Documentation ¶
Overview ¶
Package btcec implements support for the elliptic curves needed for bitcoin.
Bitcoin uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See http://www.secg.org/collateral/sec2_final.pdf for details on the standard.
This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with btcd, but should be general enough for other uses of elliptic curve crypto. It was based on some initial work by ThePiachu.
Usage ¶
To verify a secp256k1 signature the following may be done:
import crypto/ecdsa pubKey, err := btcec.ParsePubKey(pkStr, btcec.S256()) signature, err := btcec.ParseSignature(sigStr, btcec.S256()) ok := ecdsa.Verify(pubKey, message, signature.R, signature.S)
Index ¶
- func RecoverCompact(curve *KoblitzCurve, signature, hash []byte) (*ecdsa.PublicKey, bool, error)
- func SignCompact(curve *KoblitzCurve, key *ecdsa.PrivateKey, hash []byte, isCompressedKey bool) ([]byte, error)
- type KoblitzCurve
- func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int)
- func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int)
- func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool
- func (curve *KoblitzCurve) Params() *elliptic.CurveParams
- func (curve *KoblitzCurve) QPlus1Div4() *big.Int
- func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int)
- func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int)
- type PublicKey
- type Signature
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func RecoverCompact ¶
RecoverCompact verifies the compact signature "signature" of "hash" for the Koblitz curve in "curve". If the signature matches then the recovered public key will be returned as well as a boolen if the original key was compressed or not, else an error will be returned.
func SignCompact ¶
func SignCompact(curve *KoblitzCurve, key *ecdsa.PrivateKey, hash []byte, isCompressedKey bool) ([]byte, error)
SignCompact produces a compact signature of the data in hash with the given private key on the given koblitz curve. The isCompressed parameter should be used to detail if the given signature should reference a compressed public key or not. If successful the bytes of the compact signature will be returned in the format: <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S> where the R and S parameters are padde up to the bitlengh of the curve.
Types ¶
type KoblitzCurve ¶
type KoblitzCurve struct { *elliptic.CurveParams H int // cofactor of the curve. // contains filtered or unexported fields }
KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve interface from crypto/elliptic.
func (*KoblitzCurve) Add ¶
Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve interface.
func (*KoblitzCurve) IsOnCurve ¶
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool
IsOnCurve returns boolean if the point (x,y) is on the curve. Part of the elliptic.Curve interface. This function differs from the crypto/elliptic algorithm since a = 0 not -3.
func (*KoblitzCurve) Params ¶
func (curve *KoblitzCurve) Params() *elliptic.CurveParams
Params returns the parameters for the curve.
func (*KoblitzCurve) QPlus1Div4 ¶
func (curve *KoblitzCurve) QPlus1Div4() *big.Int
QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating square roots via exponention.
func (*KoblitzCurve) ScalarBaseMult ¶
ScalarBaseMult returns k*G where G is the base point of the group and k is a big endian integer. Part of the elliptic.Curve interface.
func (*KoblitzCurve) ScalarMult ¶
ScalarMult returns k*(Bx, By) where k is a big endian integer. Part of the elliptic.Curve interface.
type PublicKey ¶
PublicKey is an ecdsa.PublicKey with additional functions to serialize in uncompressed, compressed, and hybrid formats.
func ParsePubKey ¶
func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err error)
ParsePubKey parses a public key for a koblitz curve from a bytestring into a ecdsa.Publickey, verifying that it is valid. It supports compressed, uncompressed and hybrid signature formats.
func PrivKeyFromBytes ¶
func PrivKeyFromBytes(curve *KoblitzCurve, pk []byte) (*ecdsa.PrivateKey, *PublicKey)
PrivKeyFromBytes returns a private and public key for `curve' based on the private key passed as an argument as a byte slice.
func (*PublicKey) SerializeCompressed ¶
SerializeCompressed serializes a public key in a 33-byte compressed format.
func (*PublicKey) SerializeHybrid ¶
SerializeHybrid serializes a public key in a 65-byte hybrid format.
func (*PublicKey) SerializeUncompressed ¶
SerializeUncompressed serializes a public key in a 65-byte uncompressed format.
type Signature ¶
Signature is a type representing an ecdsa signature.
func ParseDERSignature ¶
ParseDERSignature parses a signature in DER format for the curve type `curve` into a Signature type. If parsing according to the less strict BER format is needed, use ParseSignature.
func ParseSignature ¶
ParseSignature parses a signature in BER format for the curve type `curve' into a Signature type, perfoming some basic sanity checks. If parsing according to the more strict DER format is needed, use ParseDERSignature.
func (*Signature) Serialize ¶
Serialize returns the ECDSA signature in the more strict DER format. Note that the serialized bytes returned do not include the appended hash type used in Bitcoin signature scripts.
encoding/asn1 is broken so we hand roll this output:
0x30 <length> 0x02 <length r> r 0x02 <length s> s