游戏服务器框架
适用于各类游戏服务器的开发。
- 良好的使用体验。Leaf 总是尽可能提供简洁和易用的接口,尽可能提升开发的效率
- 稳定性。Leaf 总是尽可能恢复运行过程中的错误,避免崩溃
- 多核支持。Leaf 通过模块机制和尽可能的利用多核资源,同时又尽量避免各种副作用
- 模块机制。
- 必须使用 Go 1.19+ 版本
模块机制
游戏服务器由多个模块组成,模块有以下特点:
- 每个模块运行在一个单独的 goroutine 中
- 模块间通过一套轻量的 RPC 机制通讯
不建议在游戏服务器中设计过多的模块。
游戏服务器在启动时进行模块的注册,例如:
leaf.Run(
game.Module,
gate.Module,
)
这里按顺序注册了 game、gate 模块。每个模块都需要实现接口:
type Module interface {
OnInit()
OnDestroy()
Run(closeSig chan bool)
}
首先会在同一个 goroutine 中按模块注册顺序执行模块的 OnInit 方法,等到所有模块 OnInit 方法执行完成后则为每一个模块启动一个 goroutine 并执行模块的 Run 方法。最后,游戏服务器关闭时(Ctrl + C 关闭游戏服务器)将按模块注册相反顺序在同一个 goroutine 中执行模块的 OnDestroy 方法。
源码概览
- leaf/chanrpc 提供了一套基于 channel 的 RPC 机制,用于游戏服务器模块间通讯
- leaf/db 数据库相关
- leaf/gate 网关模块,负责游戏客户端的接入
- leaf/go 用于创建能够被 Leaf 管理的 goroutine
- leaf/log 日志相关
- leaf/network 网络相关,使用 TCP 和 WebSocket 协议,可自定义消息格式,默认提供了基于protobuf 和 JSON 的消息格式
- leaf/timer 定时器相关
- leaf/util 辅助库
Hello模板
现在看看游戏服务器如何接收和处理网络消息。
首先定义一个 JSON 格式的消息(protobuf 类似)。打开 LeafServer msg/msg.go 文件可以看到如下代码:
package msg
import (
"gitee.com/jiangjiali/leaf/network"
)
var Processor network.Processor
func init() {
}
Processor 为消息的处理器(可由用户自定义),这里我们使用 Leaf 默认提供的 JSON 消息处理器并尝试添加一个名字为 Hello 的消息:
package msg
import (
"gitee.com/jiangjiali/leaf/network/json"
)
// Processor 使用默认的 JSON 消息处理器(默认还提供了 protobuf 消息处理器)
var Processor = json.NewProcessor()
func init() {
// 这里我们注册了一个 JSON 消息 Hello
Processor.Register(&Hello{})
}
// Hello 一个结构体定义了一个 JSON 消息的格式
type Hello struct {
Name string
}
客户端发送到游戏服务器的消息需要通过 gate 模块路由,简而言之,gate 模块决定了某个消息具体交给内部的哪个模块来处理。这里,我们将 Hello 消息路由到 game 模块中。打开 LeafServer gate/router.go,敲入如下代码:
package gate
import (
"server/game"
"server/msg"
)
func init() {
// 这里指定消息 Hello 路由到 game 模块
// 模块间使用 ChanRPC 通讯,消息路由也不例外
msg.Processor.SetRouter(&msg.Hello{}, game.ChanRPC)
}
一切就绪,我们现在可以在 game 模块中处理 Hello 消息了。打开 LeafServer game/internal/handler.go,敲入如下代码:
package internal
import (
"reflect"
"server/msg"
"gitee.com/jiangjiali/leaf/gate"
"gitee.com/jiangjiali/leaf/log"
)
func init() {
// 向当前模块(game 模块)注册 Hello 消息的消息处理函数 handleHello
handler(&msg.Hello{}, handleHello)
}
func handler(m interface{}, h interface{}) {
skeleton.RegisterChanRPC(reflect.TypeOf(m), h)
}
func handleHello(args []interface{}) {
// 收到的 Hello 消息
m := args[0].(*msg.Hello)
// 消息的发送者
a := args[1].(gate.Agent)
// 输出收到的消息的内容
log.Debug("hello %v", m.Name)
// 给发送者回应一个 Hello 消息
a.WriteMsg(&msg.Hello{
Name: "client",
})
}
到这里,一个简单的范例就完成了。为了更加清楚的了解消息的格式,我们从 0 编写一个最简单的测试客户端。
Leaf 中,当选择使用 TCP 协议时,在网络中传输的消息都会使用以下格式:
--------------
| len | data |
--------------
其中:
- len 表示了 data 部分的长度(字节数)。len 本身也有长度,默认为 2 字节(可配置),len 本身的长度决定了单个消息的最大大小
- data 部分使用 JSON 或者 protobuf 编码(也可自定义其他编码方式)
测试客户端同样使用 Go 语言编写:
package main
import (
"encoding/binary"
"net"
)
func main() {
conn, err := net.Dial("tcp", "127.0.0.1:3563")
if err != nil {
panic(err)
}
// Hello 消息(JSON 格式)
// 对应游戏服务器 Hello 消息结构体
data := []byte(`{
"Hello": {
"Name": "leaf"
}
}`)
// len + data
m := make([]byte, 2+len(data))
// 默认使用大端序
binary.BigEndian.PutUint16(m, uint16(len(data)))
copy(m[2:], data)
// 发送消息
conn.Write(m)
}
执行此测试客户端,游戏服务器输出:
2015/09/25 07:41:03 [debug ] hello leaf
2015/09/25 07:41:03 [debug ] read message: read tcp 127.0.0.1:3563->127.0.0.1:54599: wsarecv: An existing connection was forcibly closed by the remote host.
测试客户端发送完消息以后就退出了,此时和游戏服务器的连接断开,相应的,游戏服务器输出连接断开的提示日志(第二条日志,日志的具体内容和 Go 语言版本有关)。
除了使用 TCP 协议外,还可以选择使用 WebSocket 协议(例如开发 H5 游戏)。Leaf 可以单独使用 TCP 协议或 WebSocket 协议,也可以同时使用两者,换而言之,服务器可以同时接受 TCP 连接和 WebSocket 连接,对开发者而言消息来自 TCP 还是 WebSocket 是完全透明的。现在,我们来编写一个对应上例的使用 WebSocket 协议的客户端:
<script type="text/javascript">
var ws = new WebSocket('ws://127.0.0.1:3653')
ws.onopen = function() {
// 发送 Hello 消息
ws.send(JSON.stringify({Hello: {
Name: 'leaf'
}}))
}
</script>
保存上述代码到某 HTML 文件中并使用(任意支持 WebSocket 协议的)浏览器打开。在打开此 HTML 文件前,首先需要配置一下 LeafServer 的 bin/conf/server.json 文件,增加 WebSocket 监听地址(WSAddr):
{
"LogLevel": "debug",
"LogPath": "",
"TCPAddr": "127.0.0.1:3563",
"WSAddr": "127.0.0.1:3653",
"MaxConnNum": 20000
}
重启游戏服务器后,方可接受 WebSocket 消息:
2015/09/25 07:50:03 [debug ] hello leaf
在 Leaf 中使用 WebSocket 需要注意的一点是:Leaf 总是发送二进制消息而非文本消息。
Leaf 模块详解
LeafServer 中包含了 3 个模块,它们分别是:
- gate 模块,负责游戏客户端的接入
- login 模块,负责登录流程
- game 模块,负责游戏主逻辑
一般来说(而非强制规定),从代码结构上,一个 Leaf 模块:
- 放置于一个目录中(例如 game 模块放置于 game 目录中)
- 模块的具体实现放置于 internal 包中(例如 game 模块的具体实现放置于 game/internal 包中)
每个模块下一般有一个 external.go 的文件,顾名思义表示模块对外暴露的接口,这里以 game 模块的 external.go 文件为例:
package game
import (
"server/game/internal"
)
var (
// Module 实例化 game 模块
Module = new(internal.Module)
// ChanRPC 暴露 ChanRPC
ChanRPC = internal.ChanRPC
)
首先,模块会被实例化,这样才能注册到 Leaf 框架中(详见 LeafServer main.go),另外,模块暴露的 ChanRPC 被用于模块间通讯。
package internal
import (
"gitee.com/jiangjiali/leaf/module"
"server/base"
)
var (
skeleton = base.NewSkeleton()
ChanRPC = skeleton.ChanRPCServer
)
type Module struct {
*module.Skeleton
}
func (m *Module) OnInit() {
m.Skeleton = skeleton
}
func (m *Module) OnDestroy() {
}
模块中最关键的就是 skeleton(骨架),skeleton 实现了 Module 接口的 Run 方法并提供了:
ChanRPC
每个模块跑在独立的 goroutine 上,为了模块间方便的相互调用就有了基于 channel 的 RPC 机制。一个 ChanRPC 需要在游戏服务器初始化的时候进行注册(注册过程不是 goroutine 安全的),例如注册 NewAgent 和 CloseAgent 两个 ChanRPC:
package internal
import (
"gitee.com/jiangjiali/leaf/gate"
)
func init() {
skeleton.RegisterChanRPC("NewAgent", rpcNewAgent)
skeleton.RegisterChanRPC("CloseAgent", rpcCloseAgent)
}
func rpcNewAgent(args []interface{}) {
}
func rpcCloseAgent(args []interface{}) {
}
使用 skeleton 来注册 ChanRPC。RegisterChanRPC 的第一个参数是 ChanRPC 的名字,第二个参数是 ChanRPC 的实现。这里的 NewAgent 和 CloseAgent 会被 LeafServer 的 gate 模块在连接建立和连接中断时调用。ChanRPC 的调用方有 3 种调用模式:
- 同步模式,调用并等待 ChanRPC 返回
- 异步模式,调用并提供回调函数,回调函数会在 ChanRPC 返回后被调用
- Go 模式,调用并立即返回,忽略任何返回值和错误
gate 模块这样调用 game 模块的 NewAgent ChanRPC(这仅仅是一个示例,实际的代码细节复杂的多):
game.ChanRPC.Go("NewAgent", a)
这里调用 NewAgent 并传递参数 a,我们在 rpcNewAgent 的参数 args[0] 中可以取到 a(args[1] 表示第二个参数,以此类推)。
更加详细的用法可以参考 leaf/chanrpc。需要注意的是,无论封装多么精巧,跨 goroutine 的调用总不能像直接的函数调用那样简单直接,因此除非必要我们不要构建太多的模块,模块间不要太频繁的交互。模块在 Leaf 中被设计出来最主要是用于划分功能而非利用多核,Leaf 认为在模块内按需使用 goroutine 才是多核利用率问题的解决之道。
Go机制
善用 goroutine 能够充分利用多核资源,Leaf 提供的 Go 机制解决了原生 goroutine 存在的一些问题:
- 能够恢复 goroutine 运行过程中的错误
- 游戏服务器会等待所有 goroutine 执行结束后才关闭
- 非常方便的获取 goroutine 执行的结果数据
- 在一些特殊场合保证 goroutine 按创建顺序执行
我们来看一个例子(可以在 LeafServer 的模块的 OnInit 方法中测试):
log.Debug("1")
// 定义变量 res 接收结果
var res string
skeleton.Go(func() {
// 这里使用 Sleep 来模拟一个很慢的操作
time.Sleep(1 * time.Second)
// 假定得到结果
res = "3"
}, func() {
log.Debug(res)
})
log.Debug("2")
上面代码执行结果如下:
2015/08/27 20:37:17 [debug ] 1
2015/08/27 20:37:17 [debug ] 2
2015/08/27 20:37:18 [debug ] 3
这里的 Go 方法接收 2 个函数作为参数,第一个函数会被放置在一个新创建的 goroutine 中执行,在其执行完成之后,第二个函数会在当前 goroutine 中被执行。由此,我们可以看到变量 res 同一时刻总是只被一个 goroutine 访问,这就避免了同步机制的使用。Go 的设计使得 CPU 得到充分利用,避免操作阻塞当前 goroutine,同时又无需为共享资源同步而忧心。
定时器
Go 语言标准库提供了定时器的支持:
func AfterFunc(d Duration, f func()) *Timer
AfterFunc 会等待 d 时长后调用 f 函数,这里的 f 函数将在另外一个 goroutine 中执行。Leaf 提供了一个相同的 AfterFunc 函数,相比之下,f 函数在 AfterFunc 的调用 goroutine 中执行,这样就避免了同步机制的使用:
skeleton.AfterFunc(5 * time.Second, func() {
// ...
})
另外,timer 还支持 cron 表达式,用于实现诸如“每天 9 点执行”、“每周末 6 点执行”的逻辑。
日志
Leaf 的 log 系统支持多种日志级别:
- Debug 日志,非关键日志
- Release 日志,关键日志
- Error 日志,错误日志
- Fatal 日志,致命错误日志
Debug < Release < Error < Fatal(日志级别高低)
server.json 可以配置日志级别,低于配置的日志级别的日志将不会输出。Fatal 日志比较特殊,每次输出 Fatal 日志之后游戏服务器进程就会结束,通常来说,只在游戏服务器初始化失败时使用 Fatal 日志。