Documentation ¶
Overview ¶
Package network provides data structures and utilities to describe Artificial Neural Network and network solvers.
Index ¶
- Variables
- func ActivateModule(module *NNode, a *neatmath.NodeActivatorsFactory) error
- func ActivateNode(node *NNode, a *neatmath.NodeActivatorsFactory) error
- func NeuronTypeName(nlayer NodeNeuronType) string
- func NodeTypeName(nType NodeType) string
- type FastControlNode
- type FastModularNetworkSolver
- func (s *FastModularNetworkSolver) Flush() (bool, error)
- func (s *FastModularNetworkSolver) ForwardSteps(steps int) (res bool, err error)
- func (s *FastModularNetworkSolver) LinkCount() int
- func (s *FastModularNetworkSolver) LoadSensors(inputs []float64) error
- func (s *FastModularNetworkSolver) NodeCount() int
- func (s *FastModularNetworkSolver) ReadOutputs() []float64
- func (s *FastModularNetworkSolver) RecursiveSteps() (res bool, err error)
- func (s *FastModularNetworkSolver) Relax(maxSteps int, maxAllowedSignalDelta float64) (relaxed bool, err error)
- func (s *FastModularNetworkSolver) String() string
- type FastNetworkLink
- type Link
- type NNode
- func (n *NNode) Depth(d int) (int, error)
- func (n *NNode) Flushback()
- func (n *NNode) FlushbackCheck() error
- func (n *NNode) GetActiveOut() float64
- func (n *NNode) GetActiveOutTd() float64
- func (n *NNode) IsNeuron() bool
- func (n *NNode) IsSensor() bool
- func (n *NNode) NodeType() NodeType
- func (n *NNode) Print() string
- func (n *NNode) SensorLoad(load float64) bool
- func (n *NNode) String() string
- type Network
- func (n *Network) Activate() (bool, error)
- func (n *Network) ActivateSteps(maxSteps int) (bool, error)
- func (n *Network) AllNodes() []*NNode
- func (n *Network) Complexity() int
- func (n *Network) FastNetworkSolver() (Solver, error)
- func (n *Network) Flush() (res bool, err error)
- func (n *Network) ForwardSteps(steps int) (res bool, err error)
- func (n *Network) IsRecurrent(inNode, outNode *NNode, count *int, thresh int) bool
- func (n *Network) LinkCount() int
- func (n *Network) LoadSensors(sensors []float64) error
- func (n *Network) MaxDepth() (int, error)
- func (n *Network) NodeCount() int
- func (n *Network) OutputIsOff() bool
- func (n *Network) PrintActivation() string
- func (n *Network) PrintInput() string
- func (n *Network) ReadOutputs() []float64
- func (n *Network) RecursiveSteps() (bool, error)
- func (n *Network) Relax(_ int, _ float64) (bool, error)
- type NodeIdGenerator
- type NodeNeuronType
- type NodeType
- type Solver
Constants ¶
This section is empty.
Variables ¶
var ( // NetErrExceededMaxActivationAttempts The error to be raised when maximal number of network activation attempts exceeded NetErrExceededMaxActivationAttempts = errors.New("maximal network activation attempts exceeded") // NetErrUnsupportedSensorsArraySize The error to be raised when unsupported sensors data array size provided NetErrUnsupportedSensorsArraySize = errors.New("the sensors array size is unsupported by network solver") // NetErrDepthCalculationFailedLoopDetected The error to be raised when depth calculation failed due to the loop in network NetErrDepthCalculationFailedLoopDetected = errors.New("depth can not be determined for network with loop") )
Functions ¶
func ActivateModule ¶
func ActivateModule(module *NNode, a *neatmath.NodeActivatorsFactory) error
ActivateModule Method to activate neuron module presented by provided node. As a result of execution the activation values of all input nodes will be processed by corresponding activation function and corresponding activation values of output nodes will be set. Will panic if unsupported activation type requested.
func ActivateNode ¶
func ActivateNode(node *NNode, a *neatmath.NodeActivatorsFactory) error
ActivateNode Method to calculate activation for specified neuron node based on it's ActivationType field value. Will return error and set -0.0 activation if unsupported activation type requested.
func NeuronTypeName ¶
func NeuronTypeName(nlayer NodeNeuronType) string
NeuronTypeName Returns human readable neuron type name for given constant
func NodeTypeName ¶
NodeTypeName Returns human readable NNode type name for given constant value
Types ¶
type FastControlNode ¶
type FastControlNode struct { // The activation function for control node ActivationType neatmath.NodeActivationType // The indexes of the input nodes InputIndexes []int // The indexes of the output nodes OutputIndexes []int }
FastControlNode The module relay (control node) descriptor for fast network
type FastModularNetworkSolver ¶
type FastModularNetworkSolver struct { // A network id Id int // Is a name of this network */ Name string // contains filtered or unexported fields }
FastModularNetworkSolver is the network solver implementation to be used for large neural networks simulation.
func NewFastModularNetworkSolver ¶
func NewFastModularNetworkSolver(biasNeuronCount, inputNeuronCount, outputNeuronCount, totalNeuronCount int, activationFunctions []neatmath.NodeActivationType, connections []*FastNetworkLink, biasList []float64, modules []*FastControlNode) *FastModularNetworkSolver
NewFastModularNetworkSolver Creates new fast modular network solver
func (*FastModularNetworkSolver) Flush ¶
func (s *FastModularNetworkSolver) Flush() (bool, error)
Flush Flushes network state by removing all current activations. Returns true if network flushed successfully or false in case of error.
func (*FastModularNetworkSolver) ForwardSteps ¶
func (s *FastModularNetworkSolver) ForwardSteps(steps int) (res bool, err error)
ForwardSteps Propagates activation wave through all network nodes provided number of steps in forward direction. Returns true if activation wave passed from all inputs to the outputs.
func (*FastModularNetworkSolver) LinkCount ¶
func (s *FastModularNetworkSolver) LinkCount() int
LinkCount Returns the total number of links between nodes in the network
func (*FastModularNetworkSolver) LoadSensors ¶
func (s *FastModularNetworkSolver) LoadSensors(inputs []float64) error
LoadSensors Set sensors values to the input nodes of the network
func (*FastModularNetworkSolver) NodeCount ¶
func (s *FastModularNetworkSolver) NodeCount() int
NodeCount Returns the total number of neural units in the network
func (*FastModularNetworkSolver) ReadOutputs ¶
func (s *FastModularNetworkSolver) ReadOutputs() []float64
ReadOutputs Read output values from the output nodes of the network
func (*FastModularNetworkSolver) RecursiveSteps ¶
func (s *FastModularNetworkSolver) RecursiveSteps() (res bool, err error)
RecursiveSteps Propagates activation wave through all network nodes provided number of steps by recursion from output nodes Returns true if activation wave passed from all inputs to the outputs. This method is preferred method of network activation when number of forward steps can not be easy calculated and no network modules are set.
func (*FastModularNetworkSolver) Relax ¶
func (s *FastModularNetworkSolver) Relax(maxSteps int, maxAllowedSignalDelta float64) (relaxed bool, err error)
Relax Attempts to relax network given amount of steps until giving up. The network considered relaxed when absolute value of the change at any given point is less than maxAllowedSignalDelta during activation waves propagation. If maxAllowedSignalDelta value is less than or equal to 0, the method will return true without checking for relaxation.
func (*FastModularNetworkSolver) String ¶
func (s *FastModularNetworkSolver) String() string
Stringer
type FastNetworkLink ¶
type FastNetworkLink struct { // The index of source neuron SourceIndex int // The index of target neuron TargetIndex int // The weight of this link Weight float64 // The signal relayed by this link Signal float64 }
FastNetworkLink The connection descriptor for fast network
type Link ¶
type Link struct { // Weight of connection Weight float64 // NNode inputting into the link InNode *NNode // NNode that the link affects OutNode *NNode // If TRUE the link is recurrent IsRecurrent bool // If TRUE the link is time delayed IsTimeDelayed bool // Points to a trait of parameters for genetic creation Trait *neat.Trait /* ************ LEARNING PARAMETERS *********** */ // The following parameters are for use in neurons that learn through habituation, // sensitization, or Hebbian-type processes Params []float64 // The amount of weight adjustment AddedWeight float64 }
Link is a connection from one node to another with an associated weight. It can be marked as recurrent.
func NewLink ¶
NewLink Creates new link with specified weight, input and output neurons connected recurrently or not.
func NewLinkCopy ¶
NewLinkCopy The copy constructor to create new link with parameters taken from provided ones and connecting specified nodes
func NewLinkWithTrait ¶
func NewLinkWithTrait(trait *neat.Trait, weight float64, inputNode, outNode *NNode, recurrent bool) *Link
NewLinkWithTrait Creates new Link with specified Trait
func (*Link) IsEqualGenetically ¶
IsEqualGenetically Checks if this link is genetically equal to provided one, i.e. connects nodes with the same IDs and has equal recurrent flag. I.e. if both links represent the same Gene.
type NNode ¶
type NNode struct { // The ID of the node Id int // The type of node activation function (SIGMOID, ...) ActivationType math.NodeActivationType // The neuron type for this node (HIDDEN, INPUT, OUTPUT, BIAS) NeuronType NodeNeuronType // The node's activation value Activation float64 // The number of activations for current node ActivationsCount int32 // The activation sum ActivationSum float64 // The list of all incoming connections Incoming []*Link // The list of all outgoing connections Outgoing []*Link // The trait linked to the node Trait *neat.Trait // Used for Gene decoding by referencing analogue to this node in organism phenotype PhenotypeAnalogue *NNode /* ************ LEARNING PARAMETERS *********** */ // The following parameters are for use in neurons that learn through habituation, // sensitization, or Hebbian-type processes */ Params []float64 // contains filtered or unexported fields }
NNode is either a NEURON or a SENSOR.
- If it's a sensor, it can be loaded with a value for output
- If it's a neuron, it has a list of its incoming input signals ([]*Link is used)
Use an activation count to avoid flushing
func NewNNode ¶
func NewNNode(nodeId int, neuronType NodeNeuronType) *NNode
NewNNode Creates new node with specified ID and neuron type associated (INPUT, HIDDEN, OUTPUT, BIAS)
func NewNNodeCopy ¶
NewNNodeCopy Construct a NNode off another NNode with given trait for genome purposes
func (*NNode) Flushback ¶
func (n *NNode) Flushback()
Flushback Recursively deactivate backwards through the network
func (*NNode) FlushbackCheck ¶
FlushbackCheck is to verify flushing for debugging
func (*NNode) GetActiveOut ¶
GetActiveOut Returns activation for a current step
func (*NNode) GetActiveOutTd ¶
GetActiveOutTd Returns activation from PREVIOUS time step
func (*NNode) SensorLoad ¶
SensorLoad If the node is a SENSOR, returns TRUE and loads the value
type Network ¶
type Network struct { // A network id Id int // Is a name of this network */ Name string // NNodes that output from the network Outputs []*NNode // contains filtered or unexported fields }
Network is a collection of all nodes within an organism's phenotype, which effectively defines Neural Network topology. The point of the network is to define a single entity which can evolve or learn on its own, even though it may be part of a larger framework.
func NewModularNetwork ¶
NewModularNetwork Creates new modular network with control nodes
func NewNetwork ¶
NewNetwork Creates new network
func (*Network) ActivateSteps ¶
ActivateSteps Attempts to activate the network given number of steps before returning error.
func (*Network) Complexity ¶
Complexity Returns complexity of this network which is sum of nodes count and links count
func (*Network) FastNetworkSolver ¶
FastNetworkSolver Creates fast network solver based on the architecture of this network. It's primarily aimed for big networks to improve processing speed.
func (*Network) IsRecurrent ¶
IsRecurrent This checks a POTENTIAL link between a potential in_node and potential out_node to see if it must be recurrent. Use count and thresh to jump out in the case of an infinite loop.
func (*Network) LoadSensors ¶
func (*Network) MaxDepth ¶
MaxDepth Find the maximum number of neurons between an output and an input
func (*Network) OutputIsOff ¶
OutputIsOff If at least one output is not active then return true
func (*Network) PrintActivation ¶
PrintActivation Prints the values of network outputs to the console
func (*Network) PrintInput ¶
PrintInput Print the values of network inputs to the console
func (*Network) ReadOutputs ¶
func (*Network) RecursiveSteps ¶
type NodeIdGenerator ¶
type NodeIdGenerator interface { // NextNodeId is to get next unique node ID NextNodeId() int }
NodeIdGenerator definition of the unique IDs generator for network nodes.
type NodeNeuronType ¶
type NodeNeuronType byte
NodeNeuronType NeuronType defines the type of neuron to create
const ( // HiddenNeuron The node is in hidden layer HiddenNeuron NodeNeuronType = iota // InputNeuron The node is in input layer InputNeuron // OutputNeuron The node is in output layer OutputNeuron // BiasNeuron The node is bias BiasNeuron )
These are NNode layer type
func NeuronTypeByName ¶
func NeuronTypeByName(name string) (NodeNeuronType, error)
NeuronTypeByName Returns neuron node type from its name
type Solver ¶
type Solver interface { // ForwardSteps Propagates activation wave through all network nodes provided number of steps in forward direction. // Returns true if activation wave passed from all inputs to outputs. ForwardSteps(steps int) (bool, error) // RecursiveSteps Propagates activation wave through all network nodes provided number of steps by recursion from output nodes // Returns true if activation wave passed from all inputs to outputs. RecursiveSteps() (bool, error) // Relax Attempts to relax network given amount of steps until giving up. The network considered relaxed when absolute // value of the change at any given point is less than maxAllowedSignalDelta during activation waves propagation. // If maxAllowedSignalDelta value is less than or equal to 0, the method will return true without checking for relaxation. Relax(maxSteps int, maxAllowedSignalDelta float64) (bool, error) // Flush Flushes network state by removing all current activations. Returns true if network flushed successfully or // false in case of error. Flush() (bool, error) // LoadSensors Set sensors values to the input nodes of the network LoadSensors(inputs []float64) error // ReadOutputs Read output values from the output nodes of the network ReadOutputs() []float64 // NodeCount Returns the total number of neural units in the network NodeCount() int // LinkCount Returns the total number of links between nodes in the network LinkCount() int }
Solver defines network solver interface, which allows propagation of the activation waves through the underlying network graph.