003] register service success
2023/02/21 10:33:04 [127.0.0.1:8001] register service success
>>> start test
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8001] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:10 [Server 127.0.0.1:8001] Pick peer 127.0.0.1:8002
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8002] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:10 [SlowDB] search key Tom
{
"value": "NjMw"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8001] Recv RPC Request - (scores)/(Tom1)
2023/02/21 10:33:10 [Server 127.0.0.1:8001] Pick peer 127.0.0.1:8003
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom1)
2023/02/21 10:33:10 [SlowDB] search key Tom1
{
"value": "NjMx"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8001] Recv RPC Request - (scores)/(Tom2)
2023/02/21 10:33:10 [Server 127.0.0.1:8001] Pick peer 127.0.0.1:8003
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom2)
2023/02/21 10:33:10 [SlowDB] search key Tom2
{
"value": "NjMy"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8002] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:10 [Geek-Cache] hit
{
"value": "NjMw"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8002] Recv RPC Request - (scores)/(Tom1)
2023/02/21 10:33:10 [Server 127.0.0.1:8002] Pick peer 127.0.0.1:8003
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom1)
2023/02/21 10:33:10 [Geek-Cache] hit
{
"value": "NjMx"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8002] Recv RPC Request - (scores)/(Tom2)
2023/02/21 10:33:10 [Server 127.0.0.1:8002] Pick peer 127.0.0.1:8003
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom2)
2023/02/21 10:33:10 [Geek-Cache] hit
{
"value": "NjMy"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:10 [Server 127.0.0.1:8003] Pick peer 127.0.0.1:8002
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8002] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:10 [Geek-Cache] hit
{
"value": "NjMw"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom1)
2023/02/21 10:33:10 [Geek-Cache] hit
{
"value": "NjMx"
}
2023/02/21 10:33:10 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom2)
2023/02/21 10:33:10 [Geek-Cache] hit
{
"value": "NjMy"
}
./a.sh:行 23: 36214 已杀死 ./server -port=8002
2023/02/21 10:33:16 [Geek-Cache 127.0.0.1:8001] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:16 [SlowDB] search key Tom
{
"value": "NjMw"
}
2023/02/21 10:33:16 [Geek-Cache 127.0.0.1:8003] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:16 [Server 127.0.0.1:8003] Pick peer 127.0.0.1:8001
2023/02/21 10:33:16 [Geek-Cache 127.0.0.1:8001] Recv RPC Request - (scores)/(Tom)
2023/02/21 10:33:16 [Geek-Cache] hit
{
"value": "NjMw"
}
Tech Stack
Golang+grpc+etcd
Feature
- 使用一致性哈希解决缓存副本冗余、rehashing开销大、缓存雪崩的问题
- 使用singleFlight解决缓存击穿问题
- 使用protobuf进行节点间通信,编码报文,提高效率
- 构造虚拟节点使得请求映射负载均衡
- 使用LRU缓存淘汰算法解决资源限制的问题
- 使用etcd服务发现动态更新哈希环
- 支持并发读
TODO List