ethdb

package
v1.13.7 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 26, 2023 License: GPL-3.0 Imports: 1 Imported by: 0

Documentation

Overview

Package ethdb defines the interfaces for an Ethereum data store.

Index

Constants

View Source
const IdealBatchSize = 100 * 1024

IdealBatchSize defines the size of the data batches should ideally add in one write.

Variables

This section is empty.

Functions

This section is empty.

Types

type AncientReader

type AncientReader interface {
	AncientReaderOp

	// ReadAncients runs the given read operation while ensuring that no writes take place
	// on the underlying freezer.
	ReadAncients(fn func(AncientReaderOp) error) (err error)
}

AncientReader is the extended ancient reader interface including 'batched' or 'atomic' reading.

type AncientReaderOp

type AncientReaderOp interface {
	// HasAncient returns an indicator whether the specified data exists in the
	// ancient store.
	HasAncient(kind string, number uint64) (bool, error)

	// Ancient retrieves an ancient binary blob from the append-only immutable files.
	Ancient(kind string, number uint64) ([]byte, error)

	// AncientRange retrieves multiple items in sequence, starting from the index 'start'.
	// It will return
	//   - at most 'count' items,
	//   - if maxBytes is specified: at least 1 item (even if exceeding the maxByteSize),
	//     but will otherwise return as many items as fit into maxByteSize.
	//   - if maxBytes is not specified, 'count' items will be returned if they are present
	AncientRange(kind string, start, count, maxBytes uint64) ([][]byte, error)

	// Ancients returns the ancient item numbers in the ancient store.
	Ancients() (uint64, error)

	// Tail returns the number of first stored item in the freezer.
	// This number can also be interpreted as the total deleted item numbers.
	Tail() (uint64, error)

	// AncientSize returns the ancient size of the specified category.
	AncientSize(kind string) (uint64, error)
}

AncientReaderOp contains the methods required to read from immutable ancient data.

type AncientStater

type AncientStater interface {
	// AncientDatadir returns the path of root ancient directory. Empty string
	// will be returned if ancient store is not enabled at all. The returned
	// path can be used to construct the path of other freezers.
	AncientDatadir() (string, error)
}

AncientStater wraps the Stat method of a backing data store.

type AncientStore

type AncientStore interface {
	AncientReader
	AncientWriter
	io.Closer
}

AncientStore contains all the methods required to allow handling different ancient data stores backing immutable chain data store.

type AncientWriteOp

type AncientWriteOp interface {
	// Append adds an RLP-encoded item.
	Append(kind string, number uint64, item interface{}) error

	// AppendRaw adds an item without RLP-encoding it.
	AppendRaw(kind string, number uint64, item []byte) error
}

AncientWriteOp is given to the function argument of ModifyAncients.

type AncientWriter

type AncientWriter interface {
	// ModifyAncients runs a write operation on the ancient store.
	// If the function returns an error, any changes to the underlying store are reverted.
	// The integer return value is the total size of the written data.
	ModifyAncients(func(AncientWriteOp) error) (int64, error)

	// TruncateHead discards all but the first n ancient data from the ancient store.
	// After the truncation, the latest item can be accessed it item_n-1(start from 0).
	TruncateHead(n uint64) (uint64, error)

	// TruncateTail discards the first n ancient data from the ancient store. The already
	// deleted items are ignored. After the truncation, the earliest item can be accessed
	// is item_n(start from 0). The deleted items may not be removed from the ancient store
	// immediately, but only when the accumulated deleted data reach the threshold then
	// will be removed all together.
	TruncateTail(n uint64) (uint64, error)

	// Sync flushes all in-memory ancient store data to disk.
	Sync() error

	// MigrateTable processes and migrates entries of a given table to a new format.
	// The second argument is a function that takes a raw entry and returns it
	// in the newest format.
	MigrateTable(string, func([]byte) ([]byte, error)) error
}

AncientWriter contains the methods required to write to immutable ancient data.

type Batch

type Batch interface {
	KeyValueWriter

	// ValueSize retrieves the amount of data queued up for writing.
	ValueSize() int

	// Write flushes any accumulated data to disk.
	Write() error

	// Reset resets the batch for reuse.
	Reset()

	// Replay replays the batch contents.
	Replay(w KeyValueWriter) error
}

Batch is a write-only database that commits changes to its host database when Write is called. A batch cannot be used concurrently.

type Batcher

type Batcher interface {
	// NewBatch creates a write-only database that buffers changes to its host db
	// until a final write is called.
	NewBatch() Batch

	// NewBatchWithSize creates a write-only database batch with pre-allocated buffer.
	NewBatchWithSize(size int) Batch
}

Batcher wraps the NewBatch method of a backing data store.

type Compacter

type Compacter interface {
	// Compact flattens the underlying data store for the given key range. In essence,
	// deleted and overwritten versions are discarded, and the data is rearranged to
	// reduce the cost of operations needed to access them.
	//
	// A nil start is treated as a key before all keys in the data store; a nil limit
	// is treated as a key after all keys in the data store. If both is nil then it
	// will compact entire data store.
	Compact(start []byte, limit []byte) error
}

Compacter wraps the Compact method of a backing data store.

type Database

Database contains all the methods required by the high level database to not only access the key-value data store but also the chain freezer.

type HookedBatch

type HookedBatch struct {
	Batch

	OnPut    func(key []byte, value []byte) // Callback if a key is inserted
	OnDelete func(key []byte)               // Callback if a key is deleted
}

HookedBatch wraps an arbitrary batch where each operation may be hooked into to monitor from black box code.

func (HookedBatch) Delete

func (b HookedBatch) Delete(key []byte) error

Delete removes the key from the key-value data store.

func (HookedBatch) Put

func (b HookedBatch) Put(key []byte, value []byte) error

Put inserts the given value into the key-value data store.

type Iteratee

type Iteratee interface {
	// NewIterator creates a binary-alphabetical iterator over a subset
	// of database content with a particular key prefix, starting at a particular
	// initial key (or after, if it does not exist).
	//
	// Note: This method assumes that the prefix is NOT part of the start, so there's
	// no need for the caller to prepend the prefix to the start
	NewIterator(prefix []byte, start []byte) Iterator
}

Iteratee wraps the NewIterator methods of a backing data store.

type Iterator

type Iterator interface {
	// Next moves the iterator to the next key/value pair. It returns whether the
	// iterator is exhausted.
	Next() bool

	// Error returns any accumulated error. Exhausting all the key/value pairs
	// is not considered to be an error.
	Error() error

	// Key returns the key of the current key/value pair, or nil if done. The caller
	// should not modify the contents of the returned slice, and its contents may
	// change on the next call to Next.
	Key() []byte

	// Value returns the value of the current key/value pair, or nil if done. The
	// caller should not modify the contents of the returned slice, and its contents
	// may change on the next call to Next.
	Value() []byte

	// Release releases associated resources. Release should always succeed and can
	// be called multiple times without causing error.
	Release()
}

Iterator iterates over a database's key/value pairs in ascending key order.

When it encounters an error any seek will return false and will yield no key/ value pairs. The error can be queried by calling the Error method. Calling Release is still necessary.

An iterator must be released after use, but it is not necessary to read an iterator until exhaustion. An iterator is not safe for concurrent use, but it is safe to use multiple iterators concurrently.

type KeyValueReader

type KeyValueReader interface {
	// Has retrieves if a key is present in the key-value data store.
	Has(key []byte) (bool, error)

	// Get retrieves the given key if it's present in the key-value data store.
	Get(key []byte) ([]byte, error)
}

KeyValueReader wraps the Has and Get method of a backing data store.

type KeyValueStater

type KeyValueStater interface {
	// Stat returns a particular internal stat of the database.
	Stat(property string) (string, error)
}

KeyValueStater wraps the Stat method of a backing data store.

type KeyValueStore

KeyValueStore contains all the methods required to allow handling different key-value data stores backing the high level database.

type KeyValueWriter

type KeyValueWriter interface {
	// Put inserts the given value into the key-value data store.
	Put(key []byte, value []byte) error

	// Delete removes the key from the key-value data store.
	Delete(key []byte) error
}

KeyValueWriter wraps the Put method of a backing data store.

type Reader

type Reader interface {
	KeyValueReader
	AncientReader
}

Reader contains the methods required to read data from both key-value as well as immutable ancient data.

type Snapshot

type Snapshot interface {
	// Has retrieves if a key is present in the snapshot backing by a key-value
	// data store.
	Has(key []byte) (bool, error)

	// Get retrieves the given key if it's present in the snapshot backing by
	// key-value data store.
	Get(key []byte) ([]byte, error)

	// Release releases associated resources. Release should always succeed and can
	// be called multiple times without causing error.
	Release()
}

type Snapshotter

type Snapshotter interface {
	// NewSnapshot creates a database snapshot based on the current state.
	// The created snapshot will not be affected by all following mutations
	// happened on the database.
	// Note don't forget to release the snapshot once it's used up, otherwise
	// the stale data will never be cleaned up by the underlying compactor.
	NewSnapshot() (Snapshot, error)
}

Snapshotter wraps the Snapshot method of a backing data store.

type Stater

type Stater interface {
	KeyValueStater
	AncientStater
}

Stater contains the methods required to retrieve states from both key-value as well as immutable ancient data.

type Writer

type Writer interface {
	KeyValueWriter
	AncientWriter
}

Writer contains the methods required to write data to both key-value as well as immutable ancient data.

Directories

Path Synopsis
Package leveldb implements the key-value database layer based on LevelDB.
Package leveldb implements the key-value database layer based on LevelDB.
Package memorydb implements the key-value database layer based on memory maps.
Package memorydb implements the key-value database layer based on memory maps.
Package pebble implements the key-value database layer based on pebble.
Package pebble implements the key-value database layer based on pebble.
Package remotedb implements the key-value database layer based on a remote geth node.
Package remotedb implements the key-value database layer based on a remote geth node.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL