Documentation ¶
Overview ¶
Package arm64 implements an ARM64 assembler. Go assembly syntax is different from GNU ARM64 syntax, but we can still follow the general rules to map between them.
Instructions mnemonics mapping rules ¶
1. Most instructions use width suffixes of instruction names to indicate operand width rather than using different register names.
Examples: ADC R24, R14, R12 <=> adc x12, x24 ADDW R26->24, R21, R15 <=> add w15, w21, w26, asr #24 FCMPS F2, F3 <=> fcmp s3, s2 FCMPD F2, F3 <=> fcmp d3, d2 FCVTDH F2, F3 <=> fcvt h3, d2
2. Go uses .P and .W suffixes to indicate post-increment and pre-increment.
Examples: MOVD.P -8(R10), R8 <=> ldr x8, [x10],#-8 MOVB.W 16(R16), R10 <=> ldrsb x10, [x16,#16]! MOVBU.W 16(R16), R10 <=> ldrb x10, [x16,#16]!
3. Go uses a series of MOV instructions as load and store.
64-bit variant ldr, str, stur => MOVD; 32-bit variant str, stur, ldrsw => MOVW; 32-bit variant ldr => MOVWU; ldrb => MOVBU; ldrh => MOVHU; ldrsb, sturb, strb => MOVB; ldrsh, sturh, strh => MOVH.
4. Go moves conditions into opcode suffix, like BLT.
5. Go adds a V prefix for most floating-point and SIMD instructions, except cryptographic extension instructions and floating-point(scalar) instructions.
Examples: VADD V5.H8, V18.H8, V9.H8 <=> add v9.8h, v18.8h, v5.8h VLD1.P (R6)(R11), [V31.D1] <=> ld1 {v31.1d}, [x6], x11 VFMLA V29.S2, V20.S2, V14.S2 <=> fmla v14.2s, v20.2s, v29.2s AESD V22.B16, V19.B16 <=> aesd v19.16b, v22.16b SCVTFWS R3, F16 <=> scvtf s17, w6
6. Align directive
Go asm supports the PCALIGN directive, which indicates that the next instruction should be aligned to a specified boundary by padding with NOOP instruction. The alignment value supported on arm64 must be a power of 2 and in the range of [8, 2048].
Examples: PCALIGN $16 MOVD $2, R0 // This instruction is aligned with 16 bytes. PCALIGN $1024 MOVD $3, R1 // This instruction is aligned with 1024 bytes.
PCALIGN also changes the function alignment. If a function has one or more PCALIGN directives, its address will be aligned to the same or coarser boundary, which is the maximum of all the alignment values.
In the following example, the function Add is aligned with 128 bytes.
Examples: TEXT ·Add(SB),$40-16 MOVD $2, R0 PCALIGN $32 MOVD $4, R1 PCALIGN $128 MOVD $8, R2 RET
On arm64, functions in Go are aligned to 16 bytes by default, we can also use PCALGIN to set the function alignment. The functions that need to be aligned are preferably using NOFRAME and NOSPLIT to avoid the impact of the prologues inserted by the assembler, so that the function address will have the same alignment as the first hand-written instruction.
In the following example, PCALIGN at the entry of the function Add will align its address to 2048 bytes.
Examples: TEXT ·Add(SB),NOSPLIT|NOFRAME,$0 PCALIGN $2048 MOVD $1, R0 MOVD $1, R1 RET
7. Move large constants to vector registers.
Go asm uses VMOVQ/VMOVD/VMOVS to move 128-bit, 64-bit and 32-bit constants into vector registers, respectively. And for a 128-bit interger, it take two 64-bit operands, for the high and low parts separately.
Examples: VMOVS $0x11223344, V0 VMOVD $0x1122334455667788, V1 VMOVQ $0x1122334455667788, $8877665544332211, V2 // V2=0x11223344556677888877665544332211
Special Cases.
(1) umov is written as VMOV.
(2) br is renamed JMP, blr is renamed CALL.
(3) No need to add "W" suffix: LDARB, LDARH, LDAXRB, LDAXRH, LDTRH, LDXRB, LDXRH.
(4) In Go assembly syntax, NOP is a zero-width pseudo-instruction serves generic purpose, nothing related to real ARM64 instruction. NOOP serves for the hardware nop instruction. NOOP is an alias of HINT $0.
Examples: VMOV V13.B[1], R20 <=> mov x20, v13.b[1] VMOV V13.H[1], R20 <=> mov w20, v13.h[1] JMP (R3) <=> br x3 CALL (R17) <=> blr x17 LDAXRB (R19), R16 <=> ldaxrb w16, [x19] NOOP <=> nop
Register mapping rules ¶
1. All basic register names are written as Rn.
2. Go uses ZR as the zero register and RSP as the stack pointer.
3. Bn, Hn, Dn, Sn and Qn instructions are written as Fn in floating-point instructions and as Vn in SIMD instructions.
Argument mapping rules ¶
1. The operands appear in left-to-right assignment order.
Go reverses the arguments of most instructions.
Examples: ADD R11.SXTB<<1, RSP, R25 <=> add x25, sp, w11, sxtb #1 VADD V16, V19, V14 <=> add d14, d19, d16
Special Cases.
(1) Argument order is the same as in the GNU ARM64 syntax: cbz, cbnz and some store instructions, such as str, stur, strb, sturb, strh, sturh stlr, stlrb. stlrh, st1.
Examples: MOVD R29, 384(R19) <=> str x29, [x19,#384] MOVB.P R30, 30(R4) <=> strb w30, [x4],#30 STLRH R21, (R19) <=> stlrh w21, [x19]
(2) MADD, MADDW, MSUB, MSUBW, SMADDL, SMSUBL, UMADDL, UMSUBL <Rm>, <Ra>, <Rn>, <Rd>
Examples: MADD R2, R30, R22, R6 <=> madd x6, x22, x2, x30 SMSUBL R10, R3, R17, R27 <=> smsubl x27, w17, w10, x3
(3) FMADDD, FMADDS, FMSUBD, FMSUBS, FNMADDD, FNMADDS, FNMSUBD, FNMSUBS <Fm>, <Fa>, <Fn>, <Fd>
Examples: FMADDD F30, F20, F3, F29 <=> fmadd d29, d3, d30, d20 FNMSUBS F7, F25, F7, F22 <=> fnmsub s22, s7, s7, s25
(4) BFI, BFXIL, SBFIZ, SBFX, UBFIZ, UBFX $<lsb>, <Rn>, $<width>, <Rd>
Examples: BFIW $16, R20, $6, R0 <=> bfi w0, w20, #16, #6 UBFIZ $34, R26, $5, R20 <=> ubfiz x20, x26, #34, #5
(5) FCCMPD, FCCMPS, FCCMPED, FCCMPES <cond>, Fm. Fn, $<nzcv>
Examples: FCCMPD AL, F8, F26, $0 <=> fccmp d26, d8, #0x0, al FCCMPS VS, F29, F4, $4 <=> fccmp s4, s29, #0x4, vs FCCMPED LE, F20, F5, $13 <=> fccmpe d5, d20, #0xd, le FCCMPES NE, F26, F10, $0 <=> fccmpe s10, s26, #0x0, ne
(6) CCMN, CCMNW, CCMP, CCMPW <cond>, <Rn>, $<imm>, $<nzcv>
Examples: CCMP MI, R22, $12, $13 <=> ccmp x22, #0xc, #0xd, mi CCMNW AL, R1, $11, $8 <=> ccmn w1, #0xb, #0x8, al
(7) CCMN, CCMNW, CCMP, CCMPW <cond>, <Rn>, <Rm>, $<nzcv>
Examples: CCMN VS, R13, R22, $10 <=> ccmn x13, x22, #0xa, vs CCMPW HS, R19, R14, $11 <=> ccmp w19, w14, #0xb, cs
(9) CSEL, CSELW, CSNEG, CSNEGW, CSINC, CSINCW <cond>, <Rn>, <Rm>, <Rd> ; FCSELD, FCSELS <cond>, <Fn>, <Fm>, <Fd>
Examples: CSEL GT, R0, R19, R1 <=> csel x1, x0, x19, gt CSNEGW GT, R7, R17, R8 <=> csneg w8, w7, w17, gt FCSELD EQ, F15, F18, F16 <=> fcsel d16, d15, d18, eq
(10) TBNZ, TBZ $<imm>, <Rt>, <label>
(11) STLXR, STLXRW, STXR, STXRW, STLXRB, STLXRH, STXRB, STXRH <Rf>, (<Rn|RSP>), <Rs>
Examples: STLXR ZR, (R15), R16 <=> stlxr w16, xzr, [x15] STXRB R9, (R21), R19 <=> stxrb w19, w9, [x21]
(12) STLXP, STLXPW, STXP, STXPW (<Rf1>, <Rf2>), (<Rn|RSP>), <Rs>
Examples: STLXP (R17, R19), (R4), R5 <=> stlxp w5, x17, x19, [x4] STXPW (R30, R25), (R22), R13 <=> stxp w13, w30, w25, [x22]
2. Expressions for special arguments.
#<immediate> is written as $<immediate>.
Optionally-shifted immediate.
Examples: ADD $(3151<<12), R14, R20 <=> add x20, x14, #0xc4f, lsl #12 ADDW $1864, R25, R6 <=> add w6, w25, #0x748
Optionally-shifted registers are written as <Rm>{<shift><amount>}. The <shift> can be <<(lsl), >>(lsr), ->(asr), @>(ror).
Examples: ADD R19>>30, R10, R24 <=> add x24, x10, x19, lsr #30 ADDW R26->24, R21, R15 <=> add w15, w21, w26, asr #24
Extended registers are written as <Rm>{.<extend>{<<<amount>}}. <extend> can be UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
Examples: ADDS R19.UXTB<<4, R9, R26 <=> adds x26, x9, w19, uxtb #4 ADDSW R14.SXTX, R14, R6 <=> adds w6, w14, w14, sxtx
Memory references: [<Xn|SP>{,#0}] is written as (Rn|RSP), a base register and an immediate offset is written as imm(Rn|RSP), a base register and an offset register is written as (Rn|RSP)(Rm).
Examples: LDAR (R22), R9 <=> ldar x9, [x22] LDP 28(R17), (R15, R23) <=> ldp x15, x23, [x17,#28] MOVWU (R4)(R12<<2), R8 <=> ldr w8, [x4, x12, lsl #2] MOVD (R7)(R11.UXTW<<3), R25 <=> ldr x25, [x7,w11,uxtw #3] MOVBU (R27)(R23), R14 <=> ldrb w14, [x27,x23]
Register pairs are written as (Rt1, Rt2).
Examples: LDP.P -240(R11), (R12, R26) <=> ldp x12, x26, [x11],#-240
Register with arrangement and register with arrangement and index.
Examples: VADD V5.H8, V18.H8, V9.H8 <=> add v9.8h, v18.8h, v5.8h VLD1 (R2), [V21.B16] <=> ld1 {v21.16b}, [x2] VST1.P V9.S[1], (R16)(R21) <=> st1 {v9.s}[1], [x16], x28 VST1.P [V13.H8, V14.H8, V15.H8], (R3)(R14) <=> st1 {v13.8h-v15.8h}, [x3], x14 VST1.P [V14.D1, V15.D1], (R7)(R23) <=> st1 {v14.1d, v15.1d}, [x7], x23
Index ¶
- Constants
- Variables
- func ADR(p uint32, o uint32, rt uint32) uint32
- func DRconv(a int) string
- func FPCCMP(m uint32, s uint32, type_ uint32, op uint32) uint32
- func FPCMP(m uint32, s uint32, type_ uint32, op uint32, op2 uint32) uint32
- func FPCVTI(sf uint32, s uint32, type_ uint32, rmode uint32, op uint32) uint32
- func FPOP1S(m uint32, s uint32, type_ uint32, op uint32) uint32
- func FPOP2S(m uint32, s uint32, type_ uint32, op uint32) uint32
- func FPOP3S(m uint32, s uint32, type_ uint32, op uint32, op2 uint32) uint32
- func IsAtomicInstruction(as obj.As) bool
- func LD2STR(o uint32) uint32
- func LDSTR(sz uint32, v uint32, opc uint32) uint32
- func LDSTX(sz uint32, o2 uint32, l uint32, o1 uint32, o0 uint32) uint32
- func MOVCONST(d int64, s int, rt int) uint32
- func OPBIT(x uint32) uint32
- func OPBLR(x uint32) uint32
- func OPBcc(x uint32) uint32
- func OPDP2(x uint32) uint32
- func OPDP3(sf uint32, op54 uint32, op31 uint32, o0 uint32) uint32
- func SYSARG4(op1 int, Cn int, Cm int, op2 int) int
- func SYSARG5(op0 int, op1 int, Cn int, Cm int, op2 int) int
- func SYSHINT(x uint32) uint32
- func SYSOP(l uint32, op0 uint32, op1 uint32, crn uint32, crm uint32, op2 uint32, ...) uint32
- func SysRegEnc(r int16) (string, uint32, uint8)
- type Optab
Constants ¶
const ( NSNAME = 8 NSYM = 50 NREG = 32 /* number of general registers */ NFREG = 32 /* number of floating point registers */ )
const ( // integer REG_R0 = obj.RBaseARM64 + iota REG_R1 REG_R2 REG_R3 REG_R4 REG_R5 REG_R6 REG_R7 REG_R8 REG_R9 REG_R10 REG_R11 REG_R12 REG_R13 REG_R14 REG_R15 REG_R16 REG_R17 REG_R18 REG_R19 REG_R20 REG_R21 REG_R22 REG_R23 REG_R24 REG_R25 REG_R26 REG_R27 REG_R28 REG_R29 REG_R30 REG_R31 // scalar floating point REG_F0 REG_F1 REG_F2 REG_F3 REG_F4 REG_F5 REG_F6 REG_F7 REG_F8 REG_F9 REG_F10 REG_F11 REG_F12 REG_F13 REG_F14 REG_F15 REG_F16 REG_F17 REG_F18 REG_F19 REG_F20 REG_F21 REG_F22 REG_F23 REG_F24 REG_F25 REG_F26 REG_F27 REG_F28 REG_F29 REG_F30 REG_F31 // SIMD REG_V0 REG_V1 REG_V2 REG_V3 REG_V4 REG_V5 REG_V6 REG_V7 REG_V8 REG_V9 REG_V10 REG_V11 REG_V12 REG_V13 REG_V14 REG_V15 REG_V16 REG_V17 REG_V18 REG_V19 REG_V20 REG_V21 REG_V22 REG_V23 REG_V24 REG_V25 REG_V26 REG_V27 REG_V28 REG_V29 REG_V30 REG_V31 // The EQ in // CSET EQ, R0 // is encoded as TYPE_REG, even though it's not really a register. COND_EQ COND_NE COND_HS COND_LO COND_MI COND_PL COND_VS COND_VC COND_HI COND_LS COND_GE COND_LT COND_GT COND_LE COND_AL COND_NV REG_RSP = REG_V31 + 32 // to differentiate ZR/SP, REG_RSP&0x1f = 31 )
General purpose registers, kept in the low bits of Prog.Reg.
const ( REG_ARNG = obj.RBaseARM64 + 1<<10 + iota<<9 // Vn.<T> REG_ELEM // Vn.<T>[index] REG_ELEM_END )
bits 0-4 indicates register: Vn bits 5-8 indicates arrangement: <T>
const ( REG_UXTB = REG_EXT + iota<<8 REG_UXTH REG_UXTW REG_UXTX REG_SXTB REG_SXTH REG_SXTW REG_SXTX )
const ( REG_SPECIAL = obj.RBaseARM64 + 1<<12 REG_DAIFSet = SYSREG_END + iota REG_DAIFClr REG_PLDL1KEEP REG_PLDL1STRM REG_PLDL2KEEP REG_PLDL2STRM REG_PLDL3KEEP REG_PLDL3STRM REG_PLIL1KEEP REG_PLIL1STRM REG_PLIL2KEEP REG_PLIL2STRM REG_PLIL3KEEP REG_PLIL3STRM REG_PSTL1KEEP REG_PSTL1STRM REG_PSTL2KEEP REG_PSTL2STRM REG_PSTL3KEEP REG_PSTL3STRM )
Special registers, after subtracting obj.RBaseARM64, bit 12 indicates a special register and the low bits select the register. SYSREG_END is the last item in the automatically generated system register declaration, and it is defined in the sysRegEnc.go file.
const ( REGMIN = REG_R7 // register variables allocated from here to REGMAX REGRT1 = REG_R16 // ARM64 IP0, external linker may use as a scrach register in trampoline REGRT2 = REG_R17 // ARM64 IP1, external linker may use as a scrach register in trampoline REGPR = REG_R18 // ARM64 platform register, unused in the Go toolchain REGMAX = REG_R25 REGCTXT = REG_R26 // environment for closures REGTMP = REG_R27 // reserved for liblink REGG = REG_R28 // G REGFP = REG_R29 // frame pointer, unused in the Go toolchain REGLINK = REG_R30 // ARM64 uses R31 as both stack pointer and zero register, // depending on the instruction. To differentiate RSP from ZR, // we use a different numeric value for REGZERO and REGSP. REGZERO = REG_R31 REGSP = REG_RSP FREGRET = REG_F0 FREGMIN = REG_F7 // first register variable FREGMAX = REG_F26 // last register variable for 7g only FREGEXT = REG_F26 // first external register )
Register assignments:
compiler allocates R0 up as temps compiler allocates register variables R7-R25 compiler allocates external registers R26 down
compiler allocates register variables F7-F26 compiler allocates external registers F26 down
const ( /* mark flags */ LABEL = 1 << iota LEAF FLOAT BRANCH LOAD FCMP SYNC LIST FOLL NOSCHED )
const ( // optab is sorted based on the order of these constants // and the first match is chosen. // The more specific class needs to come earlier. C_NONE = iota C_REG // R0..R30 C_RSP // R0..R30, RSP C_FREG // F0..F31 C_VREG // V0..V31 C_PAIR // (Rn, Rm) C_SHIFT // Rn<<2 C_EXTREG // Rn.UXTB[<<3] C_SPR // REG_NZCV C_COND // EQ, NE, etc C_ARNG // Vn.<T> C_ELEM // Vn.<T>[index] C_LIST // [V1, V2, V3] C_ZCON // $0 or ZR C_ABCON0 // could be C_ADDCON0 or C_BITCON C_ADDCON0 // 12-bit unsigned, unshifted C_ABCON // could be C_ADDCON or C_BITCON C_AMCON // could be C_ADDCON or C_MOVCON C_ADDCON // 12-bit unsigned, shifted left by 0 or 12 C_MBCON // could be C_MOVCON or C_BITCON C_MOVCON // generated by a 16-bit constant, optionally inverted and/or shifted by multiple of 16 C_BITCON // bitfield and logical immediate masks C_ADDCON2 // 24-bit constant C_LCON // 32-bit constant C_MOVCON2 // a constant that can be loaded with one MOVZ/MOVN and one MOVK C_MOVCON3 // a constant that can be loaded with one MOVZ/MOVN and two MOVKs C_VCON // 64-bit constant C_FCON // floating-point constant C_VCONADDR // 64-bit memory address C_AACON // ADDCON offset in auto constant $a(FP) C_AACON2 // 24-bit offset in auto constant $a(FP) C_LACON // 32-bit offset in auto constant $a(FP) C_AECON // ADDCON offset in extern constant $e(SB) // TODO(aram): only one branch class should be enough C_SBRA // for TYPE_BRANCH C_LBRA C_ZAUTO // 0(RSP) C_NSAUTO_8 // -256 <= x < 0, 0 mod 8 C_NSAUTO_4 // -256 <= x < 0, 0 mod 4 C_NSAUTO // -256 <= x < 0 C_NPAUTO // -512 <= x < 0, 0 mod 8 C_NAUTO4K // -4095 <= x < 0 C_PSAUTO_8 // 0 to 255, 0 mod 8 C_PSAUTO_4 // 0 to 255, 0 mod 4 C_PSAUTO // 0 to 255 C_PPAUTO_16 // 0 to 504, 0 mod 16 C_PPAUTO // 0 to 504, 0 mod 8 C_UAUTO4K_16 // 0 to 4095, 0 mod 16 C_UAUTO4K_8 // 0 to 4095, 0 mod 8 C_UAUTO4K_4 // 0 to 4095, 0 mod 4 C_UAUTO4K_2 // 0 to 4095, 0 mod 2 C_UAUTO4K // 0 to 4095 C_UAUTO8K_16 // 0 to 8190, 0 mod 16 C_UAUTO8K_8 // 0 to 8190, 0 mod 8 C_UAUTO8K_4 // 0 to 8190, 0 mod 4 C_UAUTO8K // 0 to 8190, 0 mod 2 + C_PSAUTO C_UAUTO16K_16 // 0 to 16380, 0 mod 16 C_UAUTO16K_8 // 0 to 16380, 0 mod 8 C_UAUTO16K // 0 to 16380, 0 mod 4 + C_PSAUTO C_UAUTO32K_16 // 0 to 32760, 0 mod 16 + C_PSAUTO C_UAUTO32K // 0 to 32760, 0 mod 8 + C_PSAUTO C_UAUTO64K // 0 to 65520, 0 mod 16 + C_PSAUTO C_LAUTO // any other 32-bit constant C_SEXT1 // 0 to 4095, direct C_SEXT2 // 0 to 8190 C_SEXT4 // 0 to 16380 C_SEXT8 // 0 to 32760 C_SEXT16 // 0 to 65520 C_LEXT C_ZOREG // 0(R) C_NSOREG_8 // must mirror C_NSAUTO_8, etc C_NSOREG_4 C_NSOREG C_NPOREG C_NOREG4K C_PSOREG_8 C_PSOREG_4 C_PSOREG C_PPOREG_16 C_PPOREG C_UOREG4K_16 C_UOREG4K_8 C_UOREG4K_4 C_UOREG4K_2 C_UOREG4K C_UOREG8K_16 C_UOREG8K_8 C_UOREG8K_4 C_UOREG8K C_UOREG16K_16 C_UOREG16K_8 C_UOREG16K C_UOREG32K_16 C_UOREG32K C_UOREG64K C_LOREG C_ADDR // TODO(aram): explain difference from C_VCONADDR // The GOT slot for a symbol in -dynlink mode. C_GOTADDR // TLS "var" in local exec mode: will become a constant offset from // thread local base that is ultimately chosen by the program linker. C_TLS_LE // TLS "var" in initial exec mode: will become a memory address (chosen // by the program linker) that the dynamic linker will fill with the // offset from the thread local base. C_TLS_IE C_ROFF // register offset (including register extended) C_GOK C_TEXTSIZE C_NCLASS // must be last )
const ( C_XPRE = 1 << 6 // match arm.C_WBIT, so Prog.String know how to print it C_XPOST = 1 << 5 // match arm.C_PBIT, so Prog.String know how to print it )
const ( AADC = obj.ABaseARM64 + obj.A_ARCHSPECIFIC + iota AADCS AADCSW AADCW AADD AADDS AADDSW AADDW AADR AADRP AAND AANDS AANDSW AANDW AASR AASRW AAT ABFI ABFIW ABFM ABFMW ABFXIL ABFXILW ABIC ABICS ABICSW ABICW ABRK ACBNZ ACBNZW ACBZ ACBZW ACCMN ACCMNW ACCMP ACCMPW ACINC ACINCW ACINV ACINVW ACLREX ACLS ACLSW ACLZ ACLZW ACMN ACMNW ACMP ACMPW ACNEG ACNEGW ACRC32B ACRC32CB ACRC32CH ACRC32CW ACRC32CX ACRC32H ACRC32W ACRC32X ACSEL ACSELW ACSET ACSETM ACSETMW ACSETW ACSINC ACSINCW ACSINV ACSINVW ACSNEG ACSNEGW ADC ADCPS1 ADCPS2 ADCPS3 ADMB ADRPS ADSB AEON AEONW AEOR AEORW AERET AEXTR AEXTRW AHINT AHLT AHVC AIC AISB ALDADDAB ALDADDAD ALDADDAH ALDADDAW ALDADDALB ALDADDALD ALDADDALH ALDADDALW ALDADDB ALDADDD ALDADDH ALDADDW ALDADDLB ALDADDLD ALDADDLH ALDADDLW ALDAR ALDARB ALDARH ALDARW ALDAXP ALDAXPW ALDAXR ALDAXRB ALDAXRH ALDAXRW ALDCLRAB ALDCLRAD ALDCLRAH ALDCLRAW ALDCLRALB ALDCLRALD ALDCLRALH ALDCLRALW ALDCLRB ALDCLRD ALDCLRH ALDCLRW ALDCLRLB ALDCLRLD ALDCLRLH ALDCLRLW ALDEORAB ALDEORAD ALDEORAH ALDEORAW ALDEORALB ALDEORALD ALDEORALH ALDEORALW ALDEORB ALDEORD ALDEORH ALDEORW ALDEORLB ALDEORLD ALDEORLH ALDEORLW ALDORAB ALDORAD ALDORAH ALDORAW ALDORALB ALDORALD ALDORALH ALDORALW ALDORB ALDORD ALDORH ALDORW ALDORLB ALDORLD ALDORLH ALDORLW ALDP ALDPW ALDPSW ALDXR ALDXRB ALDXRH ALDXRW ALDXP ALDXPW ALSL ALSLW ALSR ALSRW AMADD AMADDW AMNEG AMNEGW AMOVK AMOVKW AMOVN AMOVNW AMOVZ AMOVZW AMRS AMSR AMSUB AMSUBW AMUL AMULW AMVN AMVNW ANEG ANEGS ANEGSW ANEGW ANGC ANGCS ANGCSW ANGCW ANOOP AORN AORNW AORR AORRW APRFM APRFUM ARBIT ARBITW AREM AREMW AREV AREV16 AREV16W AREV32 AREVW AROR ARORW ASBC ASBCS ASBCSW ASBCW ASBFIZ ASBFIZW ASBFM ASBFMW ASBFX ASBFXW ASDIV ASDIVW ASEV ASEVL ASMADDL ASMC ASMNEGL ASMSUBL ASMULH ASMULL ASTXR ASTXRB ASTXRH ASTXP ASTXPW ASTXRW ASTLP ASTLPW ASTLR ASTLRB ASTLRH ASTLRW ASTLXP ASTLXPW ASTLXR ASTLXRB ASTLXRH ASTLXRW ASTP ASTPW ASUB ASUBS ASUBSW ASUBW ASVC ASXTB ASXTBW ASXTH ASXTHW ASXTW ASYS ASYSL ATBNZ ATBZ ATLBI ATST ATSTW AUBFIZ AUBFIZW AUBFM AUBFMW AUBFX AUBFXW AUDIV AUDIVW AUMADDL AUMNEGL AUMSUBL AUMULH AUMULL AUREM AUREMW AUXTB AUXTH AUXTW AUXTBW AUXTHW AWFE AWFI AYIELD AMOVB AMOVBU AMOVH AMOVHU AMOVW AMOVWU AMOVD AMOVNP AMOVNPW AMOVP AMOVPD AMOVPQ AMOVPS AMOVPSW AMOVPW ASWPAD ASWPAW ASWPAH ASWPAB ASWPALD ASWPALW ASWPALH ASWPALB ASWPD ASWPW ASWPH ASWPB ASWPLD ASWPLW ASWPLH ASWPLB ACASD ACASW ACASH ACASB ACASAD ACASAW ACASLD ACASLW ACASALD ACASALW ACASALH ACASALB ACASPD ACASPW ABEQ ABNE ABCS ABHS ABCC ABLO ABMI ABPL ABVS ABVC ABHI ABLS ABGE ABLT ABGT ABLE AFABSD AFABSS AFADDD AFADDS AFCCMPD AFCCMPED AFCCMPS AFCCMPES AFCMPD AFCMPED AFCMPES AFCMPS AFCVTSD AFCVTDS AFCVTZSD AFCVTZSDW AFCVTZSS AFCVTZSSW AFCVTZUD AFCVTZUDW AFCVTZUS AFCVTZUSW AFDIVD AFDIVS AFLDPD AFLDPS AFMOVQ AFMOVD AFMOVS AVMOVQ AVMOVD AVMOVS AFMULD AFMULS AFNEGD AFNEGS AFSQRTD AFSQRTS AFSTPD AFSTPS AFSUBD AFSUBS ASCVTFD ASCVTFS ASCVTFWD ASCVTFWS AUCVTFD AUCVTFS AUCVTFWD AUCVTFWS AWORD ADWORD AFCSELS AFCSELD AFMAXS AFMINS AFMAXD AFMIND AFMAXNMS AFMAXNMD AFNMULS AFNMULD AFRINTNS AFRINTND AFRINTPS AFRINTPD AFRINTMS AFRINTMD AFRINTZS AFRINTZD AFRINTAS AFRINTAD AFRINTXS AFRINTXD AFRINTIS AFRINTID AFMADDS AFMADDD AFMSUBS AFMSUBD AFNMADDS AFNMADDD AFNMSUBS AFNMSUBD AFMINNMS AFMINNMD AFCVTDH AFCVTHS AFCVTHD AFCVTSH AAESD AAESE AAESIMC AAESMC ASHA1C ASHA1H ASHA1M ASHA1P ASHA1SU0 ASHA1SU1 ASHA256H ASHA256H2 ASHA256SU0 ASHA256SU1 ASHA512H ASHA512H2 ASHA512SU0 ASHA512SU1 AVADD AVADDP AVAND AVBIF AVBCAX AVCMEQ AVCNT AVEOR AVEOR3 AVMOV AVLD1 AVLD2 AVLD3 AVLD4 AVLD1R AVLD2R AVLD3R AVLD4R AVORR AVREV16 AVREV32 AVREV64 AVST1 AVST2 AVST3 AVST4 AVDUP AVADDV AVMOVI AVUADDLV AVSUB AVFMLA AVFMLS AVPMULL AVPMULL2 AVEXT AVRBIT AVRAX1 AVUSHR AVUSHLL AVUSHLL2 AVUXTL AVUXTL2 AVUZP1 AVUZP2 AVSHL AVSRI AVSLI AVBSL AVBIT AVTBL AVXAR AVZIP1 AVZIP2 AVCMTST AVUADDW2 AVUADDW AVUSRA ALAST AB = obj.AJMP ABL = obj.ACALL )
const ( // shift types SHIFT_LL = 0 << 22 SHIFT_LR = 1 << 22 SHIFT_AR = 2 << 22 )
const ( // arrangement types ARNG_8B = iota ARNG_16B ARNG_1D ARNG_4H ARNG_8H ARNG_2S ARNG_4S ARNG_2D ARNG_1Q ARNG_B ARNG_H ARNG_S ARNG_D )
Arrangement for ARM64 SIMD instructions
const ( S32 = 0 << 31 S64 = 1 << 31 Sbit = 1 << 29 LSL0_32 = 2 << 13 LSL0_64 = 3 << 13 )
const ( // Optab.flag LFROM = 1 << 0 // p.From uses constant pool LFROM128 = 1 << 1 // p.From3<<64+p.From forms a 128-bit constant in literal pool LTO = 1 << 2 // p.To uses constant pool NOTUSETMP = 1 << 3 // p expands to multiple instructions, but does NOT use REGTMP )
const ( SYSREG_BEGIN = REG_SPECIAL + iota REG_ACTLR_EL1 REG_AFSR0_EL1 REG_AFSR1_EL1 REG_AIDR_EL1 REG_AMAIR_EL1 REG_AMCFGR_EL0 REG_AMCGCR_EL0 REG_AMCNTENCLR0_EL0 REG_AMCNTENCLR1_EL0 REG_AMCNTENSET0_EL0 REG_AMCNTENSET1_EL0 REG_AMCR_EL0 REG_AMEVCNTR00_EL0 REG_AMEVCNTR01_EL0 REG_AMEVCNTR02_EL0 REG_AMEVCNTR03_EL0 REG_AMEVCNTR04_EL0 REG_AMEVCNTR05_EL0 REG_AMEVCNTR06_EL0 REG_AMEVCNTR07_EL0 REG_AMEVCNTR08_EL0 REG_AMEVCNTR09_EL0 REG_AMEVCNTR010_EL0 REG_AMEVCNTR011_EL0 REG_AMEVCNTR012_EL0 REG_AMEVCNTR013_EL0 REG_AMEVCNTR014_EL0 REG_AMEVCNTR015_EL0 REG_AMEVCNTR10_EL0 REG_AMEVCNTR11_EL0 REG_AMEVCNTR12_EL0 REG_AMEVCNTR13_EL0 REG_AMEVCNTR14_EL0 REG_AMEVCNTR15_EL0 REG_AMEVCNTR16_EL0 REG_AMEVCNTR17_EL0 REG_AMEVCNTR18_EL0 REG_AMEVCNTR19_EL0 REG_AMEVCNTR110_EL0 REG_AMEVCNTR111_EL0 REG_AMEVCNTR112_EL0 REG_AMEVCNTR113_EL0 REG_AMEVCNTR114_EL0 REG_AMEVCNTR115_EL0 REG_AMEVTYPER00_EL0 REG_AMEVTYPER01_EL0 REG_AMEVTYPER02_EL0 REG_AMEVTYPER03_EL0 REG_AMEVTYPER04_EL0 REG_AMEVTYPER05_EL0 REG_AMEVTYPER06_EL0 REG_AMEVTYPER07_EL0 REG_AMEVTYPER08_EL0 REG_AMEVTYPER09_EL0 REG_AMEVTYPER010_EL0 REG_AMEVTYPER011_EL0 REG_AMEVTYPER012_EL0 REG_AMEVTYPER013_EL0 REG_AMEVTYPER014_EL0 REG_AMEVTYPER015_EL0 REG_AMEVTYPER10_EL0 REG_AMEVTYPER11_EL0 REG_AMEVTYPER12_EL0 REG_AMEVTYPER13_EL0 REG_AMEVTYPER14_EL0 REG_AMEVTYPER15_EL0 REG_AMEVTYPER16_EL0 REG_AMEVTYPER17_EL0 REG_AMEVTYPER18_EL0 REG_AMEVTYPER19_EL0 REG_AMEVTYPER110_EL0 REG_AMEVTYPER111_EL0 REG_AMEVTYPER112_EL0 REG_AMEVTYPER113_EL0 REG_AMEVTYPER114_EL0 REG_AMEVTYPER115_EL0 REG_AMUSERENR_EL0 REG_APDAKeyHi_EL1 REG_APDAKeyLo_EL1 REG_APDBKeyHi_EL1 REG_APDBKeyLo_EL1 REG_APGAKeyHi_EL1 REG_APGAKeyLo_EL1 REG_APIAKeyHi_EL1 REG_APIAKeyLo_EL1 REG_APIBKeyHi_EL1 REG_APIBKeyLo_EL1 REG_CCSIDR2_EL1 REG_CCSIDR_EL1 REG_CLIDR_EL1 REG_CNTFRQ_EL0 REG_CNTKCTL_EL1 REG_CNTP_CTL_EL0 REG_CNTP_CVAL_EL0 REG_CNTP_TVAL_EL0 REG_CNTPCT_EL0 REG_CNTPS_CTL_EL1 REG_CNTPS_CVAL_EL1 REG_CNTPS_TVAL_EL1 REG_CNTV_CTL_EL0 REG_CNTV_CVAL_EL0 REG_CNTV_TVAL_EL0 REG_CNTVCT_EL0 REG_CONTEXTIDR_EL1 REG_CPACR_EL1 REG_CSSELR_EL1 REG_CTR_EL0 REG_CurrentEL REG_DAIF REG_DBGAUTHSTATUS_EL1 REG_DBGBCR0_EL1 REG_DBGBCR1_EL1 REG_DBGBCR2_EL1 REG_DBGBCR3_EL1 REG_DBGBCR4_EL1 REG_DBGBCR5_EL1 REG_DBGBCR6_EL1 REG_DBGBCR7_EL1 REG_DBGBCR8_EL1 REG_DBGBCR9_EL1 REG_DBGBCR10_EL1 REG_DBGBCR11_EL1 REG_DBGBCR12_EL1 REG_DBGBCR13_EL1 REG_DBGBCR14_EL1 REG_DBGBCR15_EL1 REG_DBGBVR0_EL1 REG_DBGBVR1_EL1 REG_DBGBVR2_EL1 REG_DBGBVR3_EL1 REG_DBGBVR4_EL1 REG_DBGBVR5_EL1 REG_DBGBVR6_EL1 REG_DBGBVR7_EL1 REG_DBGBVR8_EL1 REG_DBGBVR9_EL1 REG_DBGBVR10_EL1 REG_DBGBVR11_EL1 REG_DBGBVR12_EL1 REG_DBGBVR13_EL1 REG_DBGBVR14_EL1 REG_DBGBVR15_EL1 REG_DBGCLAIMCLR_EL1 REG_DBGCLAIMSET_EL1 REG_DBGDTR_EL0 REG_DBGDTRRX_EL0 REG_DBGDTRTX_EL0 REG_DBGPRCR_EL1 REG_DBGWCR0_EL1 REG_DBGWCR1_EL1 REG_DBGWCR2_EL1 REG_DBGWCR3_EL1 REG_DBGWCR4_EL1 REG_DBGWCR5_EL1 REG_DBGWCR6_EL1 REG_DBGWCR7_EL1 REG_DBGWCR8_EL1 REG_DBGWCR9_EL1 REG_DBGWCR10_EL1 REG_DBGWCR11_EL1 REG_DBGWCR12_EL1 REG_DBGWCR13_EL1 REG_DBGWCR14_EL1 REG_DBGWCR15_EL1 REG_DBGWVR0_EL1 REG_DBGWVR1_EL1 REG_DBGWVR2_EL1 REG_DBGWVR3_EL1 REG_DBGWVR4_EL1 REG_DBGWVR5_EL1 REG_DBGWVR6_EL1 REG_DBGWVR7_EL1 REG_DBGWVR8_EL1 REG_DBGWVR9_EL1 REG_DBGWVR10_EL1 REG_DBGWVR11_EL1 REG_DBGWVR12_EL1 REG_DBGWVR13_EL1 REG_DBGWVR14_EL1 REG_DBGWVR15_EL1 REG_DCZID_EL0 REG_DISR_EL1 REG_DIT REG_DLR_EL0 REG_DSPSR_EL0 REG_ELR_EL1 REG_ERRIDR_EL1 REG_ERRSELR_EL1 REG_ERXADDR_EL1 REG_ERXCTLR_EL1 REG_ERXFR_EL1 REG_ERXMISC0_EL1 REG_ERXMISC1_EL1 REG_ERXMISC2_EL1 REG_ERXMISC3_EL1 REG_ERXPFGCDN_EL1 REG_ERXPFGCTL_EL1 REG_ERXPFGF_EL1 REG_ERXSTATUS_EL1 REG_ESR_EL1 REG_FAR_EL1 REG_FPCR REG_FPSR REG_GCR_EL1 REG_GMID_EL1 REG_ICC_AP0R0_EL1 REG_ICC_AP0R1_EL1 REG_ICC_AP0R2_EL1 REG_ICC_AP0R3_EL1 REG_ICC_AP1R0_EL1 REG_ICC_AP1R1_EL1 REG_ICC_AP1R2_EL1 REG_ICC_AP1R3_EL1 REG_ICC_ASGI1R_EL1 REG_ICC_BPR0_EL1 REG_ICC_BPR1_EL1 REG_ICC_CTLR_EL1 REG_ICC_DIR_EL1 REG_ICC_EOIR0_EL1 REG_ICC_EOIR1_EL1 REG_ICC_HPPIR0_EL1 REG_ICC_HPPIR1_EL1 REG_ICC_IAR0_EL1 REG_ICC_IAR1_EL1 REG_ICC_IGRPEN0_EL1 REG_ICC_IGRPEN1_EL1 REG_ICC_PMR_EL1 REG_ICC_RPR_EL1 REG_ICC_SGI0R_EL1 REG_ICC_SGI1R_EL1 REG_ICC_SRE_EL1 REG_ICV_AP0R0_EL1 REG_ICV_AP0R1_EL1 REG_ICV_AP0R2_EL1 REG_ICV_AP0R3_EL1 REG_ICV_AP1R0_EL1 REG_ICV_AP1R1_EL1 REG_ICV_AP1R2_EL1 REG_ICV_AP1R3_EL1 REG_ICV_BPR0_EL1 REG_ICV_BPR1_EL1 REG_ICV_CTLR_EL1 REG_ICV_DIR_EL1 REG_ICV_EOIR0_EL1 REG_ICV_EOIR1_EL1 REG_ICV_HPPIR0_EL1 REG_ICV_HPPIR1_EL1 REG_ICV_IAR0_EL1 REG_ICV_IAR1_EL1 REG_ICV_IGRPEN0_EL1 REG_ICV_IGRPEN1_EL1 REG_ICV_PMR_EL1 REG_ICV_RPR_EL1 REG_ID_AA64AFR0_EL1 REG_ID_AA64AFR1_EL1 REG_ID_AA64DFR0_EL1 REG_ID_AA64DFR1_EL1 REG_ID_AA64ISAR0_EL1 REG_ID_AA64ISAR1_EL1 REG_ID_AA64MMFR0_EL1 REG_ID_AA64MMFR1_EL1 REG_ID_AA64MMFR2_EL1 REG_ID_AA64PFR0_EL1 REG_ID_AA64PFR1_EL1 REG_ID_AA64ZFR0_EL1 REG_ID_AFR0_EL1 REG_ID_DFR0_EL1 REG_ID_ISAR0_EL1 REG_ID_ISAR1_EL1 REG_ID_ISAR2_EL1 REG_ID_ISAR3_EL1 REG_ID_ISAR4_EL1 REG_ID_ISAR5_EL1 REG_ID_ISAR6_EL1 REG_ID_MMFR0_EL1 REG_ID_MMFR1_EL1 REG_ID_MMFR2_EL1 REG_ID_MMFR3_EL1 REG_ID_MMFR4_EL1 REG_ID_PFR0_EL1 REG_ID_PFR1_EL1 REG_ID_PFR2_EL1 REG_ISR_EL1 REG_LORC_EL1 REG_LOREA_EL1 REG_LORID_EL1 REG_LORN_EL1 REG_LORSA_EL1 REG_MAIR_EL1 REG_MDCCINT_EL1 REG_MDCCSR_EL0 REG_MDRAR_EL1 REG_MDSCR_EL1 REG_MIDR_EL1 REG_MPAM0_EL1 REG_MPAM1_EL1 REG_MPAMIDR_EL1 REG_MPIDR_EL1 REG_MVFR0_EL1 REG_MVFR1_EL1 REG_MVFR2_EL1 REG_NZCV REG_OSDLR_EL1 REG_OSDTRRX_EL1 REG_OSDTRTX_EL1 REG_OSECCR_EL1 REG_OSLAR_EL1 REG_OSLSR_EL1 REG_PAN REG_PAR_EL1 REG_PMBIDR_EL1 REG_PMBLIMITR_EL1 REG_PMBPTR_EL1 REG_PMBSR_EL1 REG_PMCCFILTR_EL0 REG_PMCCNTR_EL0 REG_PMCEID0_EL0 REG_PMCEID1_EL0 REG_PMCNTENCLR_EL0 REG_PMCNTENSET_EL0 REG_PMCR_EL0 REG_PMEVCNTR0_EL0 REG_PMEVCNTR1_EL0 REG_PMEVCNTR2_EL0 REG_PMEVCNTR3_EL0 REG_PMEVCNTR4_EL0 REG_PMEVCNTR5_EL0 REG_PMEVCNTR6_EL0 REG_PMEVCNTR7_EL0 REG_PMEVCNTR8_EL0 REG_PMEVCNTR9_EL0 REG_PMEVCNTR10_EL0 REG_PMEVCNTR11_EL0 REG_PMEVCNTR12_EL0 REG_PMEVCNTR13_EL0 REG_PMEVCNTR14_EL0 REG_PMEVCNTR15_EL0 REG_PMEVCNTR16_EL0 REG_PMEVCNTR17_EL0 REG_PMEVCNTR18_EL0 REG_PMEVCNTR19_EL0 REG_PMEVCNTR20_EL0 REG_PMEVCNTR21_EL0 REG_PMEVCNTR22_EL0 REG_PMEVCNTR23_EL0 REG_PMEVCNTR24_EL0 REG_PMEVCNTR25_EL0 REG_PMEVCNTR26_EL0 REG_PMEVCNTR27_EL0 REG_PMEVCNTR28_EL0 REG_PMEVCNTR29_EL0 REG_PMEVCNTR30_EL0 REG_PMEVTYPER0_EL0 REG_PMEVTYPER1_EL0 REG_PMEVTYPER2_EL0 REG_PMEVTYPER3_EL0 REG_PMEVTYPER4_EL0 REG_PMEVTYPER5_EL0 REG_PMEVTYPER6_EL0 REG_PMEVTYPER7_EL0 REG_PMEVTYPER8_EL0 REG_PMEVTYPER9_EL0 REG_PMEVTYPER10_EL0 REG_PMEVTYPER11_EL0 REG_PMEVTYPER12_EL0 REG_PMEVTYPER13_EL0 REG_PMEVTYPER14_EL0 REG_PMEVTYPER15_EL0 REG_PMEVTYPER16_EL0 REG_PMEVTYPER17_EL0 REG_PMEVTYPER18_EL0 REG_PMEVTYPER19_EL0 REG_PMEVTYPER20_EL0 REG_PMEVTYPER21_EL0 REG_PMEVTYPER22_EL0 REG_PMEVTYPER23_EL0 REG_PMEVTYPER24_EL0 REG_PMEVTYPER25_EL0 REG_PMEVTYPER26_EL0 REG_PMEVTYPER27_EL0 REG_PMEVTYPER28_EL0 REG_PMEVTYPER29_EL0 REG_PMEVTYPER30_EL0 REG_PMINTENCLR_EL1 REG_PMINTENSET_EL1 REG_PMMIR_EL1 REG_PMOVSCLR_EL0 REG_PMOVSSET_EL0 REG_PMSCR_EL1 REG_PMSELR_EL0 REG_PMSEVFR_EL1 REG_PMSFCR_EL1 REG_PMSICR_EL1 REG_PMSIDR_EL1 REG_PMSIRR_EL1 REG_PMSLATFR_EL1 REG_PMSWINC_EL0 REG_PMUSERENR_EL0 REG_PMXEVCNTR_EL0 REG_PMXEVTYPER_EL0 REG_REVIDR_EL1 REG_RGSR_EL1 REG_RMR_EL1 REG_RNDR REG_RNDRRS REG_RVBAR_EL1 REG_SCTLR_EL1 REG_SCXTNUM_EL0 REG_SCXTNUM_EL1 REG_SP_EL0 REG_SP_EL1 REG_SPSel REG_SPSR_abt REG_SPSR_EL1 REG_SPSR_fiq REG_SPSR_irq REG_SPSR_und REG_SSBS REG_TCO REG_TCR_EL1 REG_TFSR_EL1 REG_TFSRE0_EL1 REG_TPIDR_EL0 REG_TPIDR_EL1 REG_TPIDRRO_EL0 REG_TRFCR_EL1 REG_TTBR0_EL1 REG_TTBR1_EL1 REG_UAO REG_VBAR_EL1 REG_ZCR_EL1 SYSREG_END )
const ( SR_READ = 1 << iota SR_WRITE )
const (
BIG = 2048 - 8
)
const OP_NOOP = 0xd503201f
Used for padinng NOOP instruction
const (
REGFROM = 1
)
const REG_EXT = obj.RBaseARM64 + 1<<11
const REG_LSL = obj.RBaseARM64 + 1<<9
Not registers, but flags that can be combined with regular register constants to indicate extended register conversion. When checking, you should subtract obj.RBaseARM64 first. From this difference, bit 11 indicates extended register, bits 8-10 select the conversion mode. REG_LSL is the index shift specifier, bit 9 indicates shifted offset register.
Variables ¶
var ARM64DWARFRegisters = map[int16]int16{ REG_R0: 0, REG_R1: 1, REG_R2: 2, REG_R3: 3, REG_R4: 4, REG_R5: 5, REG_R6: 6, REG_R7: 7, REG_R8: 8, REG_R9: 9, REG_R10: 10, REG_R11: 11, REG_R12: 12, REG_R13: 13, REG_R14: 14, REG_R15: 15, REG_R16: 16, REG_R17: 17, REG_R18: 18, REG_R19: 19, REG_R20: 20, REG_R21: 21, REG_R22: 22, REG_R23: 23, REG_R24: 24, REG_R25: 25, REG_R26: 26, REG_R27: 27, REG_R28: 28, REG_R29: 29, REG_R30: 30, REG_F0: 64, REG_F1: 65, REG_F2: 66, REG_F3: 67, REG_F4: 68, REG_F5: 69, REG_F6: 70, REG_F7: 71, REG_F8: 72, REG_F9: 73, REG_F10: 74, REG_F11: 75, REG_F12: 76, REG_F13: 77, REG_F14: 78, REG_F15: 79, REG_F16: 80, REG_F17: 81, REG_F18: 82, REG_F19: 83, REG_F20: 84, REG_F21: 85, REG_F22: 86, REG_F23: 87, REG_F24: 88, REG_F25: 89, REG_F26: 90, REG_F27: 91, REG_F28: 92, REG_F29: 93, REG_F30: 94, REG_F31: 95, REG_V0: 64, REG_V1: 65, REG_V2: 66, REG_V3: 67, REG_V4: 68, REG_V5: 69, REG_V6: 70, REG_V7: 71, REG_V8: 72, REG_V9: 73, REG_V10: 74, REG_V11: 75, REG_V12: 76, REG_V13: 77, REG_V14: 78, REG_V15: 79, REG_V16: 80, REG_V17: 81, REG_V18: 82, REG_V19: 83, REG_V20: 84, REG_V21: 85, REG_V22: 86, REG_V23: 87, REG_V24: 88, REG_V25: 89, REG_V26: 90, REG_V27: 91, REG_V28: 92, REG_V29: 93, REG_V30: 94, REG_V31: 95, }
http://infocenter.arm.com/help/topic/com.arm.doc.ecm0665627/abi_sve_aadwarf_100985_0000_00_en.pdf
var Anames = []string{}/* 529 elements not displayed */
var Linkarm64 = obj.LinkArch{ Arch: sys.ArchARM64, Init: buildop, Preprocess: preprocess, Assemble: span7, Progedit: progedit, UnaryDst: unaryDst, DWARFRegisters: ARM64DWARFRegisters, }
var SystemReg = []struct { Name string Reg int16 Enc uint32 // AccessFlags is the readable and writeable property of system register. AccessFlags uint8 }{}/* 431 elements not displayed */