edwards25519

package
v6.4.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 18, 2020 License: BSD-3-Clause Imports: 1 Imported by: 0

Documentation

Overview

Package edwards25519 implements operations in GF(2**255-19) and on an Edwards curve that is isomorphic to curve25519. See http://ed25519.cr.yp.to/.

Package edwards25519 将edwards25519中的差异代码移动到本处进行差异化管理

Index

Constants

This section is empty.

Variables

View Source
var A = FieldElement{
	486662, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}

A ...

View Source
var SqrtM1 = FieldElement{
	-32595792, -7943725, 9377950, 3500415, 12389472, -272473, -25146209, -2005654, 326686, 11406482,
}

SqrtM1 ...

Functions

func CachedGroupElementCMove

func CachedGroupElementCMove(t, u *CachedGroupElement, b int32)

CachedGroupElementCMove ...

func FeAdd

func FeAdd(dst, a, b *FieldElement)

FeAdd +

func FeCMove

func FeCMove(f, g *FieldElement, b int32)

FeCMove Preconditions: b in {0,1}.

func FeCombine

func FeCombine(h *FieldElement, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9 int64)

FeCombine 拼接

func FeCopy

func FeCopy(dst, src *FieldElement)

FeCopy 复制

func FeDivPowm1

func FeDivPowm1(r, u, v *FieldElement)

FeDivPowm1 ...

func FeFromBytes

func FeFromBytes(dst *FieldElement, src *[32]byte)

FeFromBytes ...

func FeInvert

func FeInvert(out, z *FieldElement)

FeInvert 反转

func FeIsNegative

func FeIsNegative(f *FieldElement) byte

FeIsNegative 是否为负

func FeIsNegativeV1

func FeIsNegativeV1(f *FieldElement) byte

FeIsNegativeV1 是否为负

func FeIsNonZero

func FeIsNonZero(f *FieldElement) int32

FeIsNonZero 是否为非0

func FeIsNonZeroV1

func FeIsNonZeroV1(f *FieldElement) int32

FeIsNonZeroV1 是否非0

func FeMul

func FeMul(h, f, g *FieldElement)

FeMul calculates h = f * g Can overlap h with f or g.

Preconditions:

|f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.

Postconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

Notes on implementation strategy:

Using schoolbook multiplication. Karatsuba would save a little in some cost models.

Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than 64-bit postcomputations.

There is one remaining multiplication by 19 in the carry chain; one *19 precomputation can be merged into this, but the resulting data flow is considerably less clean.

There are 12 carries below. 10 of them are 2-way parallelizable and vectorizable. Can get away with 11 carries, but then data flow is much deeper.

With tighter constraints on inputs can squeeze carries into int32.

func FeNeg

func FeNeg(h, f *FieldElement)

FeNeg sets h = -f Preconditions:

|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

Postconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

func FeOne

func FeOne(fe *FieldElement)

FeOne 1

func FeSquare

func FeSquare(h, f *FieldElement)

FeSquare calculates h = f*f. Can overlap h with f.

Preconditions:

|f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.

Postconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

func FeSquare2

func FeSquare2(h, f *FieldElement)

FeSquare2 sets h = 2 * f * f

Can overlap h with f.

Preconditions:

|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.

Postconditions:

|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.

See fe_mul.c for discussion of implementation strategy.

func FeSub

func FeSub(dst, a, b *FieldElement)

FeSub -

func FeToBytes

func FeToBytes(s *[32]byte, h *FieldElement)

FeToBytes marshals h to s. Preconditions:

|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.

Write p=2^255-19; q=floor(h/p). Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).

Proof:

Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.

Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
Then 0<y<1.

Write r=h-pq.
Have 0<=r<=p-1=2^255-20.
Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.

Write x=r+19(2^-255)r+y.
Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.

Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.

func FeToBytesV1

func FeToBytesV1(s *[32]byte, h *FieldElement)

FeToBytesV1 ...

func FeZero

func FeZero(fe *FieldElement)

FeZero 0

func GeDoubleScalarMultVartime

func GeDoubleScalarMultVartime(r *ProjectiveGroupElement, a *[32]byte, A *ExtendedGroupElement, b *[32]byte)

GeDoubleScalarMultVartime sets r = a*A + b*B where a = a[0]+256*a[1]+...+256^31 a[31]. and b = b[0]+256*b[1]+...+256^31 b[31]. B is the Ed25519 base point (x,4/5) with x positive.

func GeDoubleScalarmultPrecompVartime

func GeDoubleScalarmultPrecompVartime(r *ProjectiveGroupElement, a *[32]byte, A *ExtendedGroupElement, b *[32]byte, Bi *DsmPreCompGroupElement)

GeDoubleScalarmultPrecompVartime ...

func GeDsmPrecomp

func GeDsmPrecomp(r *DsmPreCompGroupElement, s *ExtendedGroupElement)

GeDsmPrecomp ...

func GeFromBytesVartime

func GeFromBytesVartime(p *ExtendedGroupElement, s *[32]byte) bool

GeFromBytesVartime ...

func GeScalarMult

func GeScalarMult(r *ProjectiveGroupElement, a *[32]byte, A *ExtendedGroupElement)

GeScalarMult Preconditions:

a[31] <= 127

func GeScalarMultBase

func GeScalarMultBase(h *ExtendedGroupElement, a *[32]byte)

GeScalarMultBase computes h = a*B, where

a = a[0]+256*a[1]+...+256^31 a[31]
B is the Ed25519 base point (x,4/5) with x positive.

Preconditions:

a[31] <= 127

func HashToEc

func HashToEc(key []byte, res *ExtendedGroupElement)

HashToEc ...

func PreComputedGroupElementCMove

func PreComputedGroupElementCMove(t, u *PreComputedGroupElement, b int32)

PreComputedGroupElementCMove ...

func ScAdd

func ScAdd(out *[32]byte, a, b *[32]byte)

ScAdd Input:

s[0]+256*s[1]+...+256^31*s[31] = a
s[0]+256*s[1]+...+256^31*s[31] = b

ProtoToJson:

s[0]+256*s[1]+...+256^31*s[31] = a+b mod l
where l = 2^252 + 27742317777372353535851937790883648493.

func ScCheck

func ScCheck(s *[32]byte) bool

ScCheck 检查

func ScIsNonZero

func ScIsNonZero(s *[32]byte) int32

ScIsNonZero ...

func ScMulAdd

func ScMulAdd(s, a, b, c *[32]byte)

ScMulAdd The scalars are GF(2^252 + 27742317777372353535851937790883648493). Input:

a[0]+256*a[1]+...+256^31*a[31] = a
b[0]+256*b[1]+...+256^31*b[31] = b
c[0]+256*c[1]+...+256^31*c[31] = c

ProtoToJson:

s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l
where l = 2^252 + 27742317777372353535851937790883648493.

func ScMulSub

func ScMulSub(s, a, b, c *[32]byte)

ScMulSub The scalars are GF(2^252 + 27742317777372353535851937790883648493). Input:

a[0]+256*a[1]+...+256^31*a[31] = a
b[0]+256*b[1]+...+256^31*b[31] = b
c[0]+256*c[1]+...+256^31*c[31] = c

ProtoToJson:

s[0]+256*s[1]+...+256^31*s[31] = (c-ab) mod l
where l = 2^252 + 27742317777372353535851937790883648493.

func ScReduce

func ScReduce(out *[32]byte, s *[64]byte)

ScReduce Input:

s[0]+256*s[1]+...+256^63*s[63] = s

ProtoToJson:

s[0]+256*s[1]+...+256^31*s[31] = s mod l
where l = 2^252 + 27742317777372353535851937790883648493.

func ScSub

func ScSub(out *[32]byte, a, b *[32]byte)

ScSub Input:

s[0]+256*s[1]+...+256^31*s[31] = a
s[0]+256*s[1]+...+256^31*s[31] = b

ProtoToJson:

s[0]+256*s[1]+...+256^31*s[31] = a-b mod l
where l = 2^252 + 27742317777372353535851937790883648493.

Types

type CachedGroupElement

type CachedGroupElement struct {
	Z, T2d FieldElement
	// contains filtered or unexported fields
}

CachedGroupElement 缓存

func (*CachedGroupElement) Zero

func (c *CachedGroupElement) Zero()

Zero 0

type CompletedGroupElement

type CompletedGroupElement struct {
	X, Y, Z, T FieldElement
}

CompletedGroupElement ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T

func (*CompletedGroupElement) ToExtended

func (p *CompletedGroupElement) ToExtended(r *ExtendedGroupElement)

ToExtended 扩展

func (*CompletedGroupElement) ToProjective

func (p *CompletedGroupElement) ToProjective(r *ProjectiveGroupElement)

ToProjective ...

type DsmPreCompGroupElement

type DsmPreCompGroupElement [8]CachedGroupElement

DsmPreCompGroupElement ...

type ExtendedGroupElement

type ExtendedGroupElement struct {
	X, Y, Z, T FieldElement
}

ExtendedGroupElement (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT

func (*ExtendedGroupElement) Double

Double x2

func (*ExtendedGroupElement) FromBytes

func (p *ExtendedGroupElement) FromBytes(s *[32]byte) bool

FromBytes ...

func (*ExtendedGroupElement) FromCompletedGroupElement

func (e *ExtendedGroupElement) FromCompletedGroupElement(p *CompletedGroupElement)

FromCompletedGroupElement ...

func (*ExtendedGroupElement) ToBytes

func (p *ExtendedGroupElement) ToBytes(s *[32]byte)

ToBytes 字节化

func (*ExtendedGroupElement) ToCached

func (p *ExtendedGroupElement) ToCached(r *CachedGroupElement)

ToCached 缓存

func (*ExtendedGroupElement) ToProjective

func (p *ExtendedGroupElement) ToProjective(r *ProjectiveGroupElement)

ToProjective ...

func (*ExtendedGroupElement) Zero

func (p *ExtendedGroupElement) Zero()

Zero 0

type FieldElement

type FieldElement [10]int32

FieldElement represents an element of the field GF(2^255 - 19). An element t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on context.

type PreComputedGroupElement

type PreComputedGroupElement struct {
	// contains filtered or unexported fields
}

PreComputedGroupElement (y+x,y-x,2dxy)

func (*PreComputedGroupElement) Zero

func (p *PreComputedGroupElement) Zero()

Zero 0

type ProjectiveGroupElement

type ProjectiveGroupElement struct {
	X, Y, Z FieldElement
}

ProjectiveGroupElement (X:Y:Z) satisfying x=X/Z, y=Y/Z

func (*ProjectiveGroupElement) Double

Double x2

func (*ProjectiveGroupElement) ToBytes

func (p *ProjectiveGroupElement) ToBytes(s *[32]byte)

ToBytes ...

func (*ProjectiveGroupElement) Zero

func (p *ProjectiveGroupElement) Zero()

Zero 0

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL