Documentation ¶
Overview ¶
package libWorker is a kitchen sink of... basically anything that doesn't belong in a specific part of the codebase, ranging from utility functions to universal types to core interfaces.
Some of the things in lib do not actually belong in lib, and need to be moved into either submodules, or separate modules like core. Other things are in files that are far too long, or that do not actually make sense.
Feel free to move these things.
package libWorker contains most interfaces and base structs of k6.
Index ¶
- Constants
- Variables
- func ConcatErrors(errors []error, separator string) string
- func DispatchMessage(gs BaseGlobalState, message string, messageType string)
- func GetEndOffset(steps []ExecutionStep) (lastStepOffset time.Duration, isFinal bool)
- func GetMaxPlannedVUs(steps []ExecutionStep) (result uint64)
- func GetMaxPossibleVUs(steps []ExecutionStep) (result uint64)
- func HandleError(gs BaseGlobalState, err error)
- func HandleStringError(gs BaseGlobalState, errString string)
- func Max(a, b int64) int64
- func Min(a, b int64) int64
- func RegisterExecutorConfigType(configType string, constructor ExecutorConfigConstructor)
- func StrictJSONUnmarshal(data []byte, v interface{}) error
- func UpdateStatus(gs BaseGlobalState, status string)
- func WithExecutionState(ctx context.Context, s *ExecutionState) context.Context
- func WithScenarioState(ctx context.Context, s *ScenarioState) context.Context
- type ActiveVU
- type BaseGlobalState
- type Check
- type Collection
- type CompatibilityMode
- type DialContexter
- type Environment
- type ExecutionScheduler
- type ExecutionSegment
- func (es *ExecutionSegment) CopyScaleRat(value *big.Rat) *big.Rat
- func (es *ExecutionSegment) Equal(other *ExecutionSegment) bool
- func (es *ExecutionSegment) FloatLength() float64
- func (es *ExecutionSegment) InPlaceScaleRat(value *big.Rat) *big.Rat
- func (es *ExecutionSegment) MarshalText() ([]byte, error)
- func (es *ExecutionSegment) Scale(value int64) int64
- func (es *ExecutionSegment) Split(numParts int64) ([]*ExecutionSegment, error)
- func (es *ExecutionSegment) String() string
- func (es *ExecutionSegment) SubSegment(child *ExecutionSegment) *ExecutionSegment
- func (es *ExecutionSegment) UnmarshalText(text []byte) (err error)
- type ExecutionSegmentSequence
- func GetFilledExecutionSegmentSequence(sequence *ExecutionSegmentSequence, fallback *ExecutionSegment) (result ExecutionSegmentSequence)
- func NewExecutionSegmentSequence(segments ...*ExecutionSegment) (ExecutionSegmentSequence, error)
- func NewExecutionSegmentSequenceFromString(strSeq string) (ExecutionSegmentSequence, error)
- func (ess ExecutionSegmentSequence) FindSegmentPosition(segment *ExecutionSegment) (int, error)
- func (ess ExecutionSegmentSequence) IsFull() bool
- func (ess ExecutionSegmentSequence) LCD() int64
- func (ess ExecutionSegmentSequence) MarshalText() ([]byte, error)
- func (ess ExecutionSegmentSequence) String() string
- func (ess *ExecutionSegmentSequence) UnmarshalText(text []byte) (err error)
- type ExecutionSegmentSequenceWrapper
- func (essw *ExecutionSegmentSequenceWrapper) GetNewExecutionSegmentSequenceFromValue(value int64, trackedIndex int) (newSequence *ExecutionSegmentSequenceWrapper, newIndex int, err error)
- func (essw *ExecutionSegmentSequenceWrapper) GetStripedOffsets(segmentIndex int) (int64, []int64, int64)
- func (essw *ExecutionSegmentSequenceWrapper) GetTuple(segmentIndex int) *ExecutionTuple
- func (essw *ExecutionSegmentSequenceWrapper) LCD() int64
- func (essw *ExecutionSegmentSequenceWrapper) ScaleInt64(segmentIndex int, value int64) int64
- type ExecutionState
- func (es *ExecutionState) AddFullIterations(count uint64) uint64
- func (es *ExecutionState) AddInitializedVU(vu InitializedVU)
- func (es *ExecutionState) AddInterruptedIterations(count uint64) uint64
- func (es *ExecutionState) GetCurrentExecutionStatus() ExecutionStatus
- func (es *ExecutionState) GetCurrentTestRunDuration() time.Duration
- func (es *ExecutionState) GetCurrentlyActiveVUsCount() int64
- func (es *ExecutionState) GetFullIterationCount() uint64
- func (es *ExecutionState) GetInitializedVUsCount() int64
- func (es *ExecutionState) GetPartialIterationCount() uint64
- func (es *ExecutionState) GetPlannedVU(logger *logrus.Entry, modifyActiveVUCount bool) (InitializedVU, error)
- func (es *ExecutionState) GetUniqueVUIdentifiers() (uint64, uint64)
- func (es *ExecutionState) GetUnplannedVU(ctx context.Context, logger *logrus.Entry, workerInfo *WorkerInfo) (InitializedVU, error)
- func (es *ExecutionState) HasEnded() bool
- func (es *ExecutionState) HasStarted() bool
- func (es *ExecutionState) InitializeNewVU(ctx context.Context, logger *logrus.Entry, workerInfo *WorkerInfo) (InitializedVU, error)
- func (es *ExecutionState) IsPaused() bool
- func (es *ExecutionState) MarkEnded()
- func (es *ExecutionState) MarkStarted()
- func (es *ExecutionState) ModCurrentlyActiveVUsCount(mod int64) int64
- func (es *ExecutionState) ModInitializedVUsCount(mod int64) int64
- func (es *ExecutionState) Pause() error
- func (es *ExecutionState) Resume() error
- func (es *ExecutionState) ResumeNotify() <-chan struct{}
- func (es *ExecutionState) ReturnVU(vu InitializedVU, wasActive bool)
- func (es *ExecutionState) SetExecutionStatus(newStatus ExecutionStatus) (oldStatus ExecutionStatus)
- func (es *ExecutionState) SetInitVUFunc(initVUFunc InitVUFunc)
- type ExecutionStatus
- type ExecutionStep
- type ExecutionTuple
- type Executor
- type ExecutorConfig
- type ExecutorConfigConstructor
- type Group
- type HostAddress
- type IPNet
- type InitVUFunc
- type InitializedVU
- type KeyValueItem
- type LiveUpdatableExecutor
- type MarkMessage
- type Message
- type MessageQueue
- type MultiSlotLimiter
- type Options
- type PausableExecutor
- type RunStatus
- type Runner
- type RuntimeOptions
- type ScenarioConfigs
- type ScenarioState
- type SegmentedIndex
- type SlotLimiter
- type Stage
- type StageFields
- type State
- type Summary
- type TLSAuth
- type TLSAuthFields
- type TLSCipherSuites
- type TLSVersion
- type TLSVersions
- type TLSVersionsFields
- type TagMap
- type TestPreInitState
- type TestRunState
- type VUActivationParams
- type WorkerInfo
- type WorkerState
Constants ¶
const DefaultScenarioName = "default"
DefaultScenarioName is used as the default key/ID of the scenario config entries that were created due to the use of the shortcut execution control options (i.e. duration+vus, iterations+vus, or stages)
const GroupSeparator = "::"
Separator for group IDs.
const MaxRetriesGetPlannedVU = 5
MaxRetriesGetPlannedVU how many times we should wait for MaxTimeToWaitForPlannedVU before we actually return an error.
const MaxTimeToWaitForPlannedVU = 400 * time.Millisecond
MaxTimeToWaitForPlannedVU specifies the maximum allowable time for an executor to wait for a planned VU to be retrieved from the ExecutionState.PlannedVUs buffer. If it's exceeded, k6 will emit a warning log message, since it either means that there's a bug in the k6 scheduling code, or that the machine is overloaded and the scheduling code suffers from delays.
Critically, exceeding this time *doesn't* result in an aborted test or any test errors, and the executor will continue to try and borrow the VU (potentially resulting in further warnings). We likely should emit a k6 metric about it in the future. TODO: emit a metric every time this is exceeded?
Variables ¶
var DefaultSummaryTrendStats = []string{"avg", "min", "med", "max", "p(90)", "p(95)"}
DefaultSummaryTrendStats are the default trend columns shown in the test summary output
var ErrNameContainsGroupSeparator = errors.New("group and check names may not contain '::'")
Error emitted if you attempt to instantiate a Group or Check that contains the separator.
var SupportedTLSCipherSuites = map[string]uint16{ "TLS_RSA_WITH_RC4_128_SHA": tls.TLS_RSA_WITH_RC4_128_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA": tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA": tls.TLS_RSA_WITH_AES_128_CBC_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA": tls.TLS_RSA_WITH_AES_256_CBC_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA256": tls.TLS_RSA_WITH_AES_128_CBC_SHA256, "TLS_RSA_WITH_AES_128_GCM_SHA256": tls.TLS_RSA_WITH_AES_128_GCM_SHA256, "TLS_RSA_WITH_AES_256_GCM_SHA384": tls.TLS_RSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA": tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA": tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA": tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_RC4_128_SHA": tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA, "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA": tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA": tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA": tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256": tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256": tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384": tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384": tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256": tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305": tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305": tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256": tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, "TLS_AES_128_GCM_SHA256": tls.TLS_AES_128_GCM_SHA256, "TLS_AES_256_GCM_SHA384": tls.TLS_AES_256_GCM_SHA384, "TLS_CHACHA20_POLY1305_SHA256": tls.TLS_CHACHA20_POLY1305_SHA256, }
SupportedTLSCipherSuites is string-to-constant map of available TLS cipher suites.
var SupportedTLSCipherSuitesToString = map[uint16]string{ tls.TLS_RSA_WITH_RC4_128_SHA: "TLS_RSA_WITH_RC4_128_SHA", tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA: "TLS_RSA_WITH_3DES_EDE_CBC_SHA", tls.TLS_RSA_WITH_AES_128_CBC_SHA: "TLS_RSA_WITH_AES_128_CBC_SHA", tls.TLS_RSA_WITH_AES_256_CBC_SHA: "TLS_RSA_WITH_AES_256_CBC_SHA", tls.TLS_RSA_WITH_AES_128_CBC_SHA256: "TLS_RSA_WITH_AES_128_CBC_SHA256", tls.TLS_RSA_WITH_AES_128_GCM_SHA256: "TLS_RSA_WITH_AES_128_GCM_SHA256", tls.TLS_RSA_WITH_AES_256_GCM_SHA384: "TLS_RSA_WITH_AES_256_GCM_SHA384", tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA: "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA", tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA: "TLS_ECDHE_RSA_WITH_RC4_128_SHA", tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA: "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256", tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305: "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305", tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305: "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305", tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", tls.TLS_AES_128_GCM_SHA256: "TLS_AES_128_GCM_SHA256", tls.TLS_AES_256_GCM_SHA384: "TLS_AES_256_GCM_SHA384", tls.TLS_CHACHA20_POLY1305_SHA256: "TLS_CHACHA20_POLY1305_SHA256", }
SupportedTLSCipherSuitesToString is constant-to-string map of available TLS cipher suites.
var SupportedTLSVersions = map[string]TLSVersion{ "tls1.0": tls.VersionTLS10, "tls1.1": tls.VersionTLS11, "tls1.2": tls.VersionTLS12, "tls1.3": tls.VersionTLS13, }
SupportedTLSVersions is string-to-constant map of available TLS versions.
var SupportedTLSVersionsToString = map[TLSVersion]string{ tls.VersionTLS10: "tls1.0", tls.VersionTLS11: "tls1.1", tls.VersionTLS12: "tls1.2", tls.VersionTLS13: "tls1.3", }
SupportedTLSVersionsToString is constant-to-string map of available TLS versions.
Functions ¶
func ConcatErrors ¶
ConcatErrors is a a helper function for joining error messages into a single string.
TODO: use Go 2.0/xerrors style errors so we don't lose error type information and metadata.
func DispatchMessage ¶
func DispatchMessage(gs BaseGlobalState, message string, messageType string)
func GetEndOffset ¶
func GetEndOffset(steps []ExecutionStep) (lastStepOffset time.Duration, isFinal bool)
GetEndOffset returns the time offset of the last step of the execution plan, and whether that step is a final one, i.e. whether the number of planned or unplanned is 0.
func GetMaxPlannedVUs ¶
func GetMaxPlannedVUs(steps []ExecutionStep) (result uint64)
GetMaxPlannedVUs returns the maximum number of planned VUs at any stage of the execution plan.
func GetMaxPossibleVUs ¶
func GetMaxPossibleVUs(steps []ExecutionStep) (result uint64)
GetMaxPossibleVUs returns the maximum number of planned + unplanned (i.e. initialized mid-test) VUs at any stage of the execution plan. Unplanned VUs are possible in some executors, like the arrival-rate ones, as a way to have a low number of pre-allocated VUs, but be able to initialize new ones in the middle of the test, if needed. For example, if the remote system starts responding very slowly and all of the pre-allocated VUs are waiting for it.
IMPORTANT 1: Getting planned and unplanned VUs separately for the whole duration of a test can often lead to mistakes. That's why this function is called GetMaxPossibleVUs() and why there is no GetMaxUnplannedVUs() function.
As an example, imagine that you have an executor with MaxPlannedVUs=20 and MaxUnplannedVUs=0, followed immediately after by another executor with MaxPlannedVUs=10 and MaxUnplannedVUs=10. The MaxPlannedVUs number for the whole test is 20, and MaxUnplannedVUs is 10, but since those executors won't run concurrently, MaxVUs for the whole test is not 30, rather it's 20, since 20 VUs will be sufficient to run the whole test.
IMPORTANT 2: this has one very important exception. The externally controlled executor doesn't use the MaxUnplannedVUs (i.e. this function will return 0), since their initialization and usage is directly controlled by the user and is effectively bounded only by the resources of the machine k6 is running on.
func HandleError ¶
func HandleError(gs BaseGlobalState, err error)
func HandleStringError ¶
func HandleStringError(gs BaseGlobalState, errString string)
func RegisterExecutorConfigType ¶
func RegisterExecutorConfigType(configType string, constructor ExecutorConfigConstructor)
RegisterExecutorConfigType adds the supplied ExecutorConfigConstructor as the constructor for its type in the configConstructors map, in a thread-safe manner
func StrictJSONUnmarshal ¶
StrictJSONUnmarshal decodes a JSON in a strict manner, emitting an error if there are unknown fields or unexpected data
func UpdateStatus ¶
func UpdateStatus(gs BaseGlobalState, status string)
func WithExecutionState ¶
func WithExecutionState(ctx context.Context, s *ExecutionState) context.Context
WithExecutionState embeds an ExecutionState in ctx.
func WithScenarioState ¶
func WithScenarioState(ctx context.Context, s *ScenarioState) context.Context
WithScenarioState embeds a ScenarioState in ctx.
Types ¶
type ActiveVU ¶
type ActiveVU interface { // Run the configured exported function in the VU once. The only // way to interrupt the execution is to cancel the context given // to InitializedVU.Activate() RunOnce() error }
ActiveVU represents an actively running virtual user.
type BaseGlobalState ¶
type BaseGlobalState interface { Ctx() context.Context Conn() *websocket.Conn ConnWriteMutex() *sync.Mutex ConnReadMutex() *sync.Mutex JobId() string ChildJobId() string WorkerId() string GetWorkerStatus() string SetWorkerStatus(status string) FuncModeEnabled() bool FuncModeInfo() *lib.FuncModeInfo MessageQueue() *MessageQueue SetRunAbortFunc(cancelFunc context.CancelFunc) GetRunAbortFunc() context.CancelFunc }
type Check ¶
type Check struct { // Arbitrary name of the check. Name string `json:"name"` // A Check belongs to a Group, which may belong to other groups. The Path describes // the hierarchy of these groups, with the segments delimited by '::'. // As an example: a check "My Check" within a group "Inner" within a group "Outer" // would have a Path of "::Outer::Inner::My Check". The empty first item is the root group, // which is always named "". Group *Group `json:"-"` Path string `json:"path"` // A check's ID is a hash of the Path. It is deterministic between different k6 // instances of the same version, but should be treated as opaque - the hash function // or length may change. ID string `json:"id"` // Counters for how many times this check has passed and failed respectively. Passes int64 `json:"passes"` Fails int64 `json:"fails"` }
A Check stores a series of successful or failing tests against a value.
For more information, refer to the js/modules/k6.K6.Check() function.
type Collection ¶
type CompatibilityMode ¶
type CompatibilityMode uint8
CompatibilityMode specifies the JS compatibility mode
const ( // CompatibilityModeExtended achieves ES6+ compatibility with Babel CompatibilityModeExtended CompatibilityMode = iota + 1 // CompatibilityModeBase is standard goja ES5.1+ CompatibilityModeBase )
func CompatibilityModeString ¶
func CompatibilityModeString(s string) (CompatibilityMode, error)
CompatibilityModeString retrieves an enum value from the enum constants string name. Throws an error if the param is not part of the enum.
func CompatibilityModeValues ¶
func CompatibilityModeValues() []CompatibilityMode
CompatibilityModeValues returns all values of the enum
func ValidateCompatibilityMode ¶
func ValidateCompatibilityMode(val string) (cm CompatibilityMode, err error)
ValidateCompatibilityMode checks if the provided val is a valid compatibility mode
func (CompatibilityMode) IsACompatibilityMode ¶
func (i CompatibilityMode) IsACompatibilityMode() bool
IsACompatibilityMode returns "true" if the value is listed in the enum definition. "false" otherwise
func (CompatibilityMode) String ¶
func (i CompatibilityMode) String() string
type DialContexter ¶
type DialContexter interface {
DialContext(ctx context.Context, network, addr string) (net.Conn, error)
}
DialContexter is an interface that can dial with a context
type Environment ¶
type ExecutionScheduler ¶
type ExecutionScheduler interface { // Returns the wrapped runner. May return nil if not applicable, eg. // if we're remote controlling a test running on another machine. GetRunner() Runner // Return the ExecutionState instance from which different statistics for the // current state of the runner could be retrieved. GetState() *ExecutionState // Return the instances of the configured executors GetExecutors() []Executor // Init initializes all executors, including all of their needed VUs. Init(ctx context.Context, samplesOut chan<- workerMetrics.SampleContainer, workerInfo *WorkerInfo) error // Run the ExecutionScheduler, funneling the generated metric samples // through the supplied out channel. Run(globalCtx, runCtx context.Context, samplesOut chan<- workerMetrics.SampleContainer, workerInfo *WorkerInfo) error // Pause a test, or start/resume it. To check if a test is paused, use // GetState().IsPaused(). // // Currently, any executor, so any test, can be started in a paused state. // This will cause k6 to initialize all needed VUs, but it won't actually // start the test. Later, the test can be started for real by // resuming/unpausing it from the REST API. // // After a test is actually started, it may become impossible to pause it // again. That is denoted by having SetPaused(true) return an error. The // likely cause is that some of the executors for the test don't support // pausing after the test has been started. // // IMPORTANT: Currently only the externally controlled executor can be // paused and resumed multiple times in the middle of the test execution! // Even then, "pausing" is a bit misleading, since k6 won't pause in the // middle of the currently executing iterations. It will allow the currently // in progress iterations to finish, and it just won't start any new ones // nor will it increment the value returned by GetCurrentTestRunDuration(). SetPaused(paused bool) error }
An ExecutionScheduler is in charge of initializing executors and using them to initialize and schedule VUs created by a wrapped Runner. It decouples how a swarm of VUs is controlled from the details of how or even where they're scheduled.
The core/local execution scheduler schedules VUs on the local machine, but the same interface may be implemented to control a test running on a cluster or in the cloud.
TODO: flesh out the interface after actually having more than one implementation...
type ExecutionSegment ¶
type ExecutionSegment struct {
// contains filtered or unexported fields
}
ExecutionSegment represents a (start, end] partition of the total execution work for a specific test. For example, if we want the split the execution of a test in 2 different parts, we can split it in two segments (0, 0.5] and (0,5, 1].
We use rational numbers so it's easier to verify the correctness and easier to reason about portions of indivisible things, like VUs. This way, we can easily split a test in thirds (i.e. (0, 1/3], (1/3, 2/3], (2/3, 1]), without fearing that we'll lose a VU along the way...
The most important part is that if work is split between multiple k6 instances, each k6 instance can precisely and reproducibly calculate its share of the work, just by knowing its own segment. There won't be a need to schedule the execution from a master node, or to even know how many other k6 instances are running!
func NewExecutionSegment ¶
func NewExecutionSegment(from, to *big.Rat) (*ExecutionSegment, error)
NewExecutionSegment validates the supplied arguments (basically, that 0 <= from < to <= 1) and either returns an error, or it returns a fully-initialized and usable execution segment.
func NewExecutionSegmentFromString ¶
func NewExecutionSegmentFromString(toStr string) (result *ExecutionSegment, err error)
NewExecutionSegmentFromString validates the supplied string value and returns the newly created ExecutionSegment or and error from it.
We are able to parse both single percentage/float/fraction values, and actual (from: to] segments. For the single values, we just treat them as the beginning segment - thus the execution segment can be used as a shortcut for quickly running an arbitrarily scaled-down version of a test.
The parsing logic is that values with a colon, i.e. ':', are full segments:
`1/2:3/4`, `0.5:0.75`, `50%:75%`, and even `2/4:75%` should be (1/2, 3/4]
And values without a colon are the end of a first segment:
`20%`, `0.2`, and `1/5` should be converted to (0, 1/5]
empty values should probably be treated as "1", i.e. the whole execution
func (*ExecutionSegment) CopyScaleRat ¶
func (es *ExecutionSegment) CopyScaleRat(value *big.Rat) *big.Rat
CopyScaleRat scales rational numbers without changing them - creates a new bit.Rat object and uses it for the calculation.
func (*ExecutionSegment) Equal ¶
func (es *ExecutionSegment) Equal(other *ExecutionSegment) bool
Equal returns true only if the two execution segments have the same from and to values.
func (*ExecutionSegment) FloatLength ¶
func (es *ExecutionSegment) FloatLength() float64
FloatLength is a helper method for getting some more human-readable information about the execution segment.
func (*ExecutionSegment) InPlaceScaleRat ¶
func (es *ExecutionSegment) InPlaceScaleRat(value *big.Rat) *big.Rat
InPlaceScaleRat scales rational numbers in-place - it changes the passed argument (and also returns it, to allow for chaining, like many other big.Rat methods).
func (*ExecutionSegment) MarshalText ¶
func (es *ExecutionSegment) MarshalText() ([]byte, error)
MarshalText implements the encoding.TextMarshaler interface, so is used for text and JSON encoding of the execution segment.
func (*ExecutionSegment) Scale ¶
func (es *ExecutionSegment) Scale(value int64) int64
Scale proportionally scales the supplied value, according to the execution segment's position and size of the work.
func (*ExecutionSegment) Split ¶
func (es *ExecutionSegment) Split(numParts int64) ([]*ExecutionSegment, error)
Split evenly divides the execution segment into the specified number of equal consecutive execution sub-segments.
func (*ExecutionSegment) String ¶
func (es *ExecutionSegment) String() string
func (*ExecutionSegment) SubSegment ¶
func (es *ExecutionSegment) SubSegment(child *ExecutionSegment) *ExecutionSegment
SubSegment returns a new execution sub-segment - if a is (1/2:1] and b is (0:1/2], then a.SubSegment(b) will return a new segment (1/2, 3/4].
The basic formula for c = a.SubSegment(b) is:
c.from = a.from + b.from * (a.to - a.from) c.to = c.from + (b.to - b.from) * (a.to - a.from)
func (*ExecutionSegment) UnmarshalText ¶
func (es *ExecutionSegment) UnmarshalText(text []byte) (err error)
UnmarshalText implements the encoding.TextUnmarshaler interface, so that execution segments can be specified as CLI flags, environment variables, and JSON strings. It is a wrapper for the NewExecutionFromString() constructor.
type ExecutionSegmentSequence ¶
type ExecutionSegmentSequence []*ExecutionSegment
ExecutionSegmentSequence represents an ordered chain of execution segments, where the end of one segment is the beginning of the next. It can serialized as a comma-separated string of rational numbers "r1,r2,r3,...,rn", which represents the sequence (r1, r2], (r2, r3], (r3, r4], ..., (r{n-1}, rn]. The empty value should be treated as if there is a single (0, 1] segment.
func GetFilledExecutionSegmentSequence ¶
func GetFilledExecutionSegmentSequence( sequence *ExecutionSegmentSequence, fallback *ExecutionSegment, ) (result ExecutionSegmentSequence)
GetFilledExecutionSegmentSequence makes sure we don't have any gaps in the given execution segment sequence, or a nil one. It makes sure that the whole 0-1 range is filled.
func NewExecutionSegmentSequence ¶
func NewExecutionSegmentSequence(segments ...*ExecutionSegment) (ExecutionSegmentSequence, error)
NewExecutionSegmentSequence validates the that the supplied execution segments are non-overlapping and without gaps. It will return a new execution segment sequence if that is true, and an error if it's not.
func NewExecutionSegmentSequenceFromString ¶
func NewExecutionSegmentSequenceFromString(strSeq string) (ExecutionSegmentSequence, error)
NewExecutionSegmentSequenceFromString parses strings of the format "r1,r2,r3,...,rn", which represents the sequences like (r1, r2], (r2, r3], (r3, r4], ..., (r{n-1}, rn].
func (ExecutionSegmentSequence) FindSegmentPosition ¶
func (ess ExecutionSegmentSequence) FindSegmentPosition(segment *ExecutionSegment) (int, error)
FindSegmentPosition returns the index of the supplied execution segment in the sequence, or an error if the segment isn't present. This shouldn't be used on a nil or empty sequence, it's best to use this method on the result of GetFilledExecutionSegmentSequence().
func (ExecutionSegmentSequence) IsFull ¶
func (ess ExecutionSegmentSequence) IsFull() bool
IsFull returns whether the sequences is full, that is, whether it starts at 0 and ends at 1. Use GetFilledExecutionSegmentSequence() to get a full sequence.
func (ExecutionSegmentSequence) LCD ¶
func (ess ExecutionSegmentSequence) LCD() int64
LCD calculates the lowest common denominator of the sequence. https://en.wikipedia.org/wiki/Least_common_multiple#Using_the_greatest_common_divisor
func (ExecutionSegmentSequence) MarshalText ¶
func (ess ExecutionSegmentSequence) MarshalText() ([]byte, error)
MarshalText implements the encoding.TextMarshaler interface, so is used for text and JSON encoding of the execution segment sequences.
func (ExecutionSegmentSequence) String ¶
func (ess ExecutionSegmentSequence) String() string
String just implements the fmt.Stringer interface, encoding the sequence of segments as "start1,end1,end2,end3,...,endn".
func (*ExecutionSegmentSequence) UnmarshalText ¶
func (ess *ExecutionSegmentSequence) UnmarshalText(text []byte) (err error)
UnmarshalText implements the encoding.TextUnmarshaler interface, so that execution segment sequences can be specified as CLI flags, environment variables, and JSON strings.
type ExecutionSegmentSequenceWrapper ¶
type ExecutionSegmentSequenceWrapper struct { ExecutionSegmentSequence // a filled-out segment sequence // contains filtered or unexported fields }
ExecutionSegmentSequenceWrapper is a caching layer on top of the execution segment sequence that allows us to make fast and useful calculations, after a somewhat slow initialization.
func NewExecutionSegmentSequenceWrapper ¶
func NewExecutionSegmentSequenceWrapper(ess ExecutionSegmentSequence) *ExecutionSegmentSequenceWrapper
NewExecutionSegmentSequenceWrapper expects a filled-out execution segment sequence. It pre-calculates the initial caches of and returns a new ExecutionSegmentSequenceWrapper, but doesn't calculate the striped offsets.
func (*ExecutionSegmentSequenceWrapper) GetNewExecutionSegmentSequenceFromValue ¶
func (essw *ExecutionSegmentSequenceWrapper) GetNewExecutionSegmentSequenceFromValue(value int64, trackedIndex int) ( newSequence *ExecutionSegmentSequenceWrapper, newIndex int, err error, )
GetNewExecutionSegmentSequenceFromValue uses the value provided, splits it between all the segments, using the striping offsets in the sequence, generating a new segment sequence. It then returns a new ExecutionSegmentSequenceWrapper, with the new sequence and segments, such that each new segment in the new sequence has length `Scale(value)/value` while keeping the order.
Additionally, the position of a given segment index can be tracked (since empty segments are removed), so that you can reconstruct an ExecutionTuple, if required. If the segment with the trackedIndex is not part of the new sequence, or if a new sequence cannot be generated (for example, for 0 values), an error will be returned.
func (*ExecutionSegmentSequenceWrapper) GetStripedOffsets ¶
func (essw *ExecutionSegmentSequenceWrapper) GetStripedOffsets(segmentIndex int) (int64, []int64, int64)
GetStripedOffsets returns the stripped offsets for the given segment the returned values are as follows in order:
- start: the first value that is for the segment
- offsets: a list of offsets from the previous value for the segment. This are only the offsets to from the start to the next start if we chunk the elements we are going to strip into lcd sized chunks
- lcd: the LCD of the lengths of all segments in the sequence. This is also the number of elements after which the algorithm starts to loop and give the same values
func (*ExecutionSegmentSequenceWrapper) GetTuple ¶
func (essw *ExecutionSegmentSequenceWrapper) GetTuple(segmentIndex int) *ExecutionTuple
GetTuple returns an ExecutionTuple for the specified segment index.
func (*ExecutionSegmentSequenceWrapper) LCD ¶
func (essw *ExecutionSegmentSequenceWrapper) LCD() int64
LCD returns the (cached) least common denominator of the sequence - no need to calculate it again, since we did it in the constructor.
func (*ExecutionSegmentSequenceWrapper) ScaleInt64 ¶
func (essw *ExecutionSegmentSequenceWrapper) ScaleInt64(segmentIndex int, value int64) int64
ScaleInt64 scales the provided value for the given segment.
type ExecutionState ¶
type ExecutionState struct { // A portal to the broader test run state, so the different executors have // access to the test options, built-in metrics, etc.. They will need to // access things like the current execution segment, the per-run metrics // tags, different metrics to emit, etc. // // Obviously, things here are not meant to be changed... They should be a // constant during the execution of a single test, but we can't easily // enforce that via the Go type system... Test *TestRunState ExecutionTuple *ExecutionTuple // TODO Rename, possibly move // contains filtered or unexported fields }
ExecutionState contains a few different things:
- Some convenience items, that are needed by all executors, like the execution segment and the unique VU ID generator. By keeping those here, we can just pass the ExecutionState to the different executors, instead of individually passing them each item.
- Mutable counters that different executors modify and other parts of k6 can read, e.g. for the vus and vus_max metrics k6 emits every second.
- Pausing controls and statistics.
The counters and timestamps here are primarily meant to be used for information extraction and avoidance of ID collisions. Using many of the counters here for synchronization between VUs could result in HIDDEN data races, because the Go data race detector can't detect any data races involving atomics...
The only functionality intended for synchronization is the one revolving around pausing, and uninitializedUnplannedVUs for restricting the number of unplanned VUs being initialized.
func GetExecutionState ¶
func GetExecutionState(ctx context.Context) *ExecutionState
GetExecutionState returns an ExecutionState from ctx.
func NewExecutionState ¶
func NewExecutionState( testRunState *TestRunState, et *ExecutionTuple, maxPlannedVUs, maxPossibleVUs uint64, ) *ExecutionState
NewExecutionState initializes all of the pointers in the ExecutionState with zeros. It also makes sure that the initial state is unpaused, by setting resumeNotify to an already closed channel.
func (*ExecutionState) AddFullIterations ¶
func (es *ExecutionState) AddFullIterations(count uint64) uint64
AddFullIterations increments the number of full (i.e uninterrupted) iterations by the provided amount.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) AddInitializedVU ¶
func (es *ExecutionState) AddInitializedVU(vu InitializedVU)
AddInitializedVU is a helper function that adds VUs into the buffer and increases the initialized VUs counter.
func (*ExecutionState) AddInterruptedIterations ¶
func (es *ExecutionState) AddInterruptedIterations(count uint64) uint64
AddInterruptedIterations increments the number of partial (i.e interrupted) iterations by the provided amount.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) GetCurrentExecutionStatus ¶
func (es *ExecutionState) GetCurrentExecutionStatus() ExecutionStatus
GetCurrentExecutionStatus returns the current execution status. Don't use this for synchronization unless you've made the k6 behavior somewhat predictable with options like --paused.
func (*ExecutionState) GetCurrentTestRunDuration ¶
func (es *ExecutionState) GetCurrentTestRunDuration() time.Duration
GetCurrentTestRunDuration returns the duration for which the test has already ran. If the test hasn't started yet, that's 0. If it has started, but has been paused midway through, it will return the time up until the pause time. And if it's currently running, it will return the time since the start time.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) GetCurrentlyActiveVUsCount ¶
func (es *ExecutionState) GetCurrentlyActiveVUsCount() int64
GetCurrentlyActiveVUsCount returns the number of VUs that are currently executing the test script. This also includes any VUs that are in the process of gracefully winding down.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) GetFullIterationCount ¶
func (es *ExecutionState) GetFullIterationCount() uint64
GetFullIterationCount returns the total of full (i.e uninterrupted) iterations that have been completed so far.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) GetInitializedVUsCount ¶
func (es *ExecutionState) GetInitializedVUsCount() int64
GetInitializedVUsCount returns the total number of currently initialized VUs.
Important: this doesn't include any temporary/service VUs that are destroyed after they are used. These are created for the initial retrieval of the exported script options and for the execution of setup() and teardown()
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) GetPartialIterationCount ¶
func (es *ExecutionState) GetPartialIterationCount() uint64
GetPartialIterationCount returns the total of partial (i.e interrupted) iterations that have been completed so far.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) GetPlannedVU ¶
func (es *ExecutionState) GetPlannedVU(logger *logrus.Entry, modifyActiveVUCount bool) (InitializedVU, error)
GetPlannedVU tries to get a pre-initialized VU from the buffer channel. This shouldn't fail and should generally be an instantaneous action, but if it doesn't happen for MaxTimeToWaitForPlannedVU (for example, because the system is overloaded), a warning will be printed. If we reach that timeout more than MaxRetriesGetPlannedVU number of times, this function will return an error, since we either have a bug with some executor, or the machine is very, very overloaded.
If modifyActiveVUCount is true, the method would also increment the counter for active VUs. In most cases, that's the desired behavior, but some executors might have to retrieve their reserved VUs without using them immediately - for example, the externally-controlled executor when the configured maxVUs number is greater than the configured starting VUs.
func (*ExecutionState) GetUniqueVUIdentifiers ¶
func (es *ExecutionState) GetUniqueVUIdentifiers() (uint64, uint64)
GetUniqueVUIdentifiers returns the next unique VU IDs, both local (for the current instance, exposed as __VU) and global (across k6 instances, exposed in the k6/execution module). It starts from 1, for backwards compatibility.
func (*ExecutionState) GetUnplannedVU ¶
func (es *ExecutionState) GetUnplannedVU(ctx context.Context, logger *logrus.Entry, workerInfo *WorkerInfo) (InitializedVU, error)
GetUnplannedVU checks if any unplanned VUs remain to be initialized, and if they do, it initializes one and returns it. If all unplanned VUs have already been initialized, it returns one from the global vus buffer, but doesn't automatically increment the active VUs counter in either case.
IMPORTANT: GetUnplannedVU() doesn't do any checking if the requesting executor is actually allowed to have the VU at this particular time. Executors are trusted to correctly declare their needs (via their GetExecutionRequirements() methods) and then to never ask for more VUs than they have specified in those requirements.
func (*ExecutionState) HasEnded ¶
func (es *ExecutionState) HasEnded() bool
HasEnded returns true if the test has finished executing. It will return false until MarkEnded() is called.
func (*ExecutionState) HasStarted ¶
func (es *ExecutionState) HasStarted() bool
HasStarted returns true if the test has actually started executing. It will return false while a test is in the init phase, or if it has been initially paused. But if will return true if a test is paused midway through its execution (see above for details regarding the feasibility of that pausing for normal executors).
func (*ExecutionState) InitializeNewVU ¶
func (es *ExecutionState) InitializeNewVU(ctx context.Context, logger *logrus.Entry, workerInfo *WorkerInfo) (InitializedVU, error)
InitializeNewVU creates and returns a brand new VU, updating the relevant tracking counters.
func (*ExecutionState) IsPaused ¶
func (es *ExecutionState) IsPaused() bool
IsPaused quickly returns whether the test is currently paused, by reading the atomic currentPauseTime timestamp
func (*ExecutionState) MarkEnded ¶
func (es *ExecutionState) MarkEnded()
MarkEnded saves the current timestamp as the test end time.
CAUTION: Calling MarkEnded() a second time for the same execution state will result in a panic!
func (*ExecutionState) MarkStarted ¶
func (es *ExecutionState) MarkStarted()
MarkStarted saves the current timestamp as the test start time.
CAUTION: Calling MarkStarted() a second time for the same execution state will result in a panic!
func (*ExecutionState) ModCurrentlyActiveVUsCount ¶
func (es *ExecutionState) ModCurrentlyActiveVUsCount(mod int64) int64
ModCurrentlyActiveVUsCount changes the total number of currently active VUs.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) ModInitializedVUsCount ¶
func (es *ExecutionState) ModInitializedVUsCount(mod int64) int64
ModInitializedVUsCount changes the total number of currently initialized VUs.
IMPORTANT: for UI/information purposes only, don't use for synchronization.
func (*ExecutionState) Pause ¶
func (es *ExecutionState) Pause() error
Pause pauses the current execution. It acquires the lock, writes the current timestamp in currentPauseTime, and makes a new channel for resumeNotify. Pause can return an error if the test was already paused.
func (*ExecutionState) Resume ¶
func (es *ExecutionState) Resume() error
Resume unpauses the test execution. Unless the test wasn't yet started, it calculates the duration between now and the old currentPauseTime and adds it to Resume will emit an error if the test wasn't paused.
func (*ExecutionState) ResumeNotify ¶
func (es *ExecutionState) ResumeNotify() <-chan struct{}
ResumeNotify returns a channel which will be closed (i.e. could be read from) as soon as the test execution is resumed.
Since tests would likely be paused only rarely, unless you directly need to be notified via a channel that the test isn't paused or that it has resumed, it's probably a good idea to first use the IsPaused() method, since it will be much faster.
And, since tests won't be paused most of the time, it's probably better to check for that like this:
if executionState.IsPaused() { <-executionState.ResumeNotify() }
func (*ExecutionState) ReturnVU ¶
func (es *ExecutionState) ReturnVU(vu InitializedVU, wasActive bool)
ReturnVU is a helper function that puts VUs back into the buffer and decreases the active VUs counter.
func (*ExecutionState) SetExecutionStatus ¶
func (es *ExecutionState) SetExecutionStatus(newStatus ExecutionStatus) (oldStatus ExecutionStatus)
SetExecutionStatus changes the current execution status to the supplied value and returns the current value.
func (*ExecutionState) SetInitVUFunc ¶
func (es *ExecutionState) SetInitVUFunc(initVUFunc InitVUFunc)
SetInitVUFunc is called by the execution scheduler's init function, and it's used for setting the "constructor" function used for the initializing unplanned VUs.
TODO: figure out a better dependency injection method?
type ExecutionStatus ¶
type ExecutionStatus uint32
ExecutionStatus is similar to RunStatus, but more fine grained and concerns only local execution.
const ( ExecutionStatusCreated ExecutionStatus = iota ExecutionStatusInitVUs ExecutionStatusInitExecutors ExecutionStatusInitDone ExecutionStatusPausedBeforeRun ExecutionStatusStarted ExecutionStatusSetup ExecutionStatusRunning ExecutionStatusTeardown ExecutionStatusEnded ExecutionStatusInterrupted )
Possible execution status values
func ExecutionStatusString ¶
func ExecutionStatusString(s string) (ExecutionStatus, error)
ExecutionStatusString retrieves an enum value from the enum constants string name. Throws an error if the param is not part of the enum.
func ExecutionStatusValues ¶
func ExecutionStatusValues() []ExecutionStatus
ExecutionStatusValues returns all values of the enum
func (ExecutionStatus) IsAExecutionStatus ¶
func (i ExecutionStatus) IsAExecutionStatus() bool
IsAExecutionStatus returns "true" if the value is listed in the enum definition. "false" otherwise
func (ExecutionStatus) String ¶
func (i ExecutionStatus) String() string
type ExecutionStep ¶
ExecutionStep is used by different executors to specify the planned number of VUs they will need at a particular time. The times are relative to their StartTime, i.e. they don't take into account the specific starting time of the executor, as that will be considered by the external execution executor separately.
A slice [{t1, v1}, {t2, v2}, {t3, v3}, ..., {tn, vn}] of execution steps means that an executor will need 0 VUs until t1, it will need v1 number of VUs from time t1 until t2, need v2 number of VUs from time t2 to t3, and so on. t1 is usually 0, tn is usually the same as GetMaxDuration() and vn is usually 0.
Keep in mind that t(i) may be exactly equal to t(i+i), when there's an abrupt transition in the number of VUs required by an executor. For example, the ramping-vus executor may have 0-duration stages, or it may scale up VUs in its last stage right until the end. These immediate transitions cannot be ignored, since the gracefulStop/gracefulRampDown options potentially allow any started iterations to finish.
[]ExecutionStep is also used by the ScenarioConfigs, to represent the amount of needed VUs among all executors, during the whole execution of a test script. In that context, each executor's StartTime is accounted for and included in the offsets.
type ExecutionTuple ¶
type ExecutionTuple struct { Sequence *ExecutionSegmentSequenceWrapper Segment *ExecutionSegment SegmentIndex int }
ExecutionTuple is the combination of an ExecutionSegmentSequence(Wrapper) and a specific ExecutionSegment from it. It gives easy access to the efficient scaling and striping algorithms for that specific segment, since the results are cached in the sequence wrapper. It is also the basis for the SegmentedIndex type below, which is the actual implementation of a segmented (striped) iterator, usable both for segmenting actual iterations and for partitioning data between multiple instances.
For example, let's try to segment a load test in 3 unequal parts: 50%, 25% and 25% (so the ExecutionSegmentSequence will contain these segments: 0:1/2, 1/2:3/4, 3/4:1). The building blocks that k6 needs for distributed execution are segmented (non-overlapping) iterators and proportionally dividing integer numbers as fairly as possible between multiple segments in a stable manner.
The segmented iterators (i.e. SegmentedIndex values below) will be like this:
Normal iterator: 0 1 2 3 4 5 6 7 8 9 10 11 ... Instance 1 (0:1/2) iterator: 0 2 4 6 8 10 ... Instance 2 (1/2:3/4) iterator: 1 5 9 ... Instance 2 (3/4:1) iterator: 3 7 11 ...
See how every instance has its own uniqe non-overlapping iterator, but when we combine all of them, we cover every possible value in the original one.
We also can use this property to scale integer numbers proportionally, as fairly as possible, between the instances, like this:
Global int value to scale: 1 2 3 4 5 6 7 8 9 10 11 12 ... Calling ScaleInt64(): - Instance 1 (0:1/2) value: 1 1 2 2 3 3 4 4 5 5 6 6 ... - Instance 2 (1/2:3/4) value: 0 1 1 1 1 2 2 2 2 3 3 3 ... - Instance 2 (3/4:1) value: 0 0 0 1 1 1 1 2 2 2 2 3 ...
Notice how the sum of the per-instance values is always equal to the global value - this is what ExecutionTuple.ScaleInt64() does. Also compare both tables (their positions match), see how we only increment the value for a particular instance when we would have cycled the iterator on that step.
This also makes the scaling stable, in contrast to ExecutionSegment.Scale(). Scaled values will only ever increase, since we just increment them in a specific order between instances. There will never be a situation where `ScaleInt64(i)` is less than `ScaleInt64(i+n)` for any positive n!
The algorithm that calculates the offsets and everything that's necessary to have these segmented iterators is in NewExecutionSegmentSequenceWrapper(). The ExecutionTuple simply exposes them efficiently for a single segment of the sequence, so it's the thing that most users will probably need.
func NewExecutionTuple ¶
func NewExecutionTuple(segment *ExecutionSegment, sequence *ExecutionSegmentSequence) (*ExecutionTuple, error)
NewExecutionTuple returns a new ExecutionTuple for the provided segment and sequence.
TODO: don't return a pointer?
func (*ExecutionTuple) GetNewExecutionTupleFromValue ¶
func (et *ExecutionTuple) GetNewExecutionTupleFromValue(value int64) (*ExecutionTuple, error)
GetNewExecutionTupleFromValue re-segments the sequence, based on the given value (see GetNewExecutionSegmentSequenceFromValue() above), and either returns the new tuple, or an error if the current segment isn't present in the new sequence.
func (*ExecutionTuple) GetStripedOffsets ¶
func (et *ExecutionTuple) GetStripedOffsets() (int64, []int64, int64)
GetStripedOffsets returns the striped offsets for our execution segment.
func (*ExecutionTuple) ScaleInt64 ¶
func (et *ExecutionTuple) ScaleInt64(value int64) int64
ScaleInt64 scales the provided value for our execution segment.
func (*ExecutionTuple) String ¶
func (et *ExecutionTuple) String() string
type Executor ¶
type Executor interface { GetConfig() ExecutorConfig GetProgress() *pb.ProgressBar GetLogger() *logrus.Entry Init(ctx context.Context) error Run(ctx context.Context, engineOut chan<- workerMetrics.SampleContainer, workerInfo *WorkerInfo) error }
Executor is the interface all executors should implement
type ExecutorConfig ¶
type ExecutorConfig interface { Validate() []error GetName() string GetType() string GetStartTime() time.Duration GetGracefulStop() time.Duration // This is used to validate whether a particular script can run in the cloud // or, in the future, in the native k6 distributed execution. Currently only // the externally-controlled executor should return false. IsDistributable() bool GetEnv() map[string]string // Allows us to get the non-default function the executor should run, if it // has been specified. // // TODO: use interface{} so plain http requests can be specified? GetExec() string GetTags() map[string]string // Calculates the VU requirements in different stages of the executor's // execution, including any extensions caused by waiting for iterations to // finish with graceful stops or ramp-downs. GetExecutionRequirements(*ExecutionTuple) []ExecutionStep // Return a human-readable description of the executor GetDescription(*ExecutionTuple) string NewExecutor(*ExecutionState, *logrus.Entry) (Executor, error) // HasWork reports whether there is any work for the executor to do with a given segment. HasWork(*ExecutionTuple) bool // Returns theoretical maximum vus that will be used by the executor GetMaxExecutorVUs() int64 // Scales load options for child jobs proportionately based on their subFraction // Should not modify the original options ScaleOptions(subFraction float64) ExecutorConfig }
ExecutorConfig is an interface that should be implemented by all executor config types
func GetParsedExecutorConfig ¶
func GetParsedExecutorConfig(name, configType string, rawJSON []byte) (result ExecutorConfig, err error)
GetParsedExecutorConfig returns a struct instance corresponding to the supplied config type. It will be fully initialized - with both the default values of the type, as well as with whatever the user had specified in the JSON
type ExecutorConfigConstructor ¶
type ExecutorConfigConstructor func(name string, rawJSON []byte) (ExecutorConfig, error)
ExecutorConfigConstructor is a simple function that returns a concrete Config instance with the specified name and all default values correctly initialized
type Group ¶
type Group struct { // Arbitrary name of the group. Name string `json:"name"` // A group may belong to another group, which may belong to another group, etc. The Path // describes the hierarchy leading down to this group, with the segments delimited by '::'. // As an example: a group "Inner" inside a group named "Outer" would have a path of // "::Outer::Inner". The empty first item is the root group, which is always named "". Parent *Group `json:"-"` Path string `json:"path"` // A group's ID is a hash of the Path. It is deterministic between different k6 // instances of the same version, but should be treated as opaque - the hash function // or length may change. ID string `json:"id"` // Groups and checks that are children of this group. Groups map[string]*Group `json:"groups"` OrderedGroups []*Group `json:"-"` Checks map[string]*Check `json:"checks"` OrderedChecks []*Check `json:"-"` // contains filtered or unexported fields }
A Group is an organisational block, that samples and checks may be tagged with.
For more information, refer to the js/modules/k6.K6.Group() function.
func NewGroup ¶
Creates a new group with the given name and parent group.
The root group must be created with the name "" and parent set to nil; this is the only case where a nil parent or empty name is allowed.
type HostAddress ¶
HostAddress stores information about IP and port for a host.
func NewHostAddress ¶
func NewHostAddress(ip net.IP, portString string) (*HostAddress, error)
NewHostAddress creates a pointer to a new address with an IP object.
func (*HostAddress) MarshalText ¶
func (h *HostAddress) MarshalText() ([]byte, error)
MarshalText implements the encoding.TextMarshaler interface. The encoding is the same as returned by String, with one exception: When len(ip) is zero, it returns an empty slice.
func (*HostAddress) String ¶
func (h *HostAddress) String() string
String converts a HostAddress into a string.
func (*HostAddress) UnmarshalText ¶
func (h *HostAddress) UnmarshalText(text []byte) error
UnmarshalText implements the encoding.TextUnmarshaler interface. The IP address is expected in a form accepted by ParseIP.
type IPNet ¶
IPNet is a wrapper around net.IPNet for JSON unmarshalling
func (*IPNet) MarshalText ¶
MarshalText encodes the IPNet representation using CIDR notation.
func (*IPNet) UnmarshalText ¶
UnmarshalText populates the IPNet from the given CIDR
type InitVUFunc ¶
type InitVUFunc func(context.Context, *logrus.Entry, *WorkerInfo) (InitializedVU, error)
InitVUFunc is just a shorthand so we don't have to type the function signature every time.
type InitializedVU ¶
type InitializedVU interface { // Fully activate the VU so it will be able to run code Activate(*VUActivationParams) ActiveVU // GetID returns the unique VU ID GetID() uint64 }
InitializedVU represents a virtual user ready for work. It needs to be activated (i.e. given a context) before it can actually be used. Activation also requires a callback function, which will be called when the supplied context is done. That way, VUs can be returned to a pool and reused.
type KeyValueItem ¶
type LiveUpdatableExecutor ¶
type LiveUpdatableExecutor interface {
UpdateConfig(ctx context.Context, newConfig interface{}) error
}
LiveUpdatableExecutor should be implemented for the executors whose configuration can be modified in the middle of the test execution. Currently, only the manual execution executor implements it.
type MarkMessage ¶
type MessageQueue ¶ added in v0.1.1
type MultiSlotLimiter ¶
type MultiSlotLimiter struct {
// contains filtered or unexported fields
}
MultiSlotLimiter can restrict the concurrent execution of different groups of tasks to the given `slots` limit. Each group is represented with a string ID.
func NewMultiSlotLimiter ¶
func NewMultiSlotLimiter(slots int) *MultiSlotLimiter
NewMultiSlotLimiter initializes and returns a new MultiSlotLimiter with the given slot count TODO: move to lib and use something better than a mutex? sync.Map perhaps?
func (*MultiSlotLimiter) Slot ¶
func (l *MultiSlotLimiter) Slot(s string) SlotLimiter
Slot is used to retrieve the corresponding slot to the given string ID. If no slot with that ID exists, it creates it and saves it for future use. It is safe to call this method concurrently.
type Options ¶
type Options struct { ExecutionMode types.NullExecutionMode `json:"executionMode"` LoadDistribution types.NullLoadDistribution `json:"loadDistribution"` OutputConfig types.NullOutputConfig `json:"outputConfig"` MaxPossibleVUs null.Int `json:"maxPossibleVUs"` // Should the test start in a paused state? Paused null.Bool `json:"paused" envconfig:"K6_PAUSED"` // Initial values for VUs, max VUs, duration cap, iteration cap, and stages. // See the Runner or Executor interfaces for more information. VUs null.Int `json:"vus" envconfig:"K6_VUS"` Duration types.NullDuration `json:"duration" envconfig:"K6_DURATION"` Iterations null.Int `json:"iterations" envconfig:"K6_ITERATIONS"` Stages []Stage `json:"stages" envconfig:"K6_STAGES"` // TODO: remove the `ignored:"true"` from the field tags, it's there so that // the envconfig library will ignore those fields. // // We should support specifying execution segments via environment // variables, but we currently can't, because envconfig has this nasty bug // (among others): https://github.com/kelseyhightower/envconfig/issues/113 Scenarios ScenarioConfigs `json:"scenarios" ignored:"true"` ExecutionSegment *ExecutionSegment `json:"executionSegment" ignored:"true"` ExecutionSegmentSequence *ExecutionSegmentSequence `json:"executionSegmentSequence" ignored:"true"` // Timeouts for the setup() and teardown() functions NoSetup null.Bool `json:"noSetup" envconfig:"K6_NO_SETUP"` SetupTimeout types.NullDuration `json:"setupTimeout" envconfig:"K6_SETUP_TIMEOUT"` NoTeardown null.Bool `json:"noTeardown" envconfig:"K6_NO_TEARDOWN"` TeardownTimeout types.NullDuration `json:"teardownTimeout" envconfig:"K6_TEARDOWN_TIMEOUT"` // Limit HTTP requests per second. RPS null.Int `json:"rps" envconfig:"K6_RPS"` // DNS handling configuration. DNS types.DNSConfig `json:"dns" envconfig:"K6_DNS"` // How many HTTP redirects do we follow? MaxRedirects null.Int `json:"maxRedirects" envconfig:"K6_MAX_REDIRECTS"` // Default User Agent string for HTTP requests. UserAgent null.String `json:"userAgent" envconfig:"K6_USER_AGENT"` // How many batch requests are allowed in parallel, in total and per host? Batch null.Int `json:"batch" envconfig:"K6_BATCH"` BatchPerHost null.Int `json:"batchPerHost" envconfig:"K6_BATCH_PER_HOST"` // Should all HTTP requests and responses be logged (excluding body)? HTTPDebug null.String `json:"httpDebug" envconfig:"K6_HTTP_DEBUG"` // Accept invalid or untrusted TLS certificates. InsecureSkipTLSVerify null.Bool `json:"insecureSkipTLSVerify" envconfig:"K6_INSECURE_SKIP_TLS_VERIFY"` // Specify TLS versions and cipher suites, and present client certificates. TLSCipherSuites *TLSCipherSuites `json:"tlsCipherSuites" envconfig:"K6_TLS_CIPHER_SUITES"` TLSVersion *TLSVersions `json:"tlsVersion" ignored:"true"` TLSAuth []*TLSAuth `json:"tlsAuth" envconfig:"K6_TLSAUTH"` // Throw warnings (eg. failed HTTP requests) as errors instead of simply logging them. Throw null.Bool `json:"throw" envconfig:"K6_THROW"` // Define thresholds; these take the form of 'metric=["snippet1", "snippet2"]'. // To create a threshold on a derived metric based on tag queries ("submetrics"), create a // metric on a nonexistent metric named 'real_metric{tagA:valueA,tagB:valueB}'. Thresholds map[string]workerMetrics.Thresholds `json:"thresholds" envconfig:"K6_THRESHOLDS"` // Blacklist IP ranges that tests may not contact. Mainly useful in hosted setups. BlacklistIPs []*IPNet `json:"blacklistIPs" envconfig:"K6_BLACKLIST_IPS"` // Block hostname patterns that tests may not contact. BlockedHostnames types.NullHostnameTrie `json:"blockHostnames" envconfig:"K6_BLOCK_HOSTNAMES"` // Hosts overrides dns entries for given hosts Hosts map[string]*HostAddress `json:"hosts" envconfig:"K6_HOSTS"` // Disable keep-alive connections NoConnectionReuse null.Bool `json:"noConnectionReuse" envconfig:"K6_NO_CONNECTION_REUSE"` // Do not reuse connections between VU iterations. This gives more realistic results (depending // on what you're looking for), but you need to raise various kernel limits or you'll get // errors about running out of file handles or sockets, or being unable to bind addresses. NoVUConnectionReuse null.Bool `json:"noVUConnectionReuse" envconfig:"K6_NO_VU_CONNECTION_REUSE"` // MinIterationDuration can be used to force VUs to pause between iterations if a specific // iteration is shorter than the specified value. MinIterationDuration types.NullDuration `json:"minIterationDuration" envconfig:"K6_MIN_ITERATION_DURATION"` // These values are for third party collectors' benefit. // Can't be set through env vars. External map[string]json.RawMessage `json:"ext" ignored:"true"` // Summary trend stats for trend metrics (response times) in CLI output SummaryTrendStats []string `json:"summaryTrendStats" envconfig:"K6_SUMMARY_TREND_STATS"` // Summary time unit for summary metrics (response times) in CLI output SummaryTimeUnit null.String `json:"summaryTimeUnit" envconfig:"K6_SUMMARY_TIME_UNIT"` // Which system tags to include with metrics ("method", "vu" etc.) // Use pointer for identifying whether user provide any tag or not. SystemTags *workerMetrics.SystemTagSet `json:"systemTags" envconfig:"K6_SYSTEM_TAGS"` // Tags are key-value pairs to be applied to all samples for the run. RunTags map[string]string `json:"tags" envconfig:"K6_TAGS"` // Buffer size of the channel for metric samples; 0 means unbuffered MetricSamplesBufferSize null.Int `json:"metricSamplesBufferSize" envconfig:"K6_METRIC_SAMPLES_BUFFER_SIZE"` // Do not reset cookies after a VU iteration NoCookiesReset null.Bool `json:"noCookiesReset" envconfig:"K6_NO_COOKIES_RESET"` // Discard Http Responses Body DiscardResponseBodies null.Bool `json:"discardResponseBodies" envconfig:"K6_DISCARD_RESPONSE_BODIES"` }
func (Options) Apply ¶
Returns the result of overwriting any fields with any that are set on the argument.
Example:
a := Options{VUs: null.IntFrom(10)} b := Options{VUs: null.IntFrom(5)} a.Apply(b) // Options{VUs: null.IntFrom(5)}
func (Options) ForEachSpecified ¶
ForEachSpecified enumerates all struct fields and calls the supplied function with each element that is valid. It panics for any unfamiliar or unexpected fields, so make sure new fields in Options are accounted for.
type PausableExecutor ¶
PausableExecutor should be implemented by the executors that can be paused and resumed in the middle of the test execution. Currently, only the externally controlled executor implements it.
type RunStatus ¶
type RunStatus int
RunStatus values can be used by k6 to denote how a script run ends and by the cloud executor and collector so that k6 knows the current status of a particular script run.
const ( RunStatusCreated RunStatus = -2 RunStatusValidated RunStatus = -1 RunStatusQueued RunStatus = 0 RunStatusInitializing RunStatus = 1 RunStatusRunning RunStatus = 2 RunStatusFinished RunStatus = 3 RunStatusTimedOut RunStatus = 4 RunStatusAbortedUser RunStatus = 5 RunStatusAbortedSystem RunStatus = 6 RunStatusAbortedScriptError RunStatus = 7 RunStatusAbortedThreshold RunStatus = 8 RunStatusAbortedLimit RunStatus = 9 )
Possible run status values; iota isn't used intentionally
type Runner ¶
type Runner interface { // Spawns a new VU. It's fine to make this function rather heavy, if it means a performance // improvement at runtime. Remember, this is called once per VU and normally only at the start // of a test - RunOnce() may be called hundreds of thousands of times, and must be fast. NewVU(idLocal, idGlobal uint64, out chan<- workerMetrics.SampleContainer, workerInfo *WorkerInfo) (InitializedVU, error) // Runs pre-test setup, if applicable. Setup(ctx context.Context, out chan<- workerMetrics.SampleContainer, workerInfo *WorkerInfo) error // Returns json representation of the setup data if setup() is specified and run, nil otherwise GetSetupData() []byte // Saves the externally supplied setup data as json in the runner SetSetupData([]byte) // Runs post-test teardown, if applicable. Teardown(ctx context.Context, out chan<- workerMetrics.SampleContainer, workerInfo *WorkerInfo) error // Returns the default (root) Group. GetDefaultGroup() *Group // Get and set options. The initial value will be whatever the script specifies (for JS, // `export let options = {}`); cmd/run.go will mix this in with CLI-, config- and env-provided // values and write it back to the runner. GetOptions() Options SetOptions(opts Options) error // Returns whether the given name is an exported and executable // function in the script. IsExecutable(string) bool RetrieveMetricsJSON(context.Context, *Summary) ([]byte, error) }
A Runner is a factory for VUs. It should precompute as much as possible upon creation (parse ASTs, load files into memory, etc.), so that spawning VUs becomes as fast as possible. The Runner doesn't actually *do* anything in itself, the ExecutionScheduler is responsible for wrapping and scheduling these VUs for execution.
TODO: Rename this to something more obvious? This name made sense a very long time ago.
type RuntimeOptions ¶
type RuntimeOptions struct { TestType null.String `json:"-"` // Whether to pass the actual system environment variables to the JS runtime IncludeSystemEnvVars null.Bool `json:"includeSystemEnvVars"` // JS compatibility mode: "extended" (Goja+Babel) or "base" (plain Goja) // // TODO: when we resolve https://github.com/k6io/k6/issues/883, we probably // should use the CompatibilityMode type directly... but by then, we'd need to have // some way of knowing if the value has been set by the user or if we're using the // default one, so we can handle `k6 run --compatibility-mode=base es6_extended_archive.tar` CompatibilityMode null.String `json:"compatibilityMode"` // Environment variables passed onto the runner Env map[string]string `json:"env"` NoThresholds null.Bool `json:"noThresholds"` SummaryExport null.String `json:"summaryExport"` KeyWriter null.String `json:"-"` }
RuntimeOptions are settings passed onto the goja JS runtime
type ScenarioConfigs ¶
type ScenarioConfigs map[string]ExecutorConfig
ScenarioConfigs can contain mixed executor config types
func (ScenarioConfigs) GetFullExecutionRequirements ¶
func (scs ScenarioConfigs) GetFullExecutionRequirements(et *ExecutionTuple) []ExecutionStep
GetFullExecutionRequirements combines the execution requirements from all of the configured executors. It takes into account their start times and their individual VU requirements and calculates the total VU requirements for each moment in the test execution.
func (ScenarioConfigs) GetSortedConfigs ¶
func (scs ScenarioConfigs) GetSortedConfigs() []ExecutorConfig
GetSortedConfigs returns a slice with the executor configurations, sorted in a consistent and predictable manner. It is useful when we want or have to avoid using maps with string keys (and tons of string lookups in them) and avoid the unpredictable iterations over Go maps. Slices allow us constant-time lookups and ordered iterations.
The configs in the returned slice will be sorted by their start times in an ascending order, and alphabetically by their names (which are unique) if there are ties.
func (*ScenarioConfigs) UnmarshalJSON ¶
func (scs *ScenarioConfigs) UnmarshalJSON(data []byte) error
UnmarshalJSON implements the json.Unmarshaler interface in a two-step manner, creating the correct type of configs based on the `type` property.
func (ScenarioConfigs) Validate ¶
func (scs ScenarioConfigs) Validate() (errors []error)
Validate checks if all of the specified executor options make sense
type ScenarioState ¶
type ScenarioState struct {
Name, Executor string
StartTime time.Time
ProgressFn func() (float64, []string)
}
ScenarioState holds runtime scenario information returned by the k6/execution JS module.
func GetScenarioState ¶
func GetScenarioState(ctx context.Context) *ScenarioState
GetScenarioState returns a ScenarioState from ctx.
type SegmentedIndex ¶
type SegmentedIndex struct {
// contains filtered or unexported fields
}
SegmentedIndex is an iterator that returns both the scaled and the unscaled sequential values according to the given ExecutionTuple. It is not thread-safe, concurrent access has to be externally synchronized.
See the documentation for ExecutionTuple above for a visual explanation of how this iterator actually works.
func NewSegmentedIndex ¶
func NewSegmentedIndex(et *ExecutionTuple) *SegmentedIndex
NewSegmentedIndex returns a pointer to a new SegmentedIndex instance, given an ExecutionTuple.
func (*SegmentedIndex) GoTo ¶
func (s *SegmentedIndex) GoTo(value int64) (int64, int64)
GoTo sets the scaled index to its biggest value for which the corresponding unscaled index is smaller or equal to value.
func (*SegmentedIndex) Next ¶
func (s *SegmentedIndex) Next() (int64, int64)
Next goes to the next scaled index and moves the unscaled one accordingly.
func (*SegmentedIndex) Prev ¶
func (s *SegmentedIndex) Prev() (int64, int64)
Prev goes to the previous scaled value and sets the unscaled one accordingly. Calling Prev when s.scaled == 0 is undefined.
type SlotLimiter ¶
type SlotLimiter chan struct{}
SlotLimiter can restrict the concurrent execution of tasks to the given `slots` limit
func NewSlotLimiter ¶
func NewSlotLimiter(slots int) SlotLimiter
NewSlotLimiter initializes and returns a new SlotLimiter with the given slot count
func (SlotLimiter) Begin ¶
func (sl SlotLimiter) Begin()
Begin uses up a slot to denote the start of a task exeuction. It's a noop if the number of slots is 0, and if no slots are available, it blocks and waits.
func (SlotLimiter) End ¶
func (sl SlotLimiter) End()
End restores a slot and should be called at the end of a taks execution, preferably from a defer statement right after Begin()
type Stage ¶
type Stage StageFields
A Stage defines a step in a test's timeline.
func (Stage) MarshalJSON ¶
func (*Stage) UnmarshalJSON ¶
For some reason, implementing UnmarshalText makes encoding/json treat the type as a string.
func (*Stage) UnmarshalText ¶
type StageFields ¶
type StageFields struct { // Duration of the stage. Duration types.NullDuration `json:"duration"` // If Valid, the VU count will be linearly interpolated towards this value. Target null.Int `json:"target"` }
StageFields defines the fields used for a Stage; this is a dumb hack to make the JSON code cleaner. pls fix.
type State ¶
type State struct { // Global options and built-in workerMetrics. // // TODO: remove them from here, the built-in metrics and the script options // are not part of a VU's unique "state", they are global and the same for // all VUs. Figure out how to thread them some other way, e.g. through the // TestPreInitState. The Samples channel might also benefit from that... Options Options BuiltinMetrics *workerMetrics.BuiltinMetrics // Logger. Avoid using the global logger. // TODO: change to logrus.FieldLogger when there is time to fix all the tests Logger *logrus.Logger // Current group; all emitted metrics are tagged with this. Group *Group // Networking equipment. Dialer DialContexter // TODO: move a lot of the things below to the k6/http ModuleInstance, see // https://github.com/grafana/k6/issues/2293. Transport http.RoundTripper CookieJar *cookiejar.Jar TLSConfig *tls.Config // Rate limits. RPSLimit *rate.Limiter // Sample channel, possibly buffered Samples chan<- workerMetrics.SampleContainer // Buffer pool; use instead of allocating fresh buffers when possible. // TODO: maybe use https://golang.org/pkg/sync/#Pool ? BPool *bpool.BufferPool VUID, VUIDGlobal uint64 Iteration int64 Tags *TagMap // These will be assigned on VU activation. // Returns the iteration number of this VU in the current scenario. GetScenarioVUIter func() uint64 // Returns the iteration number across all VUs in the current scenario // unique to this single k6 instance. // TODO: Maybe this doesn't belong here but in ScenarioState? GetScenarioLocalVUIter func() uint64 // Returns the iteration number across all VUs in the current scenario // unique globally across k6 instances (taking into account execution // segments). GetScenarioGlobalVUIter func() uint64 }
State provides the volatile state for a VU.
type Summary ¶
type Summary struct { Metrics map[string]*workerMetrics.Metric `json:"metrics"` RootGroup *Group `json:"rootGroup"` TestRunDuration time.Duration `json:"testRunDuration"` }
Summary contains all of the data the summary handler gets.
type TLSAuth ¶
type TLSAuth struct { TLSAuthFields // contains filtered or unexported fields }
Defines a TLS client certificate to present to certain hosts.
func (*TLSAuth) Certificate ¶
func (c *TLSAuth) Certificate() (*tls.Certificate, error)
func (*TLSAuth) UnmarshalJSON ¶
type TLSAuthFields ¶
type TLSAuthFields struct { // Certificate and key as a PEM-encoded string, including "-----BEGIN CERTIFICATE-----". Cert string `json:"cert"` Key string `json:"key"` Password null.String `json:"password"` // Domains to present the certificate to. May contain wildcards, eg. "*.example.com". Domains []string `json:"domains"` }
Fields for TLSAuth. Unmarshalling hack.
type TLSCipherSuites ¶
type TLSCipherSuites []uint16
A list of TLS cipher suites. Marshals and unmarshals from a list of names, eg. "TLS_ECDHE_RSA_WITH_RC4_128_SHA".
func (*TLSCipherSuites) MarshalJSON ¶
func (s *TLSCipherSuites) MarshalJSON() ([]byte, error)
MarshalJSON will return the JSON representation according to supported TLS cipher suites
func (*TLSCipherSuites) UnmarshalJSON ¶
func (s *TLSCipherSuites) UnmarshalJSON(data []byte) error
type TLSVersion ¶
type TLSVersion int
Describes a TLS version. Serialised to/from JSON as a string, eg. "tls1.2".
func (TLSVersion) MarshalJSON ¶
func (v TLSVersion) MarshalJSON() ([]byte, error)
func (*TLSVersion) UnmarshalJSON ¶
func (v *TLSVersion) UnmarshalJSON(data []byte) error
type TLSVersions ¶
type TLSVersions TLSVersionsFields
Describes a set (min/max) of TLS versions.
func (*TLSVersions) UnmarshalJSON ¶
func (v *TLSVersions) UnmarshalJSON(data []byte) error
type TLSVersionsFields ¶
type TLSVersionsFields struct { Min TLSVersion `json:"min" ignored:"true"` // Minimum allowed version, 0 = any. Max TLSVersion `json:"max" ignored:"true"` // Maximum allowed version, 0 = any. }
Fields for TLSVersions. Unmarshalling hack.
type TagMap ¶
type TagMap struct {
// contains filtered or unexported fields
}
TagMap is a safe-concurrent Tags lookup.
func NewTagMap ¶
NewTagMap creates a TagMap, if a not-nil map is passed then it will be used as the internal map otherwise a new one will be created.
type TestPreInitState ¶
type TestPreInitState struct { RuntimeOptions RuntimeOptions Registry *workerMetrics.Registry BuiltinMetrics *workerMetrics.BuiltinMetrics KeyLogger io.Writer Logger *logrus.Logger }
TestPreInitState contains all of the state that can be gathered and built before the test run is initialized.
type TestRunState ¶
type TestRunState struct { *TestPreInitState Options Options Runner Runner // TODO: rename to something better, see type comment }
TestRunState contains the pre-init state as well as all of the state and options that are necessary for actually running the test.
type VUActivationParams ¶
type VUActivationParams struct { RunContext context.Context DeactivateCallback func(InitializedVU) Env, Tags map[string]string Exec, Scenario string GetNextIterationCounters func() (uint64, uint64) }
VUActivationParams are supplied by each executor when it retrieves a VU from the buffer pool and activates it for use.
type WorkerInfo ¶
type WorkerInfo struct { Conn *websocket.Conn JobId string ChildJobId string ScopeId string OrchestratorId string WorkerId string Ctx context.Context Environment *Environment Collection *Collection WorkerOptions Options FinalRequest map[string]interface{} UnderlyingRequest map[string]interface{} Gs *BaseGlobalState VerifiedDomains []string SubFraction float64 CreditsManager *lib.CreditsManager Standalone bool }
type WorkerState ¶
Source Files ¶
Directories ¶
Path | Synopsis |
---|---|
grpcext
Package grpcext allows gRPC requests collecting stats info.
|
Package grpcext allows gRPC requests collecting stats info. |
httpmultibin
Package httpmultibin is indended only for use in tests, do not import in production code!
|
Package httpmultibin is indended only for use in tests, do not import in production code! |