README ¶
tcell
Tcell is a work in progress (Gamma). Please use with caution; interfaces may change in before final release. That said, our confidence in Tcell's stability is increasing. If you would like to use it in your own application, it is recommended that you drop a message to garrett@damore.org before commitment.
Package tcell provides a cell based view for text terminals, like xterm. It was inspired by termbox, but differs from termbox in some important ways. It also adds substantial functionality beyond termbox.
Examples
- proxima5 - space shooter (video)
- govisor - service management UI (screenshot)
- mouse demo - screenshot - included mouse test
- gomatrix - converted from Termbox
- micro - lightweight text editor with syntax-highlighting and themes
- godu - simple golang utility helping to discover large files/folders.
Pure Go Terminfo Database
First, it includes a full parser and expander for terminfo capability strings, so that it can avoid hard coding escape strings for formatting. It also favors portability, and includes support for all POSIX systems, at the slight expense of needing cgo support for terminal initializations. (This may be corrected when Go provides standard support for terminal handling via termio ioctls on all POSIX platforms.) The database itself, while built using CGO, as well as the parser for it, is implemented in Pure Go.
The database is also flexible & extensible, and can modified by either running a program to build the database, or hand editing of simple JSON files.
More Portable
Tcell is portable to a wider variety of systems. It relies on standard POSIX supported function calls (on POSIX platforms) for setting terminal modes, which leads to improved support for a broader array of platforms. This does come at the cost of requiring your code to be able to use CGO, but we believe that the vastly improved portability justifies this requirement. Note that the functions called are part of the standard C library, so there shouldn't be any additional external requirements beyond that required for every POSIX program.
No async IO
Tcell is able to operate without requiring SIGIO signals (unlike Termbox), or asynchronous I/O, and can instead use standard Go file objects and Go routines. This means it should be safe, especially for use with programs that use exec, or otherwise need to manipulate the tty streams. This model is also much closer to idiomatic Go, leading to fewer surprises.
Richer Unicode & non-Unicode support
Tcell includes enhanced support for Unicode, include wide characters and combining characters, provided your terminal can support them. Note that Windows terminals generally don't support the full Unicode repertoire.
It will also convert to and from Unicode locales, so that the program can work with UTF-8 internally, and get reasonable output in other locales. We try hard to convert to native characters on both input and output, and on output Tcell even makes use of the alternate character set to facilitate drawing certain characters.
More Function Keys
It also has richer support for a larger number of special keys that some terminals can send.
Better color handling
Tcell will respect your terminal's color space as specified within your terminfo entries, so that for example attempts to emit color sequences on VT100 terminals won't result in unintended consequences.
In Windows mode, Tcell supports 16 colors, bold, dim, and reverse, instead of just termbox's 8 colors with reverse. (Note that there is some conflation with bold/dim and colors.)
Tcell maps 16 colors down to 8, for Terminals that need it. (The upper 8 colors are just brighter versions of the lower 8.)
Better mouse support
Tcell supports enhanced mouse tracking mode, so your application can receive regular mouse motion events, and wheel events, if your terminal supports it.
Why not just patch termbox-go?
I started this project originally by submitting patches to the author of go-termbox, but due to some fundamental differences of opinion, I thought it might be simpler just to start from scratch. At this point, Tcell has far exceeded the capabilities of termbox.
Termbox compatibility
A compatibility layer for termbox is provided in the compat directory. To use it, try importing "github.com/gdamore/tcell/termbox" instead. Most termbox-go programs will probably work without further modification.
Working With Unicode
Internally Tcell uses UTF-8, just like Go. However, Tcell understands how to convert to and from other character sets, using the capabilities of the golang.org/x/text/encoding packages. Your application must supply them, as the full set of the most common ones bloats the program by about 2MB. If you're lazy, and want them all anyway, see the encoding sub-directory.
Wide & Combining Characters
The SetContent() API takes a primary rune, and an optional list of combining runes. If any of the runes is a wide (East Asian) rune occupying two cells, then the library will skip output from the following cell, but care must be taken in the application to avoid explicitly attempting to set content in the next cell, otherwise the results are undefined. (Normally wide character is displayed, and the other character is not; do not depend on that behavior.)
Experience has shown that the vanilla Windows 8 console application does not support any of these characters properly, but at least some options like ConEmu do support Wide characters at least.
Colors
Tcell assumes the ANSI/XTerm color model, including the 256 color map that XTerm uses when it supports 256 colors. The terminfo guidance will be honored, with respect to the number of colors supported. Also, only terminals which expose ANSI style setaf and setab will support color; if you have a color terminal that only has setf and setb, please let me know; it wouldn't be hard to add that if there is need.
24-bit Color
Tcell supports true color! (That is, if your terminal can support it, Tcell can accurately display 24-bit color.)
To use 24-bit color, you need to use a terminal that supports it. Modern xterm and similar teminal emulators can support this. As terminfo lacks any way to describe this capability, we fabricate the capability for terminals with names ending in *-truecolor. The stock distribution ships with a database that defines xterm-truecolor. To try it out, set your TERM variable to xterm-truecolor.
When using TrueColor, programs will display the colors that the programmer intended, overriding any "themes" you may have set in your terminal emulator. (For some cases, accurate color fidelity is more important than respecting themes. For other cases, such as typical text apps that only use a few colors, its more desirable to respect the themes that the user has established.)
If you find this undesirable, you can either use a TERM variable that lacks the TRUECOLOR setting, or set TCELL_TRUECOLOR=disable in your environment.
Performance
Reasonable attempts have been made to minimize sending data to terminals, avoiding repeated sequences or drawing the same cell on refresh updates.
Terminfo
(Not relevent for Windows users.)
The Terminfo implementation operates with two forms of database. The first is the database.go file, which contains a number of real database entries that are compiled into the program directly. This should minimize calling out to database file searches.
The second is a JSON file, that contains the same information, which can be located either by the $TCELLDB environment file, $HOME/.tcelldb, or is located in the Go source directory as database.json.
These files (both the Go database.go and the database.json) file can be generated using the mkinfo.go program. If you need to regnerate the entire set for some reason, run the mkdatabase.sh file. The generation uses the terminfo routines on the system to populate the data files.
The mkinfo.go program can also be used to generate specific database entries for named terminals, in case your favorite terminal is missing. (If you find that this is the case, please let me know and I'll try to add it!)
Tcell requires that the terminal support the 'cup' mode of cursor addressing. Terminals without absolute cursor addressability are not supported. This is unlikely to be a problem; such terminals have not been mass produced since the early 1970s.
Mouse Support
Mouse support is detected via the "kmous" terminfo variable, however, enablement/disablement and decoding mouse events is done using hard coded sequences based on the XTerm X11 model. As of this writing all popular terminals with mouse tracking support this model. (Full terminfo support is not possible as terminfo sequences are not defined.)
On Windows, the mouse works normally.
Mouse wheel buttons on various terminals are known to work, but the support in terminal emulators, as well as support for various buttons and live mouse tracking, varies widely. As a particular datum, MacOS X Terminal does not support Mouse events at all (as of MacOS 10.10, aka Yosemite.) The excellent iTerm application is fully supported, as is vanilla XTerm.
Mouse tracking with live tracking also varies widely. Current XTerm implementations, as well as current Screen and iTerm2, and Windows consoles, all support this quite nicely. On other platforms you might find that only mouse click and release events are reported, with no intervening motion events. It really depends on your terminal.
Testablity
There is a SimulationScreen, that can be used to simulate a real screen for automated testing. The supplied tests do this. The simulation contains event delivery, screen resizing support, and capabilities to inject events and examine "physical" screen contents.
Platforms
Systems (Linux, FreeBSD, MacOS, Solaris, etc.)
On POSIX systems, a POSIX termios implementation with /dev/tty is required. On a small subset of these platforms (such as Solaris/illumos), we require cgo to run, in order to access termios. (Note that Linux and BSD systems do not require CGO for most purposes.)
(Note: CGO support is required if you wish to rebuild the terminal database from the system's native terminfo binary files. This is because we use the system's native libterminfo to access that binary data. We probably could eliminate that in the future by using a terminfo decompiler such as infocmp.)
Windows
Windows console mode applications are supported. Unfortunately mintty and other cygwin style applications are not supported.
Modern console applications like ConEmu support all the good features (resize, mouse tracking, etc.)
I haven't figured out how to cleanly resolve the dichotomy between cygwin style termios and the Windows Console API; it seems that perhaps nobody else has either. If anyone has suggestions, let me know! Really, if you're using a Windows application, you should use the native Windows console or a fully compatible console implementation. Hopefully the Windows 10 console is more functional in this regard.
Plan9 and Native Client (Nacl)
The nacl and plan9 platforms won't work, but compilation stubs are supplied for folks that want to include parts of this in software targetting those platforms. The Simulation screen works, but as Tcell doesn't know how to allocate a real screen object on those platforms, NewScreen() will fail.
Commercial Support
This software is absolutely free, but if you want to obtain commercial support (giving prioritized access to the developer, etc. on an hourly rate), please drop a line to info@staysail.tech
I also welcome donations at Patreon, if you just want to feel good about defraying development costs: https://www.patreon.com/gedamore
Documentation ¶
Overview ¶
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations.
It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries.
Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.)
If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and outupt, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used.
A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Index ¶
- Constants
- Variables
- func GetEncoding(charset string) encoding.Encoding
- func RegisterEncoding(charset string, enc encoding.Encoding)
- func SetEncodingFallback(fb EncodingFallback)
- type AttrMask
- type ButtonMask
- type CellBuffer
- func (cb *CellBuffer) Dirty(x, y int) bool
- func (cb *CellBuffer) Fill(r rune, style Style)
- func (cb *CellBuffer) GetContent(x, y int) (mainc rune, combc []rune, style Style, width int)
- func (cb *CellBuffer) Invalidate()
- func (cb *CellBuffer) Resize(w, h int)
- func (cb *CellBuffer) SetContent(x int, y int, mainc rune, combc []rune, style Style)
- func (cb *CellBuffer) SetDirty(x, y int, dirty bool)
- func (cb *CellBuffer) Size() (int, int)
- type Color
- type EncodingFallback
- type ErrorEvent
- type Event
- type EventKey
- type Key
- type ModMask
- type MouseEvent
- type ResizeEvent
- type Screen
- type SimCell
- type SimScreen
- func (s *SimScreen) CanDisplay(r rune, checkFallbacks bool) bool
- func (s *SimScreen) CharacterSet() string
- func (s *SimScreen) Clear()
- func (s *SimScreen) Close() error
- func (s *SimScreen) Colors() int
- func (s *SimScreen) DisableMouse()
- func (s *SimScreen) EnableMouse()
- func (s *SimScreen) Fill(r rune, style Style)
- func (s *SimScreen) GetContent(x, y int) (rune, []rune, Style, int)
- func (s *SimScreen) GetContents() ([]SimCell, int, int)
- func (s *SimScreen) GetCursor() (int, int, bool)
- func (s *SimScreen) HasKey(Key) bool
- func (s *SimScreen) HasMouse() bool
- func (s *SimScreen) InjectKey(key Key, r rune, mod ModMask)
- func (s *SimScreen) InjectKeyBytes(b []byte) bool
- func (s *SimScreen) InjectMouse(x, y int, buttons ButtonMask, mod ModMask)
- func (s *SimScreen) PollEvent() Event
- func (s *SimScreen) PostEvent(ev Event) error
- func (s *SimScreen) PostEventWait(ev Event)
- func (s *SimScreen) RegisterRuneFallback(r rune, subst string)
- func (s *SimScreen) Resize(int, int, int, int)
- func (s *SimScreen) SetContent(x, y int, mainc rune, combc []rune, st Style)
- func (s *SimScreen) SetCursor(x, y int)
- func (s *SimScreen) SetSize(w, h int)
- func (s *SimScreen) SetStyle(style Style)
- func (s *SimScreen) Show()
- func (s *SimScreen) Size() (int, int)
- func (s *SimScreen) Sync()
- func (s *SimScreen) UnregisterRuneFallback(r rune)
- type Style
- func (s Style) Background(c Color) Style
- func (s Style) Blink(on bool) Style
- func (s Style) Bold(on bool) Style
- func (s Style) Decompose() (fg Color, bg Color, attr AttrMask)
- func (s Style) Dim(on bool) Style
- func (s Style) Foreground(c Color) Style
- func (s Style) Normal() Style
- func (s Style) Reverse(on bool) Style
- func (s Style) Underline(on bool) Style
Constants ¶
const ( ColorGrey = ColorGray ColorDimGrey = ColorDimGray ColorDarkGrey = ColorDarkGray ColorDarkSlateGrey = ColorDarkSlateGray ColorLightGrey = ColorLightGray ColorLightSlateGrey = ColorLightSlateGray ColorSlateGrey = ColorSlateGray )
These are aliases for the color gray, because some of us spell it as grey.
const ( // EncodingFallbackFail behavior causes GetEncoding to fail // when it cannot find an encoding. EncodingFallbackFail = iota // EncodingFallbackASCII behaviore causes GetEncoding to fall back // to a 7-bit ASCII encoding, if no other encoding can be found. EncodingFallbackASCII // EncodingFallbackUTF8 behavior causes GetEncoding to assume // UTF8 can pass unmodified upon failure. Note that this behavior // is not recommended, unless you are sure your terminal can cope // with real UTF8 sequences. EncodingFallbackUTF8 )
const ( KeyBackspace = KeyBS KeyTab = KeyTAB KeyEsc = KeyESC KeyEscape = KeyESC KeyEnter = KeyCR KeyBackspace2 = KeyDEL )
These keys are aliases for other names.
const ( RuneSterling = '£' RuneDArrow = '↓' RuneLArrow = '←' RuneRArrow = '→' RuneUArrow = '↑' RuneBullet = '·' RuneBoard = '░' RuneCkBoard = '▒' RuneDegree = '°' RuneDiamond = '◆' RuneGEqual = '≥' RunePi = 'π' RuneHLine = '─' RuneLantern = '§' RunePlus = '┼' RuneLEqual = '≤' RuneLLCorner = '└' RuneLRCorner = '┘' RuneNEqual = '≠' RunePlMinus = '±' RuneS1 = '⎺' RuneS3 = '⎻' RuneS7 = '⎼' RuneS9 = '⎽' RuneBlock = '█' RuneTTee = '┬' RuneRTee = '┤' RuneLTee = '├' RuneBTee = '┴' RuneULCorner = '┌' RuneURCorner = '┐' RuneVLine = '│' )
The names of these constants are chosen to match Terminfo names, modulo case, and changing the prefix from ACS_ to Rune. These are the runes we provide extra special handling for, with ASCII fallbacks for terminals that lack them.
Variables ¶
var ( // ErrTermNotFound indicates that a suitable terminal entry could // not be found. This can result from either not having TERM set, // or from the TERM failing to support certain minimal functionality, // in particular absolute cursor addressability (the cup capability) // is required. For example, legacy "adm3" lacks this capability, // whereas the slightly newer "adm3a" supports it. This failure // occurs most often with "dumb". ErrTermNotFound = terminfo.ErrTermNotFound // ErrNoScreen indicates that no suitable screen could be found. // This may result from attempting to run on a platform where there // is no support for either termios or console I/O (such as nacl), // or from running in an environment where there is no access to // a suitable console/terminal device. (For example, running on // without a controlling TTY or with no /dev/tty on POSIX platforms.) ErrNoScreen = errors.New("no suitable screen available") // ErrNoCharset indicates that the locale environment the // program is not supported by the program, because no suitable // encoding was found for it. This problem never occurs if // the environment is UTF-8 or UTF-16. ErrNoCharset = errors.New("character set not supported") // ErrEventQFull indicates that the event queue is full, and // cannot accept more events. ErrEventQFull = errors.New("event queue full") )
var ColorNames = map[string]Color{}/* 146 elements not displayed */
ColorNames holds the written names of colors. Useful to present a list of recognized named colors.
var ColorValues = map[Color]int32{}/* 379 elements not displayed */
ColorValues maps color constants to their RGB values.
var KeyNames = map[Key]string{}/* 118 elements not displayed */
KeyNames holds the written names of special keys. Useful to echo back a key name, or to look up a key from a string value.
var RuneFallbacks = map[rune]string{ RuneSterling: "f", RuneDArrow: "v", RuneLArrow: "<", RuneRArrow: ">", RuneUArrow: "^", RuneBullet: "o", RuneBoard: "#", RuneCkBoard: ":", RuneDegree: "\\", RuneDiamond: "+", RuneGEqual: ">", RunePi: "*", RuneHLine: "-", RuneLantern: "#", RunePlus: "+", RuneLEqual: "<", RuneLLCorner: "+", RuneLRCorner: "+", RuneNEqual: "!", RunePlMinus: "#", RuneS1: "~", RuneS3: "-", RuneS7: "-", RuneS9: "_", RuneBlock: "#", RuneTTee: "+", RuneRTee: "+", RuneLTee: "+", RuneBTee: "+", RuneULCorner: "+", RuneURCorner: "+", RuneVLine: "|", }
RuneFallbacks is the default map of fallback strings that will be used to replace a rune when no other more appropriate transformation is available, and the rune cannot be displayed directly.
New entries may be added to this map over time, as it becomes clear that such is desirable. Characters that represent either letters or numbers should not be added to this list unless it is certain that the meaning will still convey unambiguously.
As an example, it would be appropriate to add an ASCII mapping for the full width form of the letter 'A', but it would not be appropriate to do so a glyph representing the country China.
Programs that desire richer fallbacks may register additional ones, or change or even remove these mappings with Screen.RegisterRuneFallback Screen.UnregisterRuneFallback methods.
Note that Unicode is presumed to be able to display all glyphs. This is a pretty poor assumption, but there is no easy way to figure out which glyphs are supported in a given font. Hence, some care in selecting the characters you support in your application is still appropriate.
Functions ¶
func GetEncoding ¶
GetEncoding is used by Screen implementors who want to locate an encoding for the given character set name. Note that this will return nil for either the Unicode (UTF-8) or ASCII encodings, since we don't use encodings for them but instead have our own native methods.
func RegisterEncoding ¶
RegisterEncoding may be called by the application to register an encoding. The presence of additional encodings will facilitate application usage with terminal environments where the I/O subsystem does not support Unicode.
Windows systems use Unicode natively, and do not need any of the encoding subsystem when using Windows Console screens.
Please see the Go documentation for golang.org/x/text/encoding -- most of the common ones exist already as stock variables. For example, ISO8859-15 can be registered using the following code:
import "golang.org/x/text/encoding/charmap" ... RegisterEncoding("ISO8859-15", charmap.ISO8859_15)
Aliases can be registered as well, for example "8859-15" could be an alias for "ISO8859-15".
For POSIX systems, the tcell package will check the environment variables LC_ALL, LC_CTYPE, and LANG (in that order) to determine the character set. These are expected to have the following pattern:
$language[.$codeset[@$variant]
We extract only the $codeset part, which will usually be something like UTF-8 or ISO8859-15 or KOI8-R. Note that if the locale is either "POSIX" or "C", then we assume US-ASCII (the POSIX 'portable character set' and assume all other characters are somehow invalid.)
Modern POSIX systems and terminal emulators may use UTF-8, and for those systems, this API is also unnecessary. For example, Darwin (MacOS X) and modern Linux running modern xterm generally will out of the box without any of this. Use of UTF-8 is recommended when possible, as it saves quite a lot processing overhead.
Note that some encodings are quite large (for example GB18030 which is a superset of Unicode) and so the application size can be expected ot increase quite a bit as each encoding is added. The East Asian encodings have been seen to add 100-200K per encoding to the application size.
func SetEncodingFallback ¶
func SetEncodingFallback(fb EncodingFallback)
SetEncodingFallback changes the behavior of GetEncoding when a suitable encoding is not found. The default is EncodingFallbackFail, which causes GetEncoding to simply return nil.
Types ¶
type AttrMask ¶
type AttrMask int
AttrMask represents a mask of text attributes, apart from color. Note that support for attributes may vary widely across terminals.
type ButtonMask ¶
type ButtonMask int16
ButtonMask is a mask of mouse buttons and wheel events. Mouse button presses are normally delivered as both press and release events. Mouse wheel events are normally just single impulse events. Windows supports up to eight separate buttons plus all four wheel directions, but XTerm can only support mouse buttons 1-3 and wheel up/down. Its not unheard of for terminals to support only one or two buttons (think Macs). Old terminals, and true emulations (such as vt100) won't support mice at all, of course.
const ( Button1 ButtonMask = 1 << iota // Usually left mouse button. Button2 // Usually the middle mouse button. Button3 // Usually the right mouse button. Button4 // Often a side button (thumb/next). Button5 // Often a side button (thumb/prev). Button6 Button7 Button8 WheelUp // Wheel motion up/away from user. WheelDown // Wheel motion down/towards user. WheelLeft // Wheel motion to left. WheelRight // Wheel motion to right. ButtonNone ButtonMask = 0 // No button or wheel events. )
These are the actual button values.
type CellBuffer ¶
type CellBuffer struct {
// contains filtered or unexported fields
}
CellBuffer represents a two dimensional array of character cells. This is primarily intended for use by Screen implementors; it contains much of the common code they need. To create one, just declare a variable of its type; no explicit initialization is necessary.
CellBuffer is not thread safe.
func (*CellBuffer) Dirty ¶
func (cb *CellBuffer) Dirty(x, y int) bool
Dirty checks if a character at the given location needs an to be refreshed on the physical display. This returns true if the cell content is different since the last time it was marked clean.
func (*CellBuffer) Fill ¶
func (cb *CellBuffer) Fill(r rune, style Style)
Fill fills the entire cell buffer array with the specified character and style. Normally choose ' ' to clear the screen. This API doesn't support combining characters.
func (*CellBuffer) GetContent ¶
GetContent returns the contents of a character cell, including the primary rune, any combining character runes (which will usually be nil), the style, and the display width in cells. (The width can be either 1, normally, or 2 for East Asian full-width characters.)
func (*CellBuffer) Invalidate ¶
func (cb *CellBuffer) Invalidate()
Invalidate marks all characters within the buffer as dirty.
func (*CellBuffer) Resize ¶
func (cb *CellBuffer) Resize(w, h int)
Resize is used to resize the cells array, with different dimensions, while preserving the original contents. The cells will be invalidated so that they can be redrawn.
todo: this method has to be called when initializing an CellBuffer the empy CellBuffer is actually useless
func (*CellBuffer) SetContent ¶
SetContent sets the contents (primary rune, combining runes, and style) for a cell at a given location.
func (*CellBuffer) SetDirty ¶
func (cb *CellBuffer) SetDirty(x, y int, dirty bool)
SetDirty is normally used to indicate that a cell has been displayed (in which case dirty is false), or to manually force a cell to be marked dirty.
func (*CellBuffer) Size ¶
func (cb *CellBuffer) Size() (int, int)
Size returns the (width, height) in cells of the buffer.
type Color ¶
type Color int32
Color represents a color. The low numeric values are the same as used by ECMA-48, and beyond that XTerm. A 24-bit RGB value may be used by adding in the ColorIsRGB flag. For Color names we use the W3C approved color names.
Note that on various terminals colors may be approximated however, or not supported at all. If no suitable representation for a color is known, the library will simply not set any color, deferring to whatever default attributes the terminal uses.
const ( // ColorDefault is used to leave the Color unchanged from whatever // system or teminal default may exist. ColorDefault Color = -1 // ColorIsRGB is used to indicate that the numeric value is not // a known color constant, but rather an RGB value. The lower // order 3 bytes are RGB. ColorIsRGB Color = 1 << 24 )
const ( ColorBlack Color = iota ColorMaroon ColorGreen ColorOlive ColorPurple ColorTeal ColorSilver ColorGray ColorRed ColorLime ColorYellow ColorBlue ColorFuchsia ColorAqua ColorWhite Color16 Color17 Color18 Color19 Color20 Color21 Color22 Color23 Color24 Color25 Color26 Color27 Color28 Color29 Color30 Color31 Color32 Color33 Color34 Color35 Color36 Color37 Color38 Color39 Color40 Color41 Color42 Color43 Color44 Color45 Color46 Color47 Color48 Color49 Color50 Color51 Color52 Color53 Color54 Color55 Color56 Color57 Color58 Color59 Color60 Color61 Color62 Color63 Color64 Color65 Color66 Color67 Color68 Color69 Color70 Color71 Color72 Color73 Color74 Color75 Color76 Color77 Color78 Color79 Color80 Color81 Color82 Color83 Color84 Color85 Color86 Color87 Color88 Color89 Color90 Color91 Color92 Color93 Color94 Color95 Color96 Color97 Color98 Color99 Color100 Color101 Color102 Color103 Color104 Color105 Color106 Color107 Color108 Color109 Color110 Color111 Color112 Color113 Color114 Color115 Color116 Color117 Color118 Color119 Color120 Color121 Color122 Color123 Color124 Color125 Color126 Color127 Color128 Color129 Color130 Color131 Color132 Color133 Color134 Color135 Color136 Color137 Color138 Color139 Color140 Color141 Color142 Color143 Color144 Color145 Color146 Color147 Color148 Color149 Color150 Color151 Color152 Color153 Color154 Color155 Color156 Color157 Color158 Color159 Color160 Color161 Color162 Color163 Color164 Color165 Color166 Color167 Color168 Color169 Color170 Color171 Color172 Color173 Color174 Color175 Color176 Color177 Color178 Color179 Color180 Color181 Color182 Color183 Color184 Color185 Color186 Color187 Color188 Color189 Color190 Color191 Color192 Color193 Color194 Color195 Color196 Color197 Color198 Color199 Color200 Color201 Color202 Color203 Color204 Color205 Color206 Color207 Color208 Color209 Color210 Color211 Color212 Color213 Color214 Color215 Color216 Color217 Color218 Color219 Color220 Color221 Color222 Color223 Color224 Color225 Color226 Color227 Color228 Color229 Color230 Color231 Color232 Color233 Color234 Color235 Color236 Color237 Color238 Color239 Color240 Color241 Color242 Color243 Color244 Color245 Color246 Color247 Color248 Color249 Color250 Color251 Color252 Color253 Color254 Color255 ColorAliceBlue ColorAntiqueWhite ColorAquaMarine ColorAzure ColorBeige ColorBisque ColorBlanchedAlmond ColorBlueViolet ColorBrown ColorBurlyWood ColorCadetBlue ColorChartreuse ColorChocolate ColorCoral ColorCornflowerBlue ColorCornsilk ColorCrimson ColorDarkBlue ColorDarkCyan ColorDarkGoldenrod ColorDarkGray ColorDarkGreen ColorDarkKhaki ColorDarkMagenta ColorDarkOliveGreen ColorDarkOrange ColorDarkOrchid ColorDarkRed ColorDarkSalmon ColorDarkSeaGreen ColorDarkSlateBlue ColorDarkSlateGray ColorDarkTurquoise ColorDarkViolet ColorDeepPink ColorDeepSkyBlue ColorDimGray ColorDodgerBlue ColorFireBrick ColorFloralWhite ColorForestGreen ColorGainsboro ColorGhostWhite ColorGold ColorGoldenrod ColorGreenYellow ColorHoneydew ColorHotPink ColorIndianRed ColorIndigo ColorIvory ColorKhaki ColorLavender ColorLavenderBlush ColorLawnGreen ColorLemonChiffon ColorLightBlue ColorLightCoral ColorLightCyan ColorLightGoldenrodYellow ColorLightGray ColorLightGreen ColorLightPink ColorLightSalmon ColorLightSeaGreen ColorLightSkyBlue ColorLightSlateGray ColorLightSteelBlue ColorLightYellow ColorLimeGreen ColorLinen ColorMediumAquamarine ColorMediumBlue ColorMediumOrchid ColorMediumPurple ColorMediumSeaGreen ColorMediumSlateBlue ColorMediumSpringGreen ColorMediumTurquoise ColorMediumVioletRed ColorMidnightBlue ColorMintCream ColorMistyRose ColorMoccasin ColorOldLace ColorOliveDrab ColorOrange ColorOrangeRed ColorOrchid ColorPaleGoldenrod ColorPaleGreen ColorPaleTurquoise ColorPaleVioletRed ColorPapayaWhip ColorPeachPuff ColorPeru ColorPink ColorPlum ColorPowderBlue ColorRebeccaPurple ColorRosyBrown ColorRoyalBlue ColorSaddleBrown ColorSalmon ColorSandyBrown ColorSeaGreen ColorSeashell ColorSienna ColorSkyblue ColorSlateBlue ColorSlateGray ColorSnow ColorSpringGreen ColorSteelBlue ColorTan ColorThistle ColorTomato ColorTurquoise ColorViolet ColorWheat ColorWhiteSmoke ColorYellowGreen )
Note that the order of these options is important -- it follows the definitions used by ECMA and XTerm. Hence any further named colors must begin at a value not less than 256.
func FindColor ¶
FindColor attempts to find a given color, or the best match possible for it, from the palette given. This is an expensive operation, so results should be cached by the caller.
func NewHexColor ¶
NewHexColor returns a color using the given 24-bit RGB value.
func NewRGBColor ¶
NewRGBColor returns a new color with the given red, green, and blue values. Each value must be represented in the range 0-255.
func ParseColor ¶
GetColor creates a Color from a color name (W3C name). A hex value may be supplied as a string in the format "#ffffff".
type EncodingFallback ¶
type EncodingFallback int
EncodingFallback describes how the system behavees when the locale requires a character set that we do not support. The system always supports UTF-8 and US-ASCII. On Windows consoles, UTF-16LE is also supported automatically. Other character sets must be added using the RegisterEncoding API. (A large group of nearly all of them can be added using the RegisterAll function in the encoding sub package.)
type ErrorEvent ¶
type ErrorEvent struct {
// contains filtered or unexported fields
}
An ErrorEvent is an event representing some sort of error, and carries an error payload.
func NewErrorEvent ¶
func NewErrorEvent(err error) *ErrorEvent
NewEventError creates an ErrorEvent with the given error payload.
type EventKey ¶
type EventKey struct {
// contains filtered or unexported fields
}
EventKey represents a key press. Usually this is a key press followed by a key release, but since terminal programs don't have a way to report key release events, we usually get just one event. If a key is held down then the terminal may synthesize repeated key presses at some predefined rate. We have no control over that, nor visibility into it.
In some cases, we can have a modifier key, such as ModAlt, that can be generated with a key press. (This usually is represented by having the high bit set, or in some cases, by sending an ESC prior to the rune.)
If the value of Key() is KeyRune, then the actual key value will be available with the Rune() method. This will be the case for most keys. In most situations, the modifiers will not be set. For example, if the rune is 'A', this will be reported without the ModShift bit set, since really can't tell if the Shift key was pressed (it might have been CAPSLOCK, or a terminal that only can send capitals, or keyboard with separate capital letters from lower case letters).
Generally, terminal applications have far less visibility into keyboard activity than graphical applications. Hence, they should avoid depending overly much on availability of modifiers, or the availability of any specific keys.
func NewEventKey ¶
NewEventKey attempts to create a suitable event. It parses the various ASCII control sequences if KeyRune is passed for Key, but if the caller has more precise information it should set that specifically. Callers that aren't sure about modifier state (most) should just pass ModNone.
func (*EventKey) Key ¶
Key returns a virtual key code. We use this to identify specific key codes, such as KeyEnter, etc. Most control and function keys are reported with unique Key values. Normal alphanumeric and punctuation keys will generally return KeyRune here; the specific key can be further decoded using the Rune() function.
func (*EventKey) Modifiers ¶
Modifiers returns the modifiers that were present with the key press. Note that not all platforms and terminals support this equally well, and some cases we will not not know for sure. Hence, applications should avoid using this in most circumstances.
func (*EventKey) Name ¶
Name returns a printable value or the key stroke. This can be used when printing the event, for example.
type Key ¶
type Key int16
Key is a generic value for representing keys, and especially special keys (function keys, cursor movement keys, etc.) For normal keys, like ASCII letters, we use KeyRune, and then expect the application to inspect the Rune() member of the EventKey.
const ( KeyRune Key = iota + 256 KeyUp KeyDown KeyRight KeyLeft KeyUpLeft KeyUpRight KeyDownLeft KeyDownRight KeyCenter KeyPgUp KeyPgDn KeyHome KeyEnd KeyInsert KeyDelete KeyHelp KeyExit KeyClear KeyCancel KeyPrint KeyPause KeyBacktab KeyF1 KeyF2 KeyF3 KeyF4 KeyF5 KeyF6 KeyF7 KeyF8 KeyF9 KeyF10 KeyF11 KeyF12 KeyF13 KeyF14 KeyF15 KeyF16 KeyF17 KeyF18 KeyF19 KeyF20 KeyF21 KeyF22 KeyF23 KeyF24 KeyF25 KeyF26 KeyF27 KeyF28 KeyF29 KeyF30 KeyF31 KeyF32 KeyF33 KeyF34 KeyF35 KeyF36 KeyF37 KeyF38 KeyF39 KeyF40 KeyF41 KeyF42 KeyF43 KeyF44 KeyF45 KeyF46 KeyF47 KeyF48 KeyF49 KeyF50 KeyF51 KeyF52 KeyF53 KeyF54 KeyF55 KeyF56 KeyF57 KeyF58 KeyF59 KeyF60 KeyF61 KeyF62 KeyF63 KeyF64 )
This is the list of named keys. KeyRune is special however, in that it is a place holder key indicating that a printable character was sent. The actual value of the rune will be transported in the Rune of the associated EventKey.
const ( KeyCtrlSpace Key = iota KeyCtrlA KeyCtrlB KeyCtrlC KeyCtrlD KeyCtrlE KeyCtrlF KeyCtrlG KeyCtrlH KeyCtrlI KeyCtrlJ KeyCtrlK KeyCtrlL KeyCtrlM KeyCtrlN KeyCtrlO KeyCtrlP KeyCtrlQ KeyCtrlR KeyCtrlS KeyCtrlT KeyCtrlU KeyCtrlV KeyCtrlW KeyCtrlX KeyCtrlY KeyCtrlZ KeyCtrlLeftSq // Escape KeyCtrlBackslash KeyCtrlRightSq KeyCtrlCarat KeyCtrlUnderscore )
These are the control keys. Note that they overlap with other keys, perhaps. For example, KeyCtrlH is the same as KeyBackspace.
const ( KeyNUL Key = iota KeySOH KeySTX KeyETX KeyEOT KeyENQ KeyACK KeyBEL KeyBS KeyTAB KeyLF KeyVT KeyFF KeyCR KeySO KeySI KeyDLE KeyDC1 KeyDC2 KeyDC3 KeyDC4 KeyNAK KeySYN KeyETB KeyCAN KeyEM KeySUB KeyESC KeyFS KeyGS KeyRS KeyUS KeyDEL Key = 0x7F )
These are the defined ASCII values for key codes. They generally match with KeyCtrl values.
type ModMask ¶
type ModMask int16
ModMask is a mask of modifier keys. Note that it will not always be possible to report modifier keys.
These are the modifiers keys that can be sent either with a key press, or a mouse event. Note that as of now, due to the confusion associated with Meta, and the lack of support for it on many/most platforms, the current implementations never use it. Instead, they use ModAlt, even for events that could possibly have been distinguished from ModAlt.
type MouseEvent ¶
type MouseEvent struct {
// contains filtered or unexported fields
}
EventMouse is a mouse event. It is sent on either mouse up or mouse down events. It is also sent on mouse motion events - if the terminal supports it. We make every effort to ensure that mouse release events are delivered. Hence, click drag can be identified by a motion event with the mouse down, without any intervening button release. On some terminals only the initiating press and terminating release event will be delivered.
Mouse wheel events, when reported, may appear on their own as individual impulses; that is, there will normally not be a release event delivered for mouse wheel movements.
Most terminals cannot report the state of more than one button at a time -- and some cannot report motion events unless a button is pressed.
Applications can inspect the time between events to resolve double or triple clicks.
func NewMouseEvent ¶
func NewMouseEvent(x, y int, btn ButtonMask, mod ModMask) *MouseEvent
NewEventMouse is used to create a new mouse event. Applications shouldn't need to use this; its mostly for screen implementors.
func (*MouseEvent) Buttons ¶
func (ev *MouseEvent) Buttons() ButtonMask
Buttons returns the list of buttons that were pressed or wheel motions.
func (*MouseEvent) Modifiers ¶
func (ev *MouseEvent) Modifiers() ModMask
Modifiers returns a list of keyboard modifiers that were pressed with the mouse button(s).
func (*MouseEvent) Position ¶
func (ev *MouseEvent) Position() (int, int)
Position returns the mouse position in character cells. The origin 0, 0 is at the upper left corner.
type ResizeEvent ¶
type ResizeEvent struct {
// contains filtered or unexported fields
}
EventResize is sent when the window size changes.
todo: used in simulation screen only
func NewResizeEvent ¶
func NewResizeEvent(width, height int) *ResizeEvent
NewEventResize creates an EventResize with the new updated window size, which is given in character cells.
func (*ResizeEvent) Size ¶
func (ev *ResizeEvent) Size() (int, int)
Size returns the new window size as width, height in character cells.
type Screen ¶
type Screen interface { // Close closes the screen releasing all resources. Close() error // Clear erases the screen. The contents of any screen buffers // will also be cleared. This has the logical effect of // filling the screen with spaces, using the global default style. Clear() // Fill fills the screen with the given character and style. Fill(rune, Style) // GetContent returns the contents at the given location. If the // coordinates are out of range, then the values will be 0, nil, // StyleDefault. Note that the contents returned are logical contents // and may not actually be what is displayed, but rather are what will // be displayed if Show() or Sync() is called. The width is the width // in screen cells; most often this will be 1, but some East Asian // characters require two cells. GetContent(x, y int) (mainc rune, combc []rune, style Style, width int) // SetContent sets the contents of the given cell location. If // the coordinates are out of range, then the operation is ignored. // // The first rune is the primary non-zero width rune. The array // that follows is a possible list of combining characters to append, // and will usually be nil (no combining characters.) // // The results are not displayd until Show() or Sync() is called. // // Note that wide (East Asian full width) runes occupy two cells, // and attempts to place character at next cell to the right will have // undefined effects. Wide runes that are printed in the // last column will be replaced with a single width space on output. SetContent(x int, y int, mainc rune, combc []rune, style Style) // SetStyle sets the default style to use when clearing the screen // or when StyleDefault is specified. If it is also StyleDefault, // then whatever system/terminal default is relevant will be used. SetStyle(style Style) // SetCursor is used to display the cursor at a given location. // If the coordinates -1, -1 are given or are otherwise outside the // dimensions of the screen, the cursor will be hidden. SetCursor(x int, y int) // Size returns the screen size as width, height. This changes in // response to a call to Clear or Flush. Size() (int, int) // PollEvent waits for events to arrive. Main application loops // must spin on this to prevent the application from stalling. // Furthermore, this will return nil if the Screen is finalized. PollEvent() Event // PostEvent tries to post an event into the event stream. This // can fail if the event queue is full. In that case, the event // is dropped, and ErrEventQFull is returned. PostEvent(ev Event) error // PostEventWait is like PostEvent, but if the queue is full, it // blocks until there is space in the queue, making delivery // reliable. However, it is VERY important that this function // never be called from within whatever event loop is polling // with PollEvent(), otherwise a deadlock may arise. // // For this reason, when using this function, the use of a // Goroutine is recommended to ensure no deadlock can occur. PostEventWait(ev Event) // EnableMouse enables the mouse. (If your terminal supports it.) EnableMouse() // DisableMouse disables the mouse. DisableMouse() // HasMouse returns true if the terminal (apparently) supports a // mouse. Note that the a return value of true doesn't guarantee that // a mouse/pointing device is present; a false return definitely // indicates no mouse support is available. HasMouse() bool // Colors returns the number of colors. All colors are assumed to // use the ANSI color map. If a terminal is monochrome, it will // return 0. Colors() int // Show makes all the content changes made using SetContent() visible // on the display. // // It does so in the most efficient and least visually disruptive // manner possible. Show() // Sync works like Show(), but it updates every visible cell on the // physical display, assuming that it is not synchronized with any // internal model. This may be both expensive and visually jarring, // so it should only be used when believed to actually be necessary. // // Typically this is called as a result of a user-requested redraw // (e.g. to clear up on screen corruption caused by some other program), // or during a resize event. Sync() // CharacterSet returns information about the character set. // This isn't the full locale, but it does give us the input/output // character set. Note that this is just for diagnostic purposes, // we normally translate input/output to/from UTF-8, regardless of // what the user's environment is. CharacterSet() string // The display string should be the same width as original rune. // This makes it possible to register two character replacements // for full width East Asian characters, for example. // // It is recommended that replacement strings consist only of // 7-bit ASCII, since other characters may not display everywhere. RegisterRuneFallback(r rune, subst string) // UnregisterRuneFallback unmaps a replacement. It will unmap // the implicit ASCII replacements for alternate characters as well. // When an unmapped char needs to be displayed, but no suitable // glyph is available, '?' is emitted instead. It is not possible // to "disable" the use of alternate characters that are supported // by your terminal except by changing the terminal database. UnregisterRuneFallback(r rune) // CanDisplay returns true if the given rune can be displayed on // this screen. Note that this is a best guess effort -- whether // your fonts support the character or not may be questionable. // Mostly this is for folks who work outside of Unicode. // // If checkFallbacks is true, then if any (possibly imperfect) // fallbacks are registered, this will return true. This will // also return true if the terminal can replace the glyph with // one that is visually indistinguishable from the one requested. CanDisplay(r rune, checkFallbacks bool) bool // Resize does nothing, since its generally not possible to // ask a screen to resize, but it allows the Screen to implement // the View interface. Resize(int, int, int, int) // HasKey returns true if the keyboard is believed to have the // key. In some cases a keyboard may have keys with this name // but no support for them, while in others a key may be reported // as supported but not actually be usable (such as some emulators // that hijack certain keys). Its best not to depend to strictly // on this function, but it can be used for hinting when building // menus, displayed hot-keys, etc. Note that HasKey(KeyRune) (literal // runes) is always true. HasKey(Key) bool }
Screen represents the physical (or emulated) screen. This can be a terminal window or a physical console. Platforms implement this differerently.
func NewConsoleScreen ¶
NewConsoleScreen returns a console based screen. This platform doesn't have support for any, so it returns nil and a suitable error.
func NewScreen ¶
NewScreen returns a default Screen suitable for the user's terminal environment. todo: this is awful, put NewScreen to the tag files
func NewTerminfoScreen ¶
NewTerminfoScreen returns a Screen that uses the stock TTY interface and POSIX termios, combined with a terminfo description taken from the $TERM environment variable. It returns an error if the terminal is not supported for any reason.
For terminals that do not support dynamic resize events, the $LINES $COLUMNS environment variables can be set to the actual window size, otherwise defaults taken from the terminal database are used.
type SimCell ¶
type SimCell struct { // Bytes is the actual character bytes. Normally this is // rune data, but it could be be data in another encoding system. Bytes []byte // Style is the style used to display the data. Style Style // Runes is the list of runes, unadulterated, in UTF-8. Runes []rune }
SimCell represents a simulated screen cell. The purpose of this is to track screen content.
type SimScreen ¶
func NewSimScreen ¶
NewSimulationScreen returns a SimulationScreen. Note that SimulationScreen is also a Screen.
func (*SimScreen) CharacterSet ¶
func (*SimScreen) DisableMouse ¶
func (s *SimScreen) DisableMouse()
func (*SimScreen) EnableMouse ¶
func (s *SimScreen) EnableMouse()
func (*SimScreen) InjectKeyBytes ¶
func (*SimScreen) InjectMouse ¶
func (s *SimScreen) InjectMouse(x, y int, buttons ButtonMask, mod ModMask)
func (*SimScreen) PostEventWait ¶
func (*SimScreen) RegisterRuneFallback ¶
func (*SimScreen) SetContent ¶
func (*SimScreen) UnregisterRuneFallback ¶
type Style ¶
type Style int64
Style represents a complete text style, including both foreground and background color. We encode it in a 64-bit int for efficiency. The coding is (MSB): <7b flags><1b><24b fgcolor><7b attr><1b><24b bgcolor>. The <1b> is set true to indicate that the color is an RGB color, rather than a named index.
This gives 24bit color options, if it ever becomes truly necessary. However, applications must not rely on this encoding.
Note that not all terminals can display all colors or attributes, and many might have specific incompatibilities between specific attributes and color combinations.
The intention is to extend styles to support paletting, in which case some flag bit(s) would be set, and the foreground and background colors would be replaced with a palette number and palette index.
To use Style, just declare a variable of its type.
todo: put rgb flags to colors, so all fg data have the same offset to their bg counterpart
const StyleDefault Style = 0
StyleDefault represents a default style, based upon the context. It is the zero value.
func (Style) Background ¶
Background returns a new style based on s, with the background color set as requested. ColorDefault can be used to select the global default.
func (Style) Blink ¶
Blink returns a new style based on s, with the blink attribute set as requested.
func (Style) Decompose ¶
Decompose breaks a style up, returning the foreground, background, and other attributes.
func (Style) Foreground ¶
Foreground returns a new style based on s, with the foreground color set as requested. ColorDefault can be used to select the global default.