Documentation ¶
Overview ¶
Package chaincfg defines chain configuration parameters.
In addition to the main Bitcoin network, which is intended for the transfer of monetary value, there also exists two currently active standard networks: regression test and testnet (version 3). These networks are incompatible with each other (each sharing a different genesis block) and software should handle errors where input intended for one network is used on an application instance running on a different network.
For library packages, chaincfg provides the ability to lookup chain parameters and encoding magics when passed a *Params. Older APIs not updated to the new convention of passing a *Params may lookup the parameters for a wire.BitcoinNet using ParamsForNet, but be aware that this usage is deprecated and will be removed from chaincfg in the future.
For main packages, a (typically global) var may be assigned the address of one of the standard Param vars for use as the application's "active" network. When a network parameter is needed, it may then be looked up through this variable (either directly, or hidden in a library call).
package main import ( "flag" "fmt" "log" "github.com/DarkPayCoin/btcutil" "github.com/DarkPayCoin/btcd/chaincfg" ) var testnet = flag.Bool("testnet", false, "operate on the testnet Bitcoin network") // By default (without -testnet), use mainnet. var chainParams = &chaincfg.MainNetParams func main() { flag.Parse() // Modify active network parameters if operating on testnet. if *testnet { chainParams = &chaincfg.TestNet3Params } // later... // Create and print new payment address, specific to the active network. pubKeyHash := make([]byte, 20) addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash, chainParams) if err != nil { log.Fatal(err) } fmt.Println(addr) }
If an application does not use one of the three standard Bitcoin networks, a new Params struct may be created which defines the parameters for the non-standard network. As a general rule of thumb, all network parameters should be unique to the network, but parameter collisions can still occur (unfortunately, this is the case with regtest and testnet3 sharing magics).
Index ¶
- Constants
- Variables
- func HDPrivateKeyToPublicKeyID(id []byte) ([]byte, error)
- func IsBech32SegwitPrefix(prefix string) bool
- func IsPubKeyHashAddrID(id byte) bool
- func IsScriptHashAddrID(id byte) bool
- func Register(params *Params) error
- type Checkpoint
- type ConsensusDeployment
- type DNSSeed
- type Params
Constants ¶
const ( // DeploymentTestDummy defines the rule change deployment ID for testing // purposes. DeploymentTestDummy = iota // DeploymentCSV defines the rule change deployment ID for the CSV // soft-fork package. The CSV package includes the depolyment of BIPS // 68, 112, and 113. DeploymentCSV // DeploymentSegwit defines the rule change deployment ID for the // Segragated Witness (segwit) soft-fork package. The segwit package // includes the deployment of BIPS 141, 142, 144, 145, 147 and 173. DeploymentSegwit // DefinedDeployments is the number of currently defined deployments. DefinedDeployments )
Constants that define the deployment offset in the deployments field of the parameters for each deployment. This is useful to be able to get the details of a specific deployment by name.
Variables ¶
var ( // ErrDuplicateNet describes an error where the parameters for a Bitcoin // network could not be set due to the network already being a standard // network or previously-registered into this package. ErrDuplicateNet = errors.New("duplicate Bitcoin network") // ErrUnknownHDKeyID describes an error where the provided id which // is intended to identify the network for a hierarchical deterministic // private extended key is not registered. ErrUnknownHDKeyID = errors.New("unknown hd private extended key bytes") )
var MainNetParams = Params{ Name: "main", Net: wire.MainNet, DefaultPort: "6667", DNSSeeds: []DNSSeed{ {"192.168.0.37", true}, {"dns.darkpaycoin.io", true}, {"46.101.231.40", true}, {"explorer2.darkpaycoin.io", true}, }, GenesisBlock: &genesisBlock, GenesisHash: &genesisHash, PowLimit: mainPowLimit, PowLimitBits: 0x207ffff0, BIP0034Height: 0, BIP0065Height: 0, BIP0066Height: 0, CoinbaseMaturity: 66, TargetTimespan: time.Minute, PoSTargetTimespan: time.Minute * 40, TargetTimePerBlock: time.Minute, RetargetAdjustmentFactor: 4, ReduceMinDifficulty: false, MinDiffReductionTime: 0, GenerateSupported: true, MasternodeDriftCount: 20, LastPoWBlock: 266, ZerocoinStartHeight: 667, ZerocoinLastOldParams: 99999999, StakeMinimumAge: time.Hour * 3, ModifierV2StartBlock: 666666, Checkpoints: []Checkpoint{}, RelayNonStdTxs: false, Bech32HRPSegwit: "da", PubKeyHashAddrID: 0x1e, ScriptHashAddrID: 0x0d, PrivateKeyID: 0xd4, HDPrivateKeyID: [4]byte{0x66, 0x2d, 0x25, 0x33}, HDPublicKeyID: [4]byte{0x66, 0x21, 0x31, 0x2b}, HDCoinType: 0x800001bc, }
MainNetParams defines the network parameters for the main Bitcoin network.
Functions ¶
func HDPrivateKeyToPublicKeyID ¶
HDPrivateKeyToPublicKeyID accepts a private hierarchical deterministic extended key id and returns the associated public key id. When the provided id is not registered, the ErrUnknownHDKeyID error will be returned.
func IsBech32SegwitPrefix ¶
IsBech32SegwitPrefix returns whether the prefix is a known prefix for segwit addresses on any default or registered network. This is used when decoding an address string into a specific address type.
func IsPubKeyHashAddrID ¶
IsPubKeyHashAddrID returns whether the id is an identifier known to prefix a pay-to-pubkey-hash address on any default or registered network. This is used when decoding an address string into a specific address type. It is up to the caller to check both this and IsScriptHashAddrID and decide whether an address is a pubkey hash address, script hash address, neither, or undeterminable (if both return true).
func IsScriptHashAddrID ¶
IsScriptHashAddrID returns whether the id is an identifier known to prefix a pay-to-script-hash address on any default or registered network. This is used when decoding an address string into a specific address type. It is up to the caller to check both this and IsPubKeyHashAddrID and decide whether an address is a pubkey hash address, script hash address, neither, or undeterminable (if both return true).
func Register ¶
Register registers the network parameters for a Bitcoin network. This may error with ErrDuplicateNet if the network is already registered (either due to a previous Register call, or the network being one of the default networks).
Network parameters should be registered into this package by a main package as early as possible. Then, library packages may lookup networks or network parameters based on inputs and work regardless of the network being standard or not.
Types ¶
type Checkpoint ¶
Checkpoint identifies a known good point in the block chain. Using checkpoints allows a few optimizations for old blocks during initial download and also prevents forks from old blocks.
Each checkpoint is selected based upon several factors. See the documentation for blockchain.IsCheckpointCandidate for details on the selection criteria.
type ConsensusDeployment ¶
type ConsensusDeployment struct { // BitNumber defines the specific bit number within the block version // this particular soft-fork deployment refers to. BitNumber uint8 // StartTime is the median block time after which voting on the // deployment starts. StartTime uint64 // ExpireTime is the median block time after which the attempted // deployment expires. ExpireTime uint64 }
ConsensusDeployment defines details related to a specific consensus rule change that is voted in. This is part of BIP0009.
type DNSSeed ¶
type DNSSeed struct { // Host defines the hostname of the seed. Host string // HasFiltering defines whether the seed supports filtering // by service flags (wire.ServiceFlag). HasFiltering bool }
DNSSeed identifies a DNS seed.
type Params ¶
type Params struct { // Name defines a human-readable identifier for the network. Name string // Net defines the magic bytes used to identify the network. Net wire.BitcoinNet // DefaultPort defines the default peer-to-peer port for the network. DefaultPort string // DNSSeeds defines a list of DNS seeds for the network that are used // as one method to discover peers. DNSSeeds []DNSSeed // GenesisBlock defines the first block of the chain. GenesisBlock *wire.MsgBlock // GenesisHash is the starting block hash. GenesisHash *chainhash.Hash // PowLimit defines the highest allowed proof of work value for a block // as a uint256. PowLimit *big.Int // PowLimitBits defines the highest allowed proof of work value for a // block in compact form. PowLimitBits uint32 // These fields define the block heights at which the specified softfork // BIP became active. BIP0034Height int32 BIP0065Height int32 BIP0066Height int32 // CoinbaseMaturity is the number of blocks required before newly mined // coins (coinbase transactions) can be spent. CoinbaseMaturity uint16 // MaxReorganizationDepth is the maximum number of blocks to rewind for // a reorganization of the chain. MaxReorganizationDepth uint16 // MasternodeDriftCount is the number of masternodes by which a node can // differ to assist consensus. MasternodeDriftCount uint16 // Last block in which a proof-of-work block is valid. After POW, PoS is // activated. LastPoWBlock uint32 // Height of the first block in which Zerocoin transactions are valid. ZerocoinStartHeight int32 // Height of the last block Zerocoin used the old modulus before switching // to V2. ZerocoinLastOldParams int32 // TargetTimespan is the desired amount of time that should elapse // before the block difficulty requirement is examined to determine how // it should be changed in order to maintain the desired block // generation rate. TargetTimespan time.Duration // PoSTargetTimespan is the TargetTimespan after PoS has been activated // on the network. PoSTargetTimespan time.Duration // StakeMinimumAge is the amount of time that has to pass before a staked // coin can be staked again. StakeMinimumAge time.Duration // ModifierV2StartBlock is the block at which version 2 of the staking // selection algorithm was implemented. ModifierV2StartBlock int32 // TargetTimePerBlock is the desired amount of time to generate each // block. TargetTimePerBlock time.Duration // RetargetAdjustmentFactor is the adjustment factor used to limit // the minimum and maximum amount of adjustment that can occur between // difficulty retargets. RetargetAdjustmentFactor int64 // ReduceMinDifficulty defines whether the network should reduce the // minimum required difficulty after a long enough period of time has // passed without finding a block. This is really only useful for test // networks and should not be set on a main network. ReduceMinDifficulty bool // MinDiffReductionTime is the amount of time after which the minimum // required difficulty should be reduced when a block hasn't been found. // // NOTE: This only applies if ReduceMinDifficulty is true. MinDiffReductionTime time.Duration // GenerateSupported specifies whether or not CPU mining is allowed. GenerateSupported bool // Checkpoints ordered from oldest to newest. Checkpoints []Checkpoint // Mempool parameters RelayNonStdTxs bool // Human-readable part for Bech32 encoded segwit addresses, as defined // in BIP 173. Bech32HRPSegwit string // Address encoding magics PubKeyHashAddrID byte // First byte of a P2PKH address ScriptHashAddrID byte // First byte of a P2SH address PrivateKeyID byte // First byte of a WIF private key WitnessPubKeyHashAddrID byte // First byte of a P2WPKH address WitnessScriptHashAddrID byte // First byte of a P2WSH address // BIP32 hierarchical deterministic extended key magics HDPrivateKeyID [4]byte HDPublicKeyID [4]byte // BIP44 coin type used in the hierarchical deterministic path for // address generation. HDCoinType uint32 }
Params defines a Bitcoin network by its parameters. These parameters may be used by Bitcoin applications to differentiate networks as well as addresses and keys for one network from those intended for use on another network.