Documentation ¶
Overview ¶
Package llms provides unified support for interacting with different Language Models (LLMs) from various providers. Designed with an extensible architecture, the package facilitates seamless integration of LLMs with a focus on modularity, encapsulation, and easy configurability.
The package includes the following subpackages for LLM providers: 1. Hugging Face: llms/huggingface/ 2. Local LLM: llms/local/ 3. OpenAI: llms/openai/ 4. Vertex AI: llms/vertexai/ 5. Cohere: llms/cohere/
Each subpackage includes provider-specific LLM implementations and helper files for communication with supported LLM providers. The internal directories within these subpackages contain provider-specific client and API implementations.
The `llms.go` file contains the types and interfaces for interacting with different LLMs.
The `options.go` file provides various options and functions to configure the LLMs.
Index ¶
- func CalculateMaxTokens(model, text string) int
- func CountTokens(model, text string) int
- func GetModelContextSize(model string) int
- type CallOption
- func WithFrequencyPenalty(frequencyPenalty float64) CallOption
- func WithFunctionCallBehavior(behavior FunctionCallBehavior) CallOption
- func WithFunctions(functions []FunctionDefinition) CallOption
- func WithMaxLength(maxLength int) CallOption
- func WithMaxTokens(maxTokens int) CallOption
- func WithMinLength(minLength int) CallOption
- func WithModel(model string) CallOption
- func WithN(n int) CallOption
- func WithOptions(options CallOptions) CallOption
- func WithPresencePenalty(presencePenalty float64) CallOption
- func WithRepetitionPenalty(repetitionPenalty float64) CallOption
- func WithSeed(seed int) CallOption
- func WithStopWords(stopWords []string) CallOption
- func WithStreamingFunc(streamingFunc func(ctx context.Context, chunk []byte) error) CallOption
- func WithTemperature(temperature float64) CallOption
- func WithTopK(topK int) CallOption
- func WithTopP(topP float64) CallOption
- type CallOptions
- type ChatLLM
- type FunctionCallBehavior
- type FunctionDefinition
- type Generation
- type LLM
- type LLMResult
- type LanguageModel
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func CalculateMaxTokens ¶
CalculateMaxTokens calculates the max number of tokens that could be added to a text.
func CountTokens ¶
CountTokens gets the number of tokens the text contains.
func GetModelContextSize ¶
ModelContextSize gets the max number of tokens for a language model. If the model name isn't recognized the default value 2048 is returned.
Types ¶
type CallOption ¶
type CallOption func(*CallOptions)
CallOption is a function that configures a CallOptions.
func WithFrequencyPenalty ¶
func WithFrequencyPenalty(frequencyPenalty float64) CallOption
WithFrequencyPenalty will add an option to set the frequency penalty for sampling.
func WithFunctionCallBehavior ¶
func WithFunctionCallBehavior(behavior FunctionCallBehavior) CallOption
WithFunctionCallBehavior will add an option to set the behavior to use when calling functions.
func WithFunctions ¶
func WithFunctions(functions []FunctionDefinition) CallOption
WithFunctions will add an option to set the functions to include in the request.
func WithMaxLength ¶
func WithMaxLength(maxLength int) CallOption
WithMaxLength will add an option to set the maximum length of the generated text.
func WithMaxTokens ¶
func WithMaxTokens(maxTokens int) CallOption
WithMaxTokens is an option for LLM.Call.
func WithMinLength ¶
func WithMinLength(minLength int) CallOption
WithMinLength will add an option to set the minimum length of the generated text.
func WithN ¶
func WithN(n int) CallOption
WithN will add an option to set how many chat completion choices to generate for each input message.
func WithOptions ¶
func WithOptions(options CallOptions) CallOption
WithOptions is an option for LLM.Call.
func WithPresencePenalty ¶
func WithPresencePenalty(presencePenalty float64) CallOption
WithPresencePenalty will add an option to set the presence penalty for sampling.
func WithRepetitionPenalty ¶
func WithRepetitionPenalty(repetitionPenalty float64) CallOption
WithRepetitionPenalty will add an option to set the repetition penalty for sampling.
func WithSeed ¶
func WithSeed(seed int) CallOption
WithSeed will add an option to use deterministic sampling.
func WithStopWords ¶
func WithStopWords(stopWords []string) CallOption
WithStopWords is an option for LLM.Call.
func WithStreamingFunc ¶
func WithStreamingFunc(streamingFunc func(ctx context.Context, chunk []byte) error) CallOption
WithStreamingFunc is an option for LLM.Call that allows streaming responses.
func WithTemperature ¶
func WithTemperature(temperature float64) CallOption
WithTemperature is an option for LLM.Call.
func WithTopK ¶
func WithTopK(topK int) CallOption
WithTopK will add an option to use top-k sampling.
func WithTopP ¶
func WithTopP(topP float64) CallOption
WithTopP will add an option to use top-p sampling.
type CallOptions ¶
type CallOptions struct { // Model is the model to use. Model string `json:"model"` // MaxTokens is the maximum number of tokens to generate. MaxTokens int `json:"max_tokens,omitempty"` // Temperature is the temperature for sampling, between 0 and 1. Temperature float64 `json:"temperature,omitempty"` // StopWords is a list of words to stop on. StopWords []string `json:"stop_words"` // StreamingFunc is a function to be called for each chunk of a streaming response. // Return an error to stop streaming early. StreamingFunc func(ctx context.Context, chunk []byte) error // TopK is the number of tokens to consider for top-k sampling. TopK int `json:"top_k"` // TopP is the cumulative probability for top-p sampling. TopP float64 `json:"top_p"` // Seed is a seed for deterministic sampling. Seed int `json:"seed"` // MinLength is the minimum length of the generated text. MinLength int `json:"min_length"` // MaxLength is the maximum length of the generated text. MaxLength int `json:"max_length"` // N is how many chat completion choices to generate for each input message. N int `json:"n"` // RepetitionPenalty is the repetition penalty for sampling. RepetitionPenalty float64 `json:"repetition_penalty"` // FrequencyPenalty is the frequency penalty for sampling. FrequencyPenalty float64 `json:"frequency_penalty"` // PresencePenalty is the presence penalty for sampling. PresencePenalty float64 `json:"presence_penalty"` // Function defitions to include in the request. Functions []FunctionDefinition `json:"functions"` // FunctionCallBehavior is the behavior to use when calling functions. // // If a specific function should be invoked, use the format: // `{"name": "my_function"}` FunctionCallBehavior FunctionCallBehavior `json:"function_call"` }
CallOptions is a set of options for LLM.Call.
type ChatLLM ¶
type ChatLLM interface { Call(ctx context.Context, messages []schema.ChatMessage, options ...CallOption) (*schema.AIChatMessage, error) Generate(ctx context.Context, messages [][]schema.ChatMessage, options ...CallOption) ([]*Generation, error) }
ChatLLM is a langchaingo LLM that can be used for chatting.
type FunctionCallBehavior ¶
type FunctionCallBehavior string
FunctionCallBehavior is the behavior to use when calling functions.
const ( // FunctionCallBehaviorNone will not call any functions. FunctionCallBehaviorNone FunctionCallBehavior = "none" // FunctionCallBehaviorAuto will call functions automatically. FunctionCallBehaviorAuto FunctionCallBehavior = "auto" )
type FunctionDefinition ¶
type FunctionDefinition struct { // Name is the name of the function. Name string `json:"name"` // Description is a description of the function. Description string `json:"description"` // Parameters is a list of parameters for the function. Parameters any `json:"parameters"` }
FunctionDefinition is a definition of a function that can be called by the model.
type Generation ¶
type Generation struct { // Text is the generated text. Text string `json:"text"` // Message stores the potentially generated message. Message *schema.AIChatMessage `json:"message"` // GenerationInfo is the generation info. This can contain vendor-specific information. GenerationInfo map[string]any `json:"generation_info"` }
Generation is a single generation from a langchaingo LLM.
type LLM ¶
type LLM interface { Call(ctx context.Context, prompt string, options ...CallOption) (string, error) Generate(ctx context.Context, prompts []string, options ...CallOption) ([]*Generation, error) }
LLM is a langchaingo Large Language Model.
type LLMResult ¶
type LLMResult struct { Generations [][]*Generation LLMOutput map[string]any }
LLMResult is the class that contains all relevant information for an LLM Result.
func GenerateChatPrompt ¶
func GenerateChatPrompt(ctx context.Context, l ChatLLM, promptValues []schema.PromptValue, options ...CallOption) (LLMResult, error)
func GeneratePrompt ¶
func GeneratePrompt(ctx context.Context, l LLM, promptValues []schema.PromptValue, options ...CallOption) (LLMResult, error)
type LanguageModel ¶
type LanguageModel interface { // Take in a list of prompt values and return an LLMResult. GeneratePrompt(ctx context.Context, prompts []schema.PromptValue, options ...CallOption) (LLMResult, error) // Get the number of tokens present in the text. GetNumTokens(text string) int }
LanguageModel is the interface all language models must implement.
Directories ¶
Path | Synopsis |
---|---|
Packaging ernie wrapper around the Baidu Large Language Model Platform APIs.
|
Packaging ernie wrapper around the Baidu Large Language Model Platform APIs. |
internal/localclient
Package localclient provides a client for local LLMs.
|
Package localclient provides a client for local LLMs. |