Documentation ¶
Overview ¶
Package noise implements the Noise Protocol Framework.
Noise is a low-level framework for building crypto protocols. Noise protocols support mutual and optional authentication, identity hiding, forward secrecy, zero round-trip encryption, and other advanced features. For more details, visit https://noiseprotocol.org.
Index ¶
- Constants
- Variables
- type Cipher
- type CipherFunc
- type CipherState
- type CipherSuite
- type Config
- type DHFunc
- type DHKey
- type HandshakePattern
- type HandshakeState
- func (s *HandshakeState) ChannelBinding() []byte
- func (s *HandshakeState) LocalEphemeral() DHKey
- func (s *HandshakeState) MessageIndex() int
- func (s *HandshakeState) PeerEphemeral() []byte
- func (s *HandshakeState) PeerStatic() []byte
- func (s *HandshakeState) ReadMessage(out, message []byte) ([]byte, *CipherState, *CipherState, error)
- func (s *HandshakeState) SetPresharedKey(psk []byte) error
- func (s *HandshakeState) WriteMessage(out, payload []byte) ([]byte, *CipherState, *CipherState, error)
- type HashFunc
- type MessagePattern
Constants ¶
const MaxMsgLen = 65535
MaxMsgLen is the maximum number of bytes that can be sent in a single Noise message.
const MaxNonce = uint64(math.MaxUint64) - 1
MaxNonce is the maximum value of n that is allowed. ErrMaxNonce is returned by Encrypt and Decrypt after this has been reached. 2^64-1 is reserved for rekeys.
Variables ¶
var ErrCipherSuiteCopied = errors.New("noise: CipherSuite has been copied, state is invalid")
var ErrMaxNonce = errors.New("noise: cipherstate has reached maximum n, a new handshake must be performed")
var ErrShortMessage = errors.New("noise: message is too short")
ErrShortMessage is returned by ReadMessage if a message is not as long as it should be.
var HandshakeIK = HandshakePattern{ Name: "IK", ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES, MessagePatternS, MessagePatternDHSS}, {MessagePatternE, MessagePatternDHEE, MessagePatternDHSE}, }, }
var HandshakeIN = HandshakePattern{ Name: "IN", Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternS}, {MessagePatternE, MessagePatternDHEE, MessagePatternDHSE}, }, }
var HandshakeIX = HandshakePattern{ Name: "IX", Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternS}, {MessagePatternE, MessagePatternDHEE, MessagePatternDHSE, MessagePatternS, MessagePatternDHES}, }, }
var HandshakeK = HandshakePattern{ Name: "K", InitiatorPreMessages: []MessagePattern{MessagePatternS}, ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES, MessagePatternDHSS}, }, }
var HandshakeKK = HandshakePattern{ Name: "KK", InitiatorPreMessages: []MessagePattern{MessagePatternS}, ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES, MessagePatternDHSS}, {MessagePatternE, MessagePatternDHEE, MessagePatternDHSE}, }, }
var HandshakeKN = HandshakePattern{ Name: "KN", InitiatorPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE}, {MessagePatternE, MessagePatternDHEE, MessagePatternDHSE}, }, }
var HandshakeKX = HandshakePattern{ Name: "KX", InitiatorPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE}, {MessagePatternE, MessagePatternDHEE, MessagePatternDHSE, MessagePatternS, MessagePatternDHES}, }, }
var HandshakeN = HandshakePattern{ Name: "N", ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES}, }, }
var HandshakeNK = HandshakePattern{ Name: "NK", ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES}, {MessagePatternE, MessagePatternDHEE}, }, }
var HandshakeNN = HandshakePattern{ Name: "NN", Messages: [][]MessagePattern{ {MessagePatternE}, {MessagePatternE, MessagePatternDHEE}, }, }
var HandshakeNX = HandshakePattern{ Name: "NX", Messages: [][]MessagePattern{ {MessagePatternE}, {MessagePatternE, MessagePatternDHEE, MessagePatternS, MessagePatternDHES}, }, }
var HandshakeX = HandshakePattern{ Name: "X", ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES, MessagePatternS, MessagePatternDHSS}, }, }
var HandshakeXK = HandshakePattern{ Name: "XK", ResponderPreMessages: []MessagePattern{MessagePatternS}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHES}, {MessagePatternE, MessagePatternDHEE}, {MessagePatternS, MessagePatternDHSE}, }, }
var HandshakeXN = HandshakePattern{ Name: "XN", Messages: [][]MessagePattern{ {MessagePatternE}, {MessagePatternE, MessagePatternDHEE}, {MessagePatternS, MessagePatternDHSE}, }, }
var HandshakeXX = HandshakePattern{ Name: "XX", Messages: [][]MessagePattern{ {MessagePatternE}, {MessagePatternE, MessagePatternDHEE, MessagePatternS, MessagePatternDHES}, {MessagePatternS, MessagePatternDHSE}, }, }
var HandshakeXXfallback = HandshakePattern{ Name: "XXfallback", ResponderPreMessages: []MessagePattern{MessagePatternE}, Messages: [][]MessagePattern{ {MessagePatternE, MessagePatternDHEE, MessagePatternS, MessagePatternDHSE}, {MessagePatternS, MessagePatternDHES}, }, }
Functions ¶
This section is empty.
Types ¶
type Cipher ¶
type Cipher interface { // Encrypt encrypts the provided plaintext with a nonce and then appends the // ciphertext to out along with an authentication tag over the ciphertext // and optional authenticated data. Encrypt(out []byte, n uint64, ad, plaintext []byte) []byte // Decrypt authenticates the ciphertext and optional authenticated data and // then decrypts the provided ciphertext using the provided nonce and // appends it to out. Decrypt(out []byte, n uint64, ad, ciphertext []byte) ([]byte, error) }
A Cipher is a AEAD cipher that has been initialized with a key.
type CipherFunc ¶
type CipherFunc interface { // Cipher initializes the algorithm with the provided key and returns a Cipher. Cipher(k [32]byte) Cipher // CipherName is the name of the cipher. CipherName() string }
A CipherFunc implements an AEAD symmetric cipher.
var CipherAESGCM CipherFunc = cipherFn{cipherAESGCM, "AESGCM"}
CipherAESGCM is the AES256-GCM AEAD cipher.
var CipherChaChaPoly CipherFunc = cipherFn{cipherChaChaPoly, "ChaChaPoly"}
CipherChaChaPoly is the ChaCha20-Poly1305 AEAD cipher construction.
type CipherState ¶
type CipherState struct {
// contains filtered or unexported fields
}
A CipherState provides symmetric encryption and decryption after a successful handshake.
func (*CipherState) Cipher ¶
func (s *CipherState) Cipher() Cipher
Cipher returns the low-level symmetric encryption primitive. It should only be used if nonces need to be managed manually, for example with a network protocol that can deliver out-of-order messages. This is dangerous, users must ensure that they are incrementing a nonce after every encrypt operation. After calling this method, it is an error to call Encrypt/Decrypt on the CipherState.
func (*CipherState) Decrypt ¶
func (s *CipherState) Decrypt(out, ad, ciphertext []byte) ([]byte, error)
Decrypt checks the authenticity of the ciphertext and authenticated data and then decrypts and appends the plaintext to out. This method automatically increments the nonce after every call, messages must be provided in the same order that they were encrypted with no missing messages. ErrMaxNonce is returned after the maximum nonce of 2^64-2 is reached.
func (*CipherState) Encrypt ¶
func (s *CipherState) Encrypt(out, ad, plaintext []byte) ([]byte, error)
Encrypt encrypts the plaintext and then appends the ciphertext and an authentication tag across the ciphertext and optional authenticated data to out. This method automatically increments the nonce after every call, so messages must be decrypted in the same order. ErrMaxNonce is returned after the maximum nonce of 2^64-2 is reached.
func (*CipherState) Nonce ¶
func (s *CipherState) Nonce() uint64
Nonce returns the current value of n. This can be used to determine if a new handshake should be performed due to approaching MaxNonce.
func (*CipherState) Rekey ¶
func (s *CipherState) Rekey()
func (*CipherState) SetNonce ¶
func (s *CipherState) SetNonce(n uint64)
SetNonce sets the current value of n.
type CipherSuite ¶
type CipherSuite interface { DHFunc CipherFunc HashFunc Name() []byte }
A CipherSuite is a set of cryptographic primitives used in a Noise protocol. It should be constructed with NewCipherSuite.
func NewCipherSuite ¶
func NewCipherSuite(dh DHFunc, c CipherFunc, h HashFunc) CipherSuite
NewCipherSuite returns a CipherSuite constructed from the specified primitives.
type Config ¶
type Config struct { // CipherSuite is the set of cryptographic primitives that will be used. CipherSuite CipherSuite // Random is the source for cryptographically appropriate random bytes. If // zero, it is automatically configured. Random io.Reader // Pattern is the pattern for the handshake. Pattern HandshakePattern // Initiator must be true if the first message in the handshake will be sent // by this peer. Initiator bool // Prologue is an optional message that has already be communicated and must // be identical on both sides for the handshake to succeed. Prologue []byte PresharedKey []byte // when PresharedKey is specified PresharedKeyPlacement int // StaticKeypair is this peer's static keypair, required if part of the // handshake. StaticKeypair DHKey // EphemeralKeypair is this peer's ephemeral keypair that was provided as // a pre-message in the handshake. EphemeralKeypair DHKey // PeerStatic is the static public key of the remote peer that was provided // as a pre-message in the handshake. PeerStatic []byte // PeerEphemeral is the ephemeral public key of the remote peer that was // provided as a pre-message in the handshake. PeerEphemeral []byte }
A Config provides the details necessary to process a Noise handshake. It is never modified by this package, and can be reused.
type DHFunc ¶
type DHFunc interface { // GenerateKeypair generates a new keypair using random as a source of // entropy. GenerateKeypair(random io.Reader) (DHKey, error) // DH performs a Diffie-Hellman calculation between the provided private and // public keys and returns the result. DH(privkey, pubkey []byte) ([]byte, error) // DHLen is the number of bytes returned by DH. DHLen() int // DHName is the name of the DH function. DHName() string }
A DHFunc implements Diffie-Hellman key agreement.
var DH25519 DHFunc = dh25519{}
DH25519 is the Curve25519 ECDH function.
type HandshakePattern ¶
type HandshakePattern struct { Name string InitiatorPreMessages []MessagePattern ResponderPreMessages []MessagePattern Messages [][]MessagePattern }
A HandshakePattern is a list of messages and operations that are used to perform a specific Noise handshake.
type HandshakeState ¶
type HandshakeState struct {
// contains filtered or unexported fields
}
A HandshakeState tracks the state of a Noise handshake. It may be discarded after the handshake is complete.
func NewHandshakeState ¶
func NewHandshakeState(c Config) (*HandshakeState, error)
NewHandshakeState starts a new handshake using the provided configuration.
func (*HandshakeState) ChannelBinding ¶
func (s *HandshakeState) ChannelBinding() []byte
ChannelBinding provides a value that uniquely identifies the session and can be used as a channel binding. It is an error to call this method before the handshake is complete.
func (*HandshakeState) LocalEphemeral ¶
func (s *HandshakeState) LocalEphemeral() DHKey
LocalEphemeral returns the local ephemeral key pair generated during a handshake.
func (*HandshakeState) MessageIndex ¶
func (s *HandshakeState) MessageIndex() int
MessageIndex returns the current handshake message id
func (*HandshakeState) PeerEphemeral ¶
func (s *HandshakeState) PeerEphemeral() []byte
PeerEphemeral returns the ephemeral key provided by the remote peer during a handshake. It is an error to call this method if a handshake message containing a static key has not been read.
func (*HandshakeState) PeerStatic ¶
func (s *HandshakeState) PeerStatic() []byte
PeerStatic returns the static key provided by the remote peer during a handshake. It is an error to call this method if a handshake message containing a static key has not been read.
func (*HandshakeState) ReadMessage ¶
func (s *HandshakeState) ReadMessage(out, message []byte) ([]byte, *CipherState, *CipherState, error)
ReadMessage processes a received handshake message and appends the payload, if any to out. If the handshake is completed by the call, two CipherStates will be returned, one is used for encryption of messages to the remote peer, the other is used for decryption of messages from the remote peer. It is an error to call this method out of sync with the handshake pattern.
func (*HandshakeState) SetPresharedKey ¶
func (s *HandshakeState) SetPresharedKey(psk []byte) error
func (*HandshakeState) WriteMessage ¶
func (s *HandshakeState) WriteMessage(out, payload []byte) ([]byte, *CipherState, *CipherState, error)
WriteMessage appends a handshake message to out. The message will include the optional payload if provided. If the handshake is completed by the call, two CipherStates will be returned, one is used for encryption of messages to the remote peer, the other is used for decryption of messages from the remote peer. It is an error to call this method out of sync with the handshake pattern.
type HashFunc ¶
type HashFunc interface { // Hash returns a hash state. Hash() hash.Hash // HashName is the name of the hash function. HashName() string }
A HashFunc implements a cryptographic hash function.
var HashBLAKE2b HashFunc = hashFn{blake2bNew, "BLAKE2b"}
HashBLAKE2b is the BLAKE2b hash function.
var HashBLAKE2s HashFunc = hashFn{blake2sNew, "BLAKE2s"}
HashBLAKE2s is the BLAKE2s hash function.
type MessagePattern ¶
type MessagePattern int
A MessagePattern is a single message or operation used in a Noise handshake.
const ( MessagePatternS MessagePattern = iota MessagePatternE MessagePatternDHEE MessagePatternDHES MessagePatternDHSE MessagePatternDHSS MessagePatternPSK )