Documentation ¶
Overview ¶
Package stdlib is a collection of cty functions that are expected to be generally useful, and are thus factored out into this shared library in the hope that cty-using applications will have consistent behavior when using these functions.
See the parent package "function" for more information on the purpose and usage of cty functions.
This package contains both Go functions, which provide convenient access to call the functions from Go code, and the Function objects themselves. The latter follow the naming scheme of appending "Func" to the end of the function name.
Index ¶
- Variables
- func Absolute(num cty.Value) (cty.Value, error)
- func Add(a cty.Value, b cty.Value) (cty.Value, error)
- func And(a, b cty.Value) (cty.Value, error)
- func BytesLen(buf cty.Value) (cty.Value, error)
- func BytesSlice(buf cty.Value, offset cty.Value, length cty.Value) (cty.Value, error)
- func BytesVal(buf []byte) cty.Value
- func CSVDecode(str cty.Value) (cty.Value, error)
- func Ceil(num cty.Value) (cty.Value, error)
- func Chomp(str cty.Value) (cty.Value, error)
- func Chunklist(list, size cty.Value) (cty.Value, error)
- func Coalesce(vals ...cty.Value) (cty.Value, error)
- func CoalesceList(args ...cty.Value) (cty.Value, error)
- func Compact(list cty.Value) (cty.Value, error)
- func Concat(seqs ...cty.Value) (cty.Value, error)
- func Contains(list, value cty.Value) (cty.Value, error)
- func Distinct(list cty.Value) (cty.Value, error)
- func Divide(a cty.Value, b cty.Value) (cty.Value, error)
- func Element(list, index cty.Value) (cty.Value, error)
- func Equal(a cty.Value, b cty.Value) (cty.Value, error)
- func Flatten(list cty.Value) (cty.Value, error)
- func Floor(num cty.Value) (cty.Value, error)
- func Format(format cty.Value, vals ...cty.Value) (cty.Value, error)
- func FormatDate(format cty.Value, timestamp cty.Value) (cty.Value, error)
- func FormatList(format cty.Value, vals ...cty.Value) (cty.Value, error)
- func GreaterThan(a cty.Value, b cty.Value) (cty.Value, error)
- func GreaterThanOrEqualTo(a cty.Value, b cty.Value) (cty.Value, error)
- func HasIndex(collection cty.Value, key cty.Value) (cty.Value, error)
- func Indent(spaces, str cty.Value) (cty.Value, error)
- func Index(collection cty.Value, key cty.Value) (cty.Value, error)
- func Int(num cty.Value) (cty.Value, error)
- func JSONDecode(str cty.Value) (cty.Value, error)
- func JSONEncode(val cty.Value) (cty.Value, error)
- func Join(sep cty.Value, lists ...cty.Value) (cty.Value, error)
- func Keys(inputMap cty.Value) (cty.Value, error)
- func Length(collection cty.Value) (cty.Value, error)
- func LessThan(a cty.Value, b cty.Value) (cty.Value, error)
- func LessThanOrEqualTo(a cty.Value, b cty.Value) (cty.Value, error)
- func Log(num, base cty.Value) (cty.Value, error)
- func Lookup(inputMap, key, defaultValue cty.Value) (cty.Value, error)
- func Lower(str cty.Value) (cty.Value, error)
- func MakeToFunc(wantTy cty.Type) function.Function
- func Max(numbers ...cty.Value) (cty.Value, error)
- func Merge(maps ...cty.Value) (cty.Value, error)
- func Min(numbers ...cty.Value) (cty.Value, error)
- func Modulo(a cty.Value, b cty.Value) (cty.Value, error)
- func Multiply(a cty.Value, b cty.Value) (cty.Value, error)
- func Negate(num cty.Value) (cty.Value, error)
- func Not(num cty.Value) (cty.Value, error)
- func NotEqual(a cty.Value, b cty.Value) (cty.Value, error)
- func Or(a, b cty.Value) (cty.Value, error)
- func ParseInt(num cty.Value, base cty.Value) (cty.Value, error)
- func Pow(num, power cty.Value) (cty.Value, error)
- func Range(params ...cty.Value) (cty.Value, error)
- func Regex(pattern, str cty.Value) (cty.Value, error)
- func RegexAll(pattern, str cty.Value) (cty.Value, error)
- func RegexReplace(str, substr, replace cty.Value) (cty.Value, error)
- func Replace(str, substr, replace cty.Value) (cty.Value, error)
- func Reverse(str cty.Value) (cty.Value, error)
- func ReverseList(list cty.Value) (cty.Value, error)
- func SetHasElement(set cty.Value, elem cty.Value) (cty.Value, error)
- func SetIntersection(sets ...cty.Value) (cty.Value, error)
- func SetProduct(sets ...cty.Value) (cty.Value, error)
- func SetSubtract(a, b cty.Value) (cty.Value, error)
- func SetSymmetricDifference(sets ...cty.Value) (cty.Value, error)
- func SetUnion(sets ...cty.Value) (cty.Value, error)
- func Signum(num cty.Value) (cty.Value, error)
- func Slice(list, start, end cty.Value) (cty.Value, error)
- func Sort(list cty.Value) (cty.Value, error)
- func Split(sep, str cty.Value) (cty.Value, error)
- func Strlen(str cty.Value) (cty.Value, error)
- func Substr(str cty.Value, offset cty.Value, length cty.Value) (cty.Value, error)
- func Subtract(a cty.Value, b cty.Value) (cty.Value, error)
- func TimeAdd(timestamp cty.Value, duration cty.Value) (cty.Value, error)
- func Title(str cty.Value) (cty.Value, error)
- func Trim(str, cutset cty.Value) (cty.Value, error)
- func TrimPrefix(str, prefix cty.Value) (cty.Value, error)
- func TrimSpace(str cty.Value) (cty.Value, error)
- func TrimSuffix(str, suffix cty.Value) (cty.Value, error)
- func Upper(str cty.Value) (cty.Value, error)
- func Values(values cty.Value) (cty.Value, error)
- func Zipmap(keys, values cty.Value) (cty.Value, error)
Constants ¶
This section is empty.
Variables ¶
var AbsoluteFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { return args[0].Absolute(), nil }, })
var AddFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { defer func() { if r := recover(); r != nil { if _, ok := r.(big.ErrNaN); ok { ret = cty.NilVal err = fmt.Errorf("can't compute sum of opposing infinities") } else { panic(r) } } }() return args[0].Add(args[1]), nil }, })
var AndFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Bool, AllowDynamicType: true, AllowMarked: true, }, { Name: "b", Type: cty.Bool, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { return args[0].And(args[1]), nil }, })
Bytes is a capsule type that can be used with the binary functions to support applications that need to support raw buffers in addition to UTF-8 strings.
var BytesLenFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "buf", Type: Bytes, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { bufPtr := args[0].EncapsulatedValue().(*[]byte) return cty.NumberIntVal(int64(len(*bufPtr))), nil }, })
BytesLen is a Function that returns the length of the buffer encapsulated in a Bytes value.
var BytesSliceFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "buf", Type: Bytes, AllowDynamicType: true, }, { Name: "offset", Type: cty.Number, AllowDynamicType: true, }, { Name: "length", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(Bytes), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { bufPtr := args[0].EncapsulatedValue().(*[]byte) var offset, length int var err error err = gocty.FromCtyValue(args[1], &offset) if err != nil { return cty.NilVal, err } err = gocty.FromCtyValue(args[2], &length) if err != nil { return cty.NilVal, err } if offset < 0 || length < 0 { return cty.NilVal, fmt.Errorf("offset and length must be non-negative") } if offset > len(*bufPtr) { return cty.NilVal, fmt.Errorf( "offset %d is greater than total buffer length %d", offset, len(*bufPtr), ) } end := offset + length if end > len(*bufPtr) { return cty.NilVal, fmt.Errorf( "offset %d + length %d is greater than total buffer length %d", offset, length, len(*bufPtr), ) } return BytesVal((*bufPtr)[offset:end]), nil }, })
BytesSlice is a Function that returns a slice of the given Bytes value.
var CSVDecodeFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, }, Type: func(args []cty.Value) (cty.Type, error) { str := args[0] if !str.IsKnown() { return cty.DynamicPseudoType, nil } r := strings.NewReader(str.AsString()) cr := csv.NewReader(r) headers, err := cr.Read() if err == io.EOF { return cty.DynamicPseudoType, fmt.Errorf("missing header line") } if err != nil { return cty.DynamicPseudoType, err } atys := make(map[string]cty.Type, len(headers)) for _, name := range headers { if _, exists := atys[name]; exists { return cty.DynamicPseudoType, fmt.Errorf("duplicate column name %q", name) } atys[name] = cty.String } return cty.List(cty.Object(atys)), nil }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { ety := retType.ElementType() atys := ety.AttributeTypes() str := args[0] r := strings.NewReader(str.AsString()) cr := csv.NewReader(r) cr.FieldsPerRecord = len(atys) headers, err := cr.Read() if err != nil { return cty.DynamicVal, err } var rows []cty.Value for { cols, err := cr.Read() if err == io.EOF { break } if err != nil { return cty.DynamicVal, err } vals := make(map[string]cty.Value, len(cols)) for i, str := range cols { name := headers[i] vals[name] = cty.StringVal(str) } rows = append(rows, cty.ObjectVal(vals)) } if len(rows) == 0 { return cty.ListValEmpty(ety), nil } return cty.ListVal(rows), nil }, })
var CeilFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var val float64 if err := gocty.FromCtyValue(args[0], &val); err != nil { return cty.UnknownVal(cty.String), err } if math.IsInf(val, 0) { return cty.NumberFloatVal(val), nil } return cty.NumberIntVal(int64(math.Ceil(val))), nil }, })
CeilFunc is a function that returns the closest whole number greater than or equal to the given value.
var ChompFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { newlines := regexp.MustCompile(`(?:\r\n?|\n)*\z`) return cty.StringVal(newlines.ReplaceAllString(args[0].AsString(), "")), nil }, })
ChompFunc is a function that removes newline characters at the end of a string.
var ChunklistFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.List(cty.DynamicPseudoType), }, { Name: "size", Type: cty.Number, }, }, Type: func(args []cty.Value) (cty.Type, error) { return cty.List(args[0].Type()), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { listVal := args[0] if !listVal.IsKnown() { return cty.UnknownVal(retType), nil } if listVal.LengthInt() == 0 { return cty.ListValEmpty(listVal.Type()), nil } var size int err = gocty.FromCtyValue(args[1], &size) if err != nil { return cty.NilVal, fmt.Errorf("invalid index: %s", err) } if size < 0 { return cty.NilVal, errors.New("the size argument must be positive") } output := make([]cty.Value, 0) if size == 0 { output = append(output, listVal) return cty.ListVal(output), nil } chunk := make([]cty.Value, 0) l := args[0].LengthInt() i := 0 for it := listVal.ElementIterator(); it.Next(); { _, v := it.Element() chunk = append(chunk, v) if (i+1)%size == 0 || (i+1) == l { output = append(output, cty.ListVal(chunk)) chunk = make([]cty.Value, 0) } i++ } return cty.ListVal(output), nil }, })
ChunklistFunc is a function that splits a single list into fixed-size chunks, returning a list of lists.
var CoalesceFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "vals", Type: cty.DynamicPseudoType, AllowUnknown: true, AllowDynamicType: true, AllowNull: true, }, Type: func(args []cty.Value) (ret cty.Type, err error) { argTypes := make([]cty.Type, len(args)) for i, val := range args { argTypes[i] = val.Type() } retType, _ := convert.UnifyUnsafe(argTypes) if retType == cty.NilType { return cty.NilType, fmt.Errorf("all arguments must have the same type") } return retType, nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { for _, argVal := range args { if !argVal.IsKnown() { return cty.UnknownVal(retType), nil } if argVal.IsNull() { continue } return convert.Convert(argVal, retType) } return cty.NilVal, fmt.Errorf("no non-null arguments") }, })
var CoalesceListFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "vals", Type: cty.DynamicPseudoType, AllowUnknown: true, AllowDynamicType: true, AllowNull: true, }, Type: func(args []cty.Value) (ret cty.Type, err error) { if len(args) == 0 { return cty.NilType, errors.New("at least one argument is required") } argTypes := make([]cty.Type, len(args)) for i, arg := range args { if !arg.IsKnown() { return cty.DynamicPseudoType, nil } ty := arg.Type() if !ty.IsListType() && !ty.IsTupleType() { return cty.NilType, errors.New("coalescelist arguments must be lists or tuples") } argTypes[i] = arg.Type() } last := argTypes[0] for _, next := range argTypes[1:] { if !next.Equals(last) { return cty.DynamicPseudoType, nil } } return last, nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { for _, arg := range args { if !arg.IsKnown() { return cty.UnknownVal(retType), nil } if arg.IsNull() { continue } if arg.LengthInt() > 0 { return arg, nil } } return cty.NilVal, errors.New("no non-null arguments") }, })
CoalesceListFunc is a function that takes any number of list arguments and returns the first one that isn't empty.
var CompactFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.List(cty.String), }, }, Type: function.StaticReturnType(cty.List(cty.String)), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { listVal := args[0] if !listVal.IsWhollyKnown() { return cty.UnknownVal(retType), nil } var outputList []cty.Value for it := listVal.ElementIterator(); it.Next(); { _, v := it.Element() if v.IsNull() || v.AsString() == "" { continue } outputList = append(outputList, v) } if len(outputList) == 0 { return cty.ListValEmpty(cty.String), nil } return cty.ListVal(outputList), nil }, })
CompactFunc is a function that takes a list of strings and returns a new list with any empty string elements removed.
var ConcatFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "seqs", Type: cty.DynamicPseudoType, }, Type: func(args []cty.Value) (ret cty.Type, err error) { if len(args) == 0 { return cty.NilType, fmt.Errorf("at least one argument is required") } if args[0].Type().IsListType() { tys := make([]cty.Type, len(args)) for i, val := range args { ty := val.Type() if !ty.IsListType() { tys = nil break } tys[i] = ty } if tys != nil { commonType, _ := convert.UnifyUnsafe(tys) if commonType != cty.NilType { return commonType, nil } } } etys := make([]cty.Type, 0, len(args)) for i, val := range args { ety := val.Type() switch { case ety.IsTupleType(): etys = append(etys, ety.TupleElementTypes()...) case ety.IsListType(): if !val.IsKnown() { return cty.DynamicPseudoType, nil } l := val.LengthInt() subEty := ety.ElementType() for j := 0; j < l; j++ { etys = append(etys, subEty) } default: return cty.NilType, function.NewArgErrorf( i, "all arguments must be lists or tuples; got %s", ety.FriendlyName(), ) } } return cty.Tuple(etys), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { switch { case retType.IsListType(): vals := make([]cty.Value, 0, len(args)) for i, list := range args { list, err = convert.Convert(list, retType) if err != nil { return cty.NilVal, function.NewArgError(i, err) } it := list.ElementIterator() for it.Next() { _, v := it.Element() vals = append(vals, v) } } if len(vals) == 0 { return cty.ListValEmpty(retType.ElementType()), nil } return cty.ListVal(vals), nil case retType.IsTupleType(): vals := make([]cty.Value, 0, len(args)) for _, seq := range args { it := seq.ElementIterator() for it.Next() { _, v := it.Element() vals = append(vals, v) } } return cty.TupleVal(vals), nil default: panic("unsupported return type") } }, })
var ContainsFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.DynamicPseudoType, }, { Name: "value", Type: cty.DynamicPseudoType, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { arg := args[0] ty := arg.Type() if !ty.IsListType() && !ty.IsTupleType() && !ty.IsSetType() { return cty.NilVal, errors.New("argument must be list, tuple, or set") } if args[0].IsNull() { return cty.NilVal, errors.New("cannot search a nil list or set") } if args[0].LengthInt() == 0 { return cty.False, nil } if !args[0].IsKnown() || !args[1].IsKnown() { return cty.UnknownVal(cty.Bool), nil } containsUnknown := false for it := args[0].ElementIterator(); it.Next(); { _, v := it.Element() eq := args[1].Equals(v) if !eq.IsKnown() { containsUnknown = true continue } if eq.True() { return cty.True, nil } } if containsUnknown { return cty.UnknownVal(cty.Bool), nil } return cty.False, nil }, })
ContainsFunc is a function that determines whether a given list or set contains a given single value as one of its elements.
var DistinctFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.List(cty.DynamicPseudoType), }, }, Type: func(args []cty.Value) (cty.Type, error) { return args[0].Type(), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { listVal := args[0] if !listVal.IsWhollyKnown() { return cty.UnknownVal(retType), nil } var list []cty.Value for it := listVal.ElementIterator(); it.Next(); { _, v := it.Element() list, err = appendIfMissing(list, v) if err != nil { return cty.NilVal, err } } if len(list) == 0 { return cty.ListValEmpty(retType.ElementType()), nil } return cty.ListVal(list), nil }, })
DistinctFunc is a function that takes a list and returns a new list with any duplicate elements removed.
var DivideFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { defer func() { if r := recover(); r != nil { if _, ok := r.(big.ErrNaN); ok { ret = cty.NilVal err = fmt.Errorf("can't divide zero by zero or infinity by infinity") } else { panic(r) } } }() return args[0].Divide(args[1]), nil }, })
var ElementFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.DynamicPseudoType, }, { Name: "index", Type: cty.Number, }, }, Type: func(args []cty.Value) (cty.Type, error) { list := args[0] index := args[1] if index.IsKnown() { if index.LessThan(cty.NumberIntVal(0)).True() { return cty.DynamicPseudoType, fmt.Errorf("cannot use element function with a negative index") } } listTy := list.Type() switch { case listTy.IsListType(): return listTy.ElementType(), nil case listTy.IsTupleType(): if !args[1].IsKnown() { return cty.DynamicPseudoType, nil } etys := listTy.TupleElementTypes() var index int err := gocty.FromCtyValue(args[1], &index) if err != nil { return cty.DynamicPseudoType, fmt.Errorf("invalid index: %s", err) } if len(etys) == 0 { return cty.DynamicPseudoType, errors.New("cannot use element function with an empty list") } index = index % len(etys) return etys[index], nil default: return cty.DynamicPseudoType, fmt.Errorf("cannot read elements from %s", listTy.FriendlyName()) } }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { var index int err := gocty.FromCtyValue(args[1], &index) if err != nil { return cty.DynamicVal, fmt.Errorf("invalid index: %s", err) } if args[1].LessThan(cty.NumberIntVal(0)).True() { return cty.DynamicVal, fmt.Errorf("cannot use element function with a negative index") } if !args[0].IsKnown() { return cty.UnknownVal(retType), nil } l := args[0].LengthInt() if l == 0 { return cty.DynamicVal, errors.New("cannot use element function with an empty list") } index = index % l return args[0].Index(cty.NumberIntVal(int64(index))), nil }, })
var EqualFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.DynamicPseudoType, AllowUnknown: true, AllowDynamicType: true, AllowNull: true, }, { Name: "b", Type: cty.DynamicPseudoType, AllowUnknown: true, AllowDynamicType: true, AllowNull: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].Equals(args[1]), nil }, })
var FlattenFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.DynamicPseudoType, }, }, Type: func(args []cty.Value) (cty.Type, error) { if !args[0].IsWhollyKnown() { return cty.DynamicPseudoType, nil } argTy := args[0].Type() if !argTy.IsListType() && !argTy.IsSetType() && !argTy.IsTupleType() { return cty.NilType, errors.New("can only flatten lists, sets and tuples") } retVal, known := flattener(args[0]) if !known { return cty.DynamicPseudoType, nil } tys := make([]cty.Type, len(retVal)) for i, ty := range retVal { tys[i] = ty.Type() } return cty.Tuple(tys), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { inputList := args[0] if inputList.LengthInt() == 0 { return cty.EmptyTupleVal, nil } out, known := flattener(inputList) if !known { return cty.UnknownVal(retType), nil } return cty.TupleVal(out), nil }, })
FlattenFunc is a function that takes a list and replaces any elements that are lists with a flattened sequence of the list contents.
var FloorFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var val float64 if err := gocty.FromCtyValue(args[0], &val); err != nil { return cty.UnknownVal(cty.String), err } if math.IsInf(val, 0) { return cty.NumberFloatVal(val), nil } return cty.NumberIntVal(int64(math.Floor(val))), nil }, })
FloorFunc is a function that returns the closest whole number lesser than or equal to the given value.
var FormatDateFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "format", Type: cty.String, }, { Name: "time", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { formatStr := args[0].AsString() timeStr := args[1].AsString() t, err := parseTimestamp(timeStr) if err != nil { return cty.DynamicVal, function.NewArgError(1, err) } var buf bytes.Buffer sc := bufio.NewScanner(strings.NewReader(formatStr)) sc.Split(splitDateFormat) const esc = '\'' for sc.Scan() { tok := sc.Bytes() switch { case tok[0] == esc: if tok[len(tok)-1] != esc || len(tok) == 1 { return cty.DynamicVal, function.NewArgErrorf(0, "unterminated literal '") } if len(tok) == 2 { buf.WriteByte(esc) } else { raw := tok[1 : len(tok)-1] for i := 0; i < len(raw); i++ { buf.WriteByte(raw[i]) if raw[i] == esc { i++ } } } case startsDateFormatVerb(tok[0]): switch tok[0] { case 'Y': y := t.Year() switch len(tok) { case 2: fmt.Fprintf(&buf, "%02d", y%100) case 4: fmt.Fprintf(&buf, "%04d", y) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: year must either be \"YY\" or \"YYYY\"", tok) } case 'M': m := t.Month() switch len(tok) { case 1: fmt.Fprintf(&buf, "%d", m) case 2: fmt.Fprintf(&buf, "%02d", m) case 3: buf.WriteString(m.String()[:3]) case 4: buf.WriteString(m.String()) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: month must be \"M\", \"MM\", \"MMM\", or \"MMMM\"", tok) } case 'D': d := t.Day() switch len(tok) { case 1: fmt.Fprintf(&buf, "%d", d) case 2: fmt.Fprintf(&buf, "%02d", d) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: day of month must either be \"D\" or \"DD\"", tok) } case 'E': d := t.Weekday() switch len(tok) { case 3: buf.WriteString(d.String()[:3]) case 4: buf.WriteString(d.String()) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: day of week must either be \"EEE\" or \"EEEE\"", tok) } case 'h': h := t.Hour() switch len(tok) { case 1: fmt.Fprintf(&buf, "%d", h) case 2: fmt.Fprintf(&buf, "%02d", h) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: 24-hour must either be \"h\" or \"hh\"", tok) } case 'H': h := t.Hour() % 12 if h == 0 { h = 12 } switch len(tok) { case 1: fmt.Fprintf(&buf, "%d", h) case 2: fmt.Fprintf(&buf, "%02d", h) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: 12-hour must either be \"H\" or \"HH\"", tok) } case 'A', 'a': if len(tok) != 2 { return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: must be \"%s%s\"", tok, tok[0:1], tok[0:1]) } upper := tok[0] == 'A' switch t.Hour() / 12 { case 0: if upper { buf.WriteString("AM") } else { buf.WriteString("am") } case 1: if upper { buf.WriteString("PM") } else { buf.WriteString("pm") } } case 'm': m := t.Minute() switch len(tok) { case 1: fmt.Fprintf(&buf, "%d", m) case 2: fmt.Fprintf(&buf, "%02d", m) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: minute must either be \"m\" or \"mm\"", tok) } case 's': s := t.Second() switch len(tok) { case 1: fmt.Fprintf(&buf, "%d", s) case 2: fmt.Fprintf(&buf, "%02d", s) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: second must either be \"s\" or \"ss\"", tok) } case 'Z': switch len(tok) { case 1: buf.WriteString(t.Format("Z07:00")) case 3: str := t.Format("-0700") switch str { case "+0000": buf.WriteString("UTC") default: buf.WriteString(str) } case 4: buf.WriteString(t.Format("-0700")) case 5: buf.WriteString(t.Format("-07:00")) default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: timezone must be Z, ZZZZ, or ZZZZZ", tok) } default: return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q", tok) } default: buf.Write(tok) } } return cty.StringVal(buf.String()), nil }, })
var FormatFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "format", Type: cty.String, }, }, VarParam: &function.Parameter{ Name: "args", Type: cty.DynamicPseudoType, AllowNull: true, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { for _, arg := range args[1:] { if !arg.IsWhollyKnown() { return cty.UnknownVal(cty.String), nil } } str, err := formatFSM(args[0].AsString(), args[1:]) return cty.StringVal(str), err }, })
var FormatListFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "format", Type: cty.String, }, }, VarParam: &function.Parameter{ Name: "args", Type: cty.DynamicPseudoType, AllowNull: true, AllowUnknown: true, }, Type: function.StaticReturnType(cty.List(cty.String)), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { fmtVal := args[0] args = args[1:] if len(args) == 0 { result, err := Format(fmtVal, args...) return cty.ListVal([]cty.Value{result}), err } fmtStr := fmtVal.AsString() iterLen := -1 lenChooser := -1 iterators := make([]cty.ElementIterator, len(args)) singleVals := make([]cty.Value, len(args)) unknowns := make([]bool, len(args)) for i, arg := range args { argTy := arg.Type() switch { case (argTy.IsListType() || argTy.IsSetType() || argTy.IsTupleType()) && !arg.IsNull(): if !argTy.IsTupleType() && !(arg.IsKnown() && arg.Length().IsKnown()) { unknowns[i] = true continue } thisLen := arg.LengthInt() if iterLen == -1 { iterLen = thisLen lenChooser = i } else { if thisLen != iterLen { return cty.NullVal(cty.List(cty.String)), function.NewArgErrorf( i+1, "argument %d has length %d, which is inconsistent with argument %d of length %d", i+1, thisLen, lenChooser+1, iterLen, ) } } if !arg.IsKnown() { unknowns[i] = true continue } iterators[i] = arg.ElementIterator() default: singleVals[i] = arg } } for _, isUnk := range unknowns { if isUnk { return cty.UnknownVal(retType), nil } } if iterLen == 0 { return cty.ListValEmpty(cty.String), nil } if iterLen == -1 { iterLen = 1 } ret := make([]cty.Value, 0, iterLen) fmtArgs := make([]cty.Value, len(iterators)) Results: for iterIdx := 0; iterIdx < iterLen; iterIdx++ { for i := range fmtArgs { switch { case iterators[i] != nil: iterator := iterators[i] iterator.Next() _, val := iterator.Element() fmtArgs[i] = val default: fmtArgs[i] = singleVals[i] } if !fmtArgs[i].IsWhollyKnown() { ret = append(ret, cty.UnknownVal(cty.String)) continue Results } } str, err := formatFSM(fmtStr, fmtArgs) if err != nil { return cty.NullVal(cty.List(cty.String)), fmt.Errorf( "error on format iteration %d: %s", iterIdx, err, ) } ret = append(ret, cty.StringVal(str)) } return cty.ListVal(ret), nil }, })
var GreaterThanFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].GreaterThan(args[1]), nil }, })
var GreaterThanOrEqualToFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].GreaterThanOrEqualTo(args[1]), nil }, })
var HasIndexFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "collection", Type: cty.DynamicPseudoType, AllowDynamicType: true, }, { Name: "key", Type: cty.DynamicPseudoType, AllowDynamicType: true, }, }, Type: func(args []cty.Value) (ret cty.Type, err error) { collTy := args[0].Type() if !(collTy.IsTupleType() || collTy.IsListType() || collTy.IsMapType() || collTy == cty.DynamicPseudoType) { return cty.NilType, fmt.Errorf("collection must be a list, a map or a tuple") } return cty.Bool, nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].HasIndex(args[1]), nil }, })
var IndentFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "spaces", Type: cty.Number, }, { Name: "str", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var spaces int if err := gocty.FromCtyValue(args[0], &spaces); err != nil { return cty.UnknownVal(cty.String), err } data := args[1].AsString() pad := strings.Repeat(" ", spaces) return cty.StringVal(strings.Replace(data, "\n", "\n"+pad, -1)), nil }, })
IndentFunc is a function that adds a given number of spaces to the beginnings of all but the first line in a given multi-line string.
var IndexFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "collection", Type: cty.DynamicPseudoType, }, { Name: "key", Type: cty.DynamicPseudoType, AllowDynamicType: true, }, }, Type: func(args []cty.Value) (ret cty.Type, err error) { collTy := args[0].Type() key := args[1] keyTy := key.Type() switch { case collTy.IsTupleType(): if keyTy != cty.Number && keyTy != cty.DynamicPseudoType { return cty.NilType, fmt.Errorf("key for tuple must be number") } if !key.IsKnown() { return cty.DynamicPseudoType, nil } var idx int err := gocty.FromCtyValue(key, &idx) if err != nil { return cty.NilType, fmt.Errorf("invalid key for tuple: %s", err) } etys := collTy.TupleElementTypes() if idx >= len(etys) || idx < 0 { return cty.NilType, fmt.Errorf("key must be between 0 and %d inclusive", len(etys)) } return etys[idx], nil case collTy.IsListType(): if keyTy != cty.Number && keyTy != cty.DynamicPseudoType { return cty.NilType, fmt.Errorf("key for list must be number") } return collTy.ElementType(), nil case collTy.IsMapType(): if keyTy != cty.String && keyTy != cty.DynamicPseudoType { return cty.NilType, fmt.Errorf("key for map must be string") } return collTy.ElementType(), nil default: return cty.NilType, fmt.Errorf("collection must be a list, a map or a tuple") } }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { has, err := HasIndex(args[0], args[1]) if err != nil { return cty.NilVal, err } if has.False() { return cty.NilVal, fmt.Errorf("invalid index") } return args[0].Index(args[1]), nil }, })
var IntFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { bf := args[0].AsBigFloat() if bf.IsInt() { return args[0], nil } bi, _ := bf.Int(nil) bf = (&big.Float{}).SetInt(bi) return cty.NumberVal(bf), nil }, })
var JSONDecodeFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, }, Type: func(args []cty.Value) (cty.Type, error) { str := args[0] if !str.IsKnown() { return cty.DynamicPseudoType, nil } buf := []byte(str.AsString()) return json.ImpliedType(buf) }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { buf := []byte(args[0].AsString()) return json.Unmarshal(buf, retType) }, })
var JSONEncodeFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "val", Type: cty.DynamicPseudoType, AllowDynamicType: true, AllowNull: true, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { val := args[0] if !val.IsWhollyKnown() { return cty.UnknownVal(retType), nil } if val.IsNull() { return cty.StringVal("null"), nil } buf, err := json.Marshal(val, val.Type()) if err != nil { return cty.NilVal, err } return cty.StringVal(string(buf)), nil }, })
var JoinFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "separator", Type: cty.String, }, }, VarParam: &function.Parameter{ Name: "lists", Type: cty.List(cty.String), }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { sep := args[0].AsString() listVals := args[1:] if len(listVals) < 1 { return cty.UnknownVal(cty.String), fmt.Errorf("at least one list is required") } l := 0 for _, list := range listVals { if !list.IsWhollyKnown() { return cty.UnknownVal(cty.String), nil } l += list.LengthInt() } items := make([]string, 0, l) for ai, list := range listVals { ei := 0 for it := list.ElementIterator(); it.Next(); { _, val := it.Element() if val.IsNull() { if len(listVals) > 1 { return cty.UnknownVal(cty.String), function.NewArgErrorf(ai+1, "element %d of list %d is null; cannot concatenate null values", ei, ai+1) } return cty.UnknownVal(cty.String), function.NewArgErrorf(ai+1, "element %d is null; cannot concatenate null values", ei) } items = append(items, val.AsString()) ei++ } } return cty.StringVal(strings.Join(items, sep)), nil }, })
var KeysFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "inputMap", Type: cty.DynamicPseudoType, AllowUnknown: true, }, }, Type: func(args []cty.Value) (cty.Type, error) { ty := args[0].Type() switch { case ty.IsMapType(): return cty.List(cty.String), nil case ty.IsObjectType(): atys := ty.AttributeTypes() if len(atys) == 0 { return cty.EmptyTuple, nil } etys := make([]cty.Type, len(atys)) for i := range etys { etys[i] = cty.String } return cty.Tuple(etys), nil default: return cty.DynamicPseudoType, function.NewArgErrorf(0, "must have map or object type") } }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { m := args[0] var keys []cty.Value switch { case m.Type().IsObjectType(): // In this case we allow unknown values so we must work only with // the attribute _types_, not with the value itself. var names []string for name := range m.Type().AttributeTypes() { names = append(names, name) } sort.Strings(names) if len(names) == 0 { return cty.EmptyTupleVal, nil } keys = make([]cty.Value, len(names)) for i, name := range names { keys[i] = cty.StringVal(name) } return cty.TupleVal(keys), nil default: if !m.IsKnown() { return cty.UnknownVal(retType), nil } for it := args[0].ElementIterator(); it.Next(); { k, _ := it.Element() keys = append(keys, k) } if len(keys) == 0 { return cty.ListValEmpty(cty.String), nil } return cty.ListVal(keys), nil } }, })
KeysFunc is a function that takes a map and returns a sorted list of the map keys.
var LengthFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "collection", Type: cty.DynamicPseudoType, AllowDynamicType: true, }, }, Type: func(args []cty.Value) (ret cty.Type, err error) { collTy := args[0].Type() if !(collTy.IsTupleType() || collTy.IsListType() || collTy.IsMapType() || collTy.IsSetType() || collTy == cty.DynamicPseudoType) { return cty.NilType, fmt.Errorf("collection must be a list, a map or a tuple") } return cty.Number, nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].Length(), nil }, })
var LessThanFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].LessThan(args[1]), nil }, })
var LessThanOrEqualToFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].LessThanOrEqualTo(args[1]), nil }, })
var LogFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, }, { Name: "base", Type: cty.Number, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var num float64 if err := gocty.FromCtyValue(args[0], &num); err != nil { return cty.UnknownVal(cty.String), err } var base float64 if err := gocty.FromCtyValue(args[1], &base); err != nil { return cty.UnknownVal(cty.String), err } return cty.NumberFloatVal(math.Log(num) / math.Log(base)), nil }, })
LogFunc is a function that returns the logarithm of a given number in a given base.
var LookupFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "inputMap", Type: cty.DynamicPseudoType, }, { Name: "key", Type: cty.String, }, { Name: "default", Type: cty.DynamicPseudoType, }, }, Type: func(args []cty.Value) (ret cty.Type, err error) { ty := args[0].Type() switch { case ty.IsObjectType(): if !args[1].IsKnown() { return cty.DynamicPseudoType, nil } key := args[1].AsString() if ty.HasAttribute(key) { return args[0].GetAttr(key).Type(), nil } else if len(args) == 3 { return args[2].Type(), nil } return cty.DynamicPseudoType, function.NewArgErrorf(0, "the given object has no attribute %q", key) case ty.IsMapType(): if len(args) == 3 { _, err = convert.Convert(args[2], ty.ElementType()) if err != nil { return cty.NilType, function.NewArgErrorf(2, "the default value must have the same type as the map elements") } } return ty.ElementType(), nil default: return cty.NilType, function.NewArgErrorf(0, "lookup() requires a map as the first argument") } }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { defaultVal := args[2] mapVar := args[0] lookupKey := args[1].AsString() if !mapVar.IsWhollyKnown() { return cty.UnknownVal(retType), nil } if mapVar.Type().IsObjectType() { if mapVar.Type().HasAttribute(lookupKey) { return mapVar.GetAttr(lookupKey), nil } } else if mapVar.HasIndex(cty.StringVal(lookupKey)) == cty.True { return mapVar.Index(cty.StringVal(lookupKey)), nil } defaultVal, err = convert.Convert(defaultVal, retType) if err != nil { return cty.NilVal, err } return defaultVal, nil }, })
LookupFunc is a function that performs dynamic lookups of map types.
var LowerFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { in := args[0].AsString() out := strings.ToLower(in) return cty.StringVal(out), nil }, })
var MaxFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "numbers", Type: cty.Number, AllowDynamicType: true, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { if len(args) == 0 { return cty.NilVal, fmt.Errorf("must pass at least one number") } max := cty.NegativeInfinity for _, num := range args { if num.GreaterThan(max).True() { max = num } } return max, nil }, })
var MergeFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "maps", Type: cty.DynamicPseudoType, AllowDynamicType: true, AllowNull: true, }, Type: func(args []cty.Value) (cty.Type, error) { if len(args) == 0 { return cty.EmptyObject, nil } attrs := map[string]cty.Type{} first := cty.NilType matching := true attrsKnown := true for i, arg := range args { ty := arg.Type() if ty.Equals(cty.DynamicPseudoType) { return cty.DynamicPseudoType, nil } if !ty.IsMapType() && !ty.IsObjectType() { return cty.NilType, fmt.Errorf("arguments must be maps or objects, got %#v", ty.FriendlyName()) } switch { case ty.IsObjectType() && !arg.IsNull(): for attr, aty := range ty.AttributeTypes() { attrs[attr] = aty } case ty.IsMapType(): switch { case arg.IsNull(): case arg.IsKnown(): ety := arg.Type().ElementType() for it := arg.ElementIterator(); it.Next(); { attr, _ := it.Element() attrs[attr.AsString()] = ety } default: attrsKnown = false } } if i == 0 { first = arg.Type() continue } if !ty.Equals(first) && matching { matching = false } } if matching { return first, nil } if !attrsKnown { return cty.DynamicPseudoType, nil } return cty.Object(attrs), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { outputMap := make(map[string]cty.Value) for _, arg := range args { if arg.IsNull() { continue } for it := arg.ElementIterator(); it.Next(); { k, v := it.Element() outputMap[k.AsString()] = v } } switch { case retType.IsMapType(): if len(outputMap) == 0 { return cty.MapValEmpty(retType.ElementType()), nil } return cty.MapVal(outputMap), nil case retType.IsObjectType(), retType.Equals(cty.DynamicPseudoType): return cty.ObjectVal(outputMap), nil default: panic(fmt.Sprintf("unexpected return type: %#v", retType)) } }, })
MergeFunc constructs a function that takes an arbitrary number of maps or objects, and returns a single value that contains a merged set of keys and values from all of the inputs.
If more than one given map or object defines the same key then the one that is later in the argument sequence takes precedence.
var MinFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "numbers", Type: cty.Number, AllowDynamicType: true, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { if len(args) == 0 { return cty.NilVal, fmt.Errorf("must pass at least one number") } min := cty.PositiveInfinity for _, num := range args { if num.LessThan(min).True() { min = num } } return min, nil }, })
var ModuloFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { defer func() { if r := recover(); r != nil { if _, ok := r.(big.ErrNaN); ok { ret = cty.NilVal err = fmt.Errorf("can't use modulo with zero and infinity") } else { panic(r) } } }() return args[0].Modulo(args[1]), nil }, })
var MultiplyFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { defer func() { if r := recover(); r != nil { if _, ok := r.(big.ErrNaN); ok { ret = cty.NilVal err = fmt.Errorf("can't multiply zero by infinity") } else { panic(r) } } }() return args[0].Multiply(args[1]), nil }, })
var NegateFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { return args[0].Negate(), nil }, })
var NotEqualFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.DynamicPseudoType, AllowUnknown: true, AllowDynamicType: true, AllowNull: true, }, { Name: "b", Type: cty.DynamicPseudoType, AllowUnknown: true, AllowDynamicType: true, AllowNull: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].Equals(args[1]).Not(), nil }, })
var NotFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "val", Type: cty.Bool, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { return args[0].Not(), nil }, })
var OrFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Bool, AllowDynamicType: true, AllowMarked: true, }, { Name: "b", Type: cty.Bool, AllowDynamicType: true, AllowMarked: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { return args[0].Or(args[1]), nil }, })
var ParseIntFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "number", Type: cty.DynamicPseudoType, }, { Name: "base", Type: cty.Number, }, }, Type: func(args []cty.Value) (cty.Type, error) { if !args[0].Type().Equals(cty.String) { return cty.Number, function.NewArgErrorf(0, "first argument must be a string, not %s", args[0].Type().FriendlyName()) } return cty.Number, nil }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { var numstr string var base int var err error if err = gocty.FromCtyValue(args[0], &numstr); err != nil { return cty.UnknownVal(cty.String), function.NewArgError(0, err) } if err = gocty.FromCtyValue(args[1], &base); err != nil { return cty.UnknownVal(cty.Number), function.NewArgError(1, err) } if base < 2 || base > 62 { return cty.UnknownVal(cty.Number), function.NewArgErrorf( 1, "base must be a whole number between 2 and 62 inclusive", ) } num, ok := (&big.Int{}).SetString(numstr, base) if !ok { return cty.UnknownVal(cty.Number), function.NewArgErrorf( 0, "cannot parse %q as a base %d integer", numstr, base, ) } parsedNum := cty.NumberVal((&big.Float{}).SetInt(num)) return parsedNum, nil }, })
ParseIntFunc is a function that parses a string argument and returns an integer of the specified base.
var PowFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, }, { Name: "power", Type: cty.Number, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var num float64 if err := gocty.FromCtyValue(args[0], &num); err != nil { return cty.UnknownVal(cty.String), err } var power float64 if err := gocty.FromCtyValue(args[1], &power); err != nil { return cty.UnknownVal(cty.String), err } return cty.NumberFloatVal(math.Pow(num, power)), nil }, })
PowFunc is a function that returns the logarithm of a given number in a given base.
var RangeFunc = function.New(&function.Spec{ VarParam: &function.Parameter{ Name: "params", Type: cty.Number, }, Type: function.StaticReturnType(cty.List(cty.Number)), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var start, end, step cty.Value switch len(args) { case 1: if args[0].LessThan(cty.Zero).True() { start, end, step = cty.Zero, args[0], cty.NumberIntVal(-1) } else { start, end, step = cty.Zero, args[0], cty.NumberIntVal(1) } case 2: if args[1].LessThan(args[0]).True() { start, end, step = args[0], args[1], cty.NumberIntVal(-1) } else { start, end, step = args[0], args[1], cty.NumberIntVal(1) } case 3: start, end, step = args[0], args[1], args[2] default: return cty.NilVal, fmt.Errorf("must have one, two, or three arguments") } var vals []cty.Value if step == cty.Zero { return cty.NilVal, function.NewArgErrorf(2, "step must not be zero") } down := step.LessThan(cty.Zero).True() if down { if end.GreaterThan(start).True() { return cty.NilVal, function.NewArgErrorf(1, "end must be less than start when step is negative") } } else { if end.LessThan(start).True() { return cty.NilVal, function.NewArgErrorf(1, "end must be greater than start when step is positive") } } num := start for { if down { if num.LessThanOrEqualTo(end).True() { break } } else { if num.GreaterThanOrEqualTo(end).True() { break } } if len(vals) >= 1024 { return cty.NilVal, fmt.Errorf("more than 1024 values were generated; either decrease the difference between start and end or use a smaller step") } vals = append(vals, num) num = num.Add(step) } if len(vals) == 0 { return cty.ListValEmpty(cty.Number), nil } return cty.ListVal(vals), nil }, })
var RegexAllFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "pattern", Type: cty.String, }, { Name: "string", Type: cty.String, }, }, Type: func(args []cty.Value) (cty.Type, error) { if !args[0].IsKnown() { return cty.List(cty.DynamicPseudoType), nil } retTy, err := regexPatternResultType(args[0].AsString()) if err != nil { err = function.NewArgError(0, err) } return cty.List(retTy), err }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { ety := retType.ElementType() if ety == cty.DynamicPseudoType { return cty.DynamicVal, nil } re, err := regexp.Compile(args[0].AsString()) if err != nil { return cty.NilVal, function.NewArgErrorf(0, "error parsing pattern: %s", err) } str := args[1].AsString() captureIdxsEach := re.FindAllStringSubmatchIndex(str, -1) if len(captureIdxsEach) == 0 { return cty.ListValEmpty(ety), nil } elems := make([]cty.Value, len(captureIdxsEach)) for i, captureIdxs := range captureIdxsEach { elems[i] = regexPatternResult(re, str, captureIdxs, ety) } return cty.ListVal(elems), nil }, })
var RegexFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "pattern", Type: cty.String, }, { Name: "string", Type: cty.String, }, }, Type: func(args []cty.Value) (cty.Type, error) { if !args[0].IsKnown() { return cty.DynamicPseudoType, nil } retTy, err := regexPatternResultType(args[0].AsString()) if err != nil { err = function.NewArgError(0, err) } return retTy, err }, Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { if retType == cty.DynamicPseudoType { return cty.DynamicVal, nil } re, err := regexp.Compile(args[0].AsString()) if err != nil { return cty.NilVal, function.NewArgErrorf(0, "error parsing pattern: %s", err) } str := args[1].AsString() captureIdxs := re.FindStringSubmatchIndex(str) if captureIdxs == nil { return cty.NilVal, fmt.Errorf("pattern did not match any part of the given string") } return regexPatternResult(re, str, captureIdxs, retType), nil }, })
var RegexReplaceFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, { Name: "substr", Type: cty.String, }, { Name: "replace", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { str := args[0].AsString() substr := args[1].AsString() replace := args[2].AsString() re, err := regexp.Compile(substr) if err != nil { return cty.UnknownVal(cty.String), err } return cty.StringVal(re.ReplaceAllString(str, replace)), nil }, })
RegexReplaceFunc is a function that searches a given string for another given substring, and replaces each occurence with a given replacement string. The substr argument must be a valid regular expression.
var ReplaceFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, { Name: "substr", Type: cty.String, }, { Name: "replace", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { str := args[0].AsString() substr := args[1].AsString() replace := args[2].AsString() return cty.StringVal(strings.Replace(str, substr, replace, -1)), nil }, })
ReplaceFunc is a function that searches a given string for another given substring, and replaces each occurence with a given replacement string. The substr argument is a simple string.
var ReverseFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { in := []byte(args[0].AsString()) out := make([]byte, len(in)) pos := len(out) inB := []byte(in) for i := 0; i < len(in); { d, _, _ := textseg.ScanGraphemeClusters(inB[i:], true) cluster := in[i : i+d] pos -= len(cluster) copy(out[pos:], cluster) i += d } return cty.StringVal(string(out)), nil }, })
var ReverseListFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.DynamicPseudoType, }, }, Type: func(args []cty.Value) (cty.Type, error) { argTy := args[0].Type() switch { case argTy.IsTupleType(): argTys := argTy.TupleElementTypes() retTys := make([]cty.Type, len(argTys)) for i, ty := range argTys { retTys[len(retTys)-i-1] = ty } return cty.Tuple(retTys), nil case argTy.IsListType(), argTy.IsSetType(): return cty.List(argTy.ElementType()), nil default: return cty.NilType, function.NewArgErrorf(0, "can only reverse list or tuple values, not %s", argTy.FriendlyName()) } }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { in := args[0].AsValueSlice() outVals := make([]cty.Value, len(in)) for i, v := range in { outVals[len(outVals)-i-1] = v } switch { case retType.IsTupleType(): return cty.TupleVal(outVals), nil default: if len(outVals) == 0 { return cty.ListValEmpty(retType.ElementType()), nil } return cty.ListVal(outVals), nil } }, })
ReverseListFunc takes a sequence and produces a new sequence of the same length with all of the same elements as the given sequence but in reverse order.
var SetHasElementFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "set", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, { Name: "elem", Type: cty.DynamicPseudoType, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Bool), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return args[0].HasElement(args[1]), nil }, })
var SetIntersectionFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "first_set", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, }, VarParam: &function.Parameter{ Name: "other_sets", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, Type: setOperationReturnType, Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { return s1.Intersection(s2) }, false), })
var SetProductFunc = function.New(&function.Spec{ Params: []function.Parameter{}, VarParam: &function.Parameter{ Name: "sets", Type: cty.DynamicPseudoType, }, Type: func(args []cty.Value) (retType cty.Type, err error) { if len(args) < 2 { return cty.NilType, errors.New("at least two arguments are required") } listCount := 0 elemTys := make([]cty.Type, len(args)) for i, arg := range args { aty := arg.Type() switch { case aty.IsSetType(): elemTys[i] = aty.ElementType() case aty.IsListType(): elemTys[i] = aty.ElementType() listCount++ case aty.IsTupleType(): allEtys := aty.TupleElementTypes() if len(allEtys) == 0 { elemTys[i] = cty.DynamicPseudoType listCount++ break } ety, _ := convert.UnifyUnsafe(allEtys) if ety == cty.NilType { return cty.NilType, function.NewArgErrorf(i, "all elements must be of the same type") } elemTys[i] = ety listCount++ default: return cty.NilType, function.NewArgErrorf(i, "a set or a list is required") } } if listCount == len(args) { return cty.List(cty.Tuple(elemTys)), nil } return cty.Set(cty.Tuple(elemTys)), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { ety := retType.ElementType() total := 1 for _, arg := range args { if !arg.Length().IsKnown() { return cty.UnknownVal(retType), nil } total *= arg.LengthInt() } if total == 0 { if retType.IsListType() { return cty.ListValEmpty(ety), nil } return cty.SetValEmpty(ety), nil } subEtys := ety.TupleElementTypes() product := make([][]cty.Value, total) b := make([]cty.Value, total*len(args)) n := make([]int, len(args)) s := 0 argVals := make([][]cty.Value, len(args)) for i, arg := range args { argVals[i] = arg.AsValueSlice() } for i := range product { e := s + len(args) pi := b[s:e] product[i] = pi s = e for j, n := range n { val := argVals[j][n] ty := subEtys[j] if !val.Type().Equals(ty) { var err error val, err = convert.Convert(val, ty) if err != nil { return cty.NilVal, fmt.Errorf("failed to convert argVals[%d][%d] to %s; this is a bug in cty", j, n, ty.FriendlyName()) } } pi[j] = val } for j := len(n) - 1; j >= 0; j-- { n[j]++ if n[j] < len(argVals[j]) { break } n[j] = 0 } } productVals := make([]cty.Value, total) for i, vals := range product { productVals[i] = cty.TupleVal(vals) } if retType.IsListType() { return cty.ListVal(productVals), nil } return cty.SetVal(productVals), nil }, })
SetProductFunc calculates the Cartesian product of two or more sets or sequences. If the arguments are all lists then the result is a list of tuples, preserving the ordering of all of the input lists. Otherwise the result is a set of tuples.
var SetSubtractFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, { Name: "b", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, }, Type: setOperationReturnType, Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { return s1.Subtract(s2) }, false), })
var SetSymmetricDifferenceFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "first_set", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, }, VarParam: &function.Parameter{ Name: "other_sets", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, Type: setOperationReturnType, Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { return s1.SymmetricDifference(s2) }, false), })
var SetUnionFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "first_set", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, }, VarParam: &function.Parameter{ Name: "other_sets", Type: cty.Set(cty.DynamicPseudoType), AllowDynamicType: true, }, Type: setOperationReturnType, Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { return s1.Union(s2) }, true), })
var SignumFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "num", Type: cty.Number, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { var num int if err := gocty.FromCtyValue(args[0], &num); err != nil { return cty.UnknownVal(cty.String), err } switch { case num < 0: return cty.NumberIntVal(-1), nil case num > 0: return cty.NumberIntVal(+1), nil default: return cty.NumberIntVal(0), nil } }, })
SignumFunc is a function that determines the sign of a number, returning a number between -1 and 1 to represent the sign..
var SliceFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.DynamicPseudoType, }, { Name: "start_index", Type: cty.Number, }, { Name: "end_index", Type: cty.Number, }, }, Type: func(args []cty.Value) (cty.Type, error) { arg := args[0] argTy := arg.Type() if argTy.IsSetType() { return cty.NilType, function.NewArgErrorf(0, "cannot slice a set, because its elements do not have indices; explicitly convert to a list if the ordering of the result is not important") } if !argTy.IsListType() && !argTy.IsTupleType() { return cty.NilType, function.NewArgErrorf(0, "must be a list or tuple value") } startIndex, endIndex, idxsKnown, err := sliceIndexes(args) if err != nil { return cty.NilType, err } if argTy.IsListType() { return argTy, nil } if !idxsKnown { return cty.DynamicPseudoType, nil } return cty.Tuple(argTy.TupleElementTypes()[startIndex:endIndex]), nil }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { inputList := args[0] if retType == cty.DynamicPseudoType { return cty.DynamicVal, nil } startIndex, endIndex, _, err := sliceIndexes(args) if err != nil { return cty.NilVal, err } if endIndex-startIndex == 0 { if retType.IsTupleType() { return cty.EmptyTupleVal, nil } return cty.ListValEmpty(retType.ElementType()), nil } outputList := inputList.AsValueSlice()[startIndex:endIndex] if retType.IsTupleType() { return cty.TupleVal(outputList), nil } return cty.ListVal(outputList), nil }, })
SliceFunc is a function that extracts some consecutive elements from within a list.
var SortFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "list", Type: cty.List(cty.String), }, }, Type: function.StaticReturnType(cty.List(cty.String)), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { listVal := args[0] if !listVal.IsWhollyKnown() { return cty.UnknownVal(retType), nil } if listVal.LengthInt() == 0 { return listVal, nil } list := make([]string, 0, listVal.LengthInt()) for it := listVal.ElementIterator(); it.Next(); { iv, v := it.Element() if v.IsNull() { return cty.UnknownVal(retType), fmt.Errorf("given list element %s is null; a null string cannot be sorted", iv.AsBigFloat().String()) } list = append(list, v.AsString()) } sort.Strings(list) retVals := make([]cty.Value, len(list)) for i, s := range list { retVals[i] = cty.StringVal(s) } return cty.ListVal(retVals), nil }, })
var SplitFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "separator", Type: cty.String, }, { Name: "str", Type: cty.String, }, }, Type: function.StaticReturnType(cty.List(cty.String)), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { sep := args[0].AsString() str := args[1].AsString() elems := strings.Split(str, sep) elemVals := make([]cty.Value, len(elems)) for i, s := range elems { elemVals[i] = cty.StringVal(s) } if len(elemVals) == 0 { return cty.ListValEmpty(cty.String), nil } return cty.ListVal(elemVals), nil }, })
var StrlenFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { in := args[0].AsString() l := 0 inB := []byte(in) for i := 0; i < len(in); { d, _, _ := textseg.ScanGraphemeClusters(inB[i:], true) l++ i += d } return cty.NumberIntVal(int64(l)), nil }, })
var SubstrFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, AllowDynamicType: true, }, { Name: "offset", Type: cty.Number, AllowDynamicType: true, }, { Name: "length", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { in := []byte(args[0].AsString()) var offset, length int var err error err = gocty.FromCtyValue(args[1], &offset) if err != nil { return cty.NilVal, err } err = gocty.FromCtyValue(args[2], &length) if err != nil { return cty.NilVal, err } if offset < 0 { totalLenNum, err := Strlen(args[0]) if err != nil { panic("Stdlen returned an error") } var totalLen int err = gocty.FromCtyValue(totalLenNum, &totalLen) if err != nil { panic("Stdlen returned a non-int number") } offset += totalLen } else if length == 0 { return cty.StringVal(""), nil } sub := in pos := 0 var i int if offset > 0 { for i = 0; i < len(sub); { d, _, _ := textseg.ScanGraphemeClusters(sub[i:], true) i += d pos++ if pos == offset { break } if i >= len(in) { return cty.StringVal(""), nil } } sub = sub[i:] } if length < 0 { return cty.StringVal(string(sub)), nil } pos = 0 for i = 0; i < len(sub); { d, _, _ := textseg.ScanGraphemeClusters(sub[i:], true) i += d pos++ if pos == length { break } } sub = sub[:i] return cty.StringVal(string(sub)), nil }, })
var SubtractFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "a", Type: cty.Number, AllowDynamicType: true, }, { Name: "b", Type: cty.Number, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.Number), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { defer func() { if r := recover(); r != nil { if _, ok := r.(big.ErrNaN); ok { ret = cty.NilVal err = fmt.Errorf("can't subtract infinity from itself") } else { panic(r) } } }() return args[0].Subtract(args[1]), nil }, })
var TimeAddFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "timestamp", Type: cty.String, }, { Name: "duration", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { ts, err := parseTimestamp(args[0].AsString()) if err != nil { return cty.UnknownVal(cty.String), err } duration, err := time.ParseDuration(args[1].AsString()) if err != nil { return cty.UnknownVal(cty.String), err } return cty.StringVal(ts.Add(duration).Format(time.RFC3339)), nil }, })
TimeAddFunc is a function that adds a duration to a timestamp, returning a new timestamp.
var TitleFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return cty.StringVal(strings.Title(args[0].AsString())), nil }, })
TitleFunc is a function that converts the first letter of each word in the given string to uppercase.
var TrimFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, { Name: "cutset", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { str := args[0].AsString() cutset := args[1].AsString() return cty.StringVal(strings.Trim(str, cutset)), nil }, })
TrimFunc is a function that removes the specified characters from the start and end of the given string.
var TrimPrefixFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, { Name: "prefix", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { str := args[0].AsString() prefix := args[1].AsString() return cty.StringVal(strings.TrimPrefix(str, prefix)), nil }, })
TrimPrefixFunc is a function that removes the specified characters from the start the given string.
var TrimSpaceFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return cty.StringVal(strings.TrimSpace(args[0].AsString())), nil }, })
TrimSpaceFunc is a function that removes any space characters from the start and end of the given string.
var TrimSuffixFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, }, { Name: "suffix", Type: cty.String, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { str := args[0].AsString() cutset := args[1].AsString() return cty.StringVal(strings.TrimSuffix(str, cutset)), nil }, })
TrimSuffixFunc is a function that removes the specified characters from the end of the given string.
var UpperFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "str", Type: cty.String, AllowDynamicType: true, }, }, Type: function.StaticReturnType(cty.String), Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) { in := args[0].AsString() out := strings.ToUpper(in) return cty.StringVal(out), nil }, })
var ValuesFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "values", Type: cty.DynamicPseudoType, }, }, Type: func(args []cty.Value) (ret cty.Type, err error) { ty := args[0].Type() if ty.IsMapType() { return cty.List(ty.ElementType()), nil } else if ty.IsObjectType() { atys := ty.AttributeTypes() if len(atys) == 0 { return cty.EmptyTuple, nil } attrNames := make([]string, 0, len(atys)) for name := range atys { attrNames = append(attrNames, name) } sort.Strings(attrNames) tys := make([]cty.Type, len(attrNames)) for i, name := range attrNames { tys[i] = atys[name] } return cty.Tuple(tys), nil } return cty.NilType, errors.New("values() requires a map as the first argument") }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { mapVar := args[0] // We can just iterate the map/object value here because cty guarantees // that these types always iterate in key lexicographical order. var values []cty.Value for it := mapVar.ElementIterator(); it.Next(); { _, val := it.Element() values = append(values, val) } if retType.IsTupleType() { return cty.TupleVal(values), nil } if len(values) == 0 { return cty.ListValEmpty(retType.ElementType()), nil } return cty.ListVal(values), nil }, })
ValuesFunc is a function that returns a list of the map values, in the order of the sorted keys.
var ZipmapFunc = function.New(&function.Spec{ Params: []function.Parameter{ { Name: "keys", Type: cty.List(cty.String), }, { Name: "values", Type: cty.DynamicPseudoType, }, }, Type: func(args []cty.Value) (ret cty.Type, err error) { keys := args[0] values := args[1] valuesTy := values.Type() switch { case valuesTy.IsListType(): return cty.Map(values.Type().ElementType()), nil case valuesTy.IsTupleType(): if !keys.IsWhollyKnown() { return cty.DynamicPseudoType, nil } keysRaw := keys.AsValueSlice() valueTypesRaw := valuesTy.TupleElementTypes() if len(keysRaw) != len(valueTypesRaw) { return cty.NilType, fmt.Errorf("number of keys (%d) does not match number of values (%d)", len(keysRaw), len(valueTypesRaw)) } atys := make(map[string]cty.Type, len(valueTypesRaw)) for i, keyVal := range keysRaw { if keyVal.IsNull() { return cty.NilType, fmt.Errorf("keys list has null value at index %d", i) } key := keyVal.AsString() atys[key] = valueTypesRaw[i] } return cty.Object(atys), nil default: return cty.NilType, errors.New("values argument must be a list or tuple value") } }, Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { keys := args[0] values := args[1] if !keys.IsWhollyKnown() { return cty.UnknownVal(retType), nil } if keys.LengthInt() != values.LengthInt() { return cty.NilVal, fmt.Errorf("number of keys (%d) does not match number of values (%d)", keys.LengthInt(), values.LengthInt()) } output := make(map[string]cty.Value) i := 0 for it := keys.ElementIterator(); it.Next(); { _, v := it.Element() val := values.Index(cty.NumberIntVal(int64(i))) output[v.AsString()] = val i++ } switch { case retType.IsMapType(): if len(output) == 0 { return cty.MapValEmpty(retType.ElementType()), nil } return cty.MapVal(output), nil case retType.IsObjectType(): return cty.ObjectVal(output), nil default: return cty.NilVal, fmt.Errorf("internally selected incorrect result type %s (this is a bug)", retType.FriendlyName()) } }, })
ZipmapFunc is a function that constructs a map from a list of keys and a corresponding list of values.
Functions ¶
func Absolute ¶
Absolute returns the magnitude of the given number, without its sign. That is, it turns negative values into positive values.
func BytesSlice ¶
func BytesVal ¶
BytesVal creates a new Bytes value from the given buffer, which must be non-nil or this function will panic.
Once a byte slice has been wrapped in a Bytes capsule, its underlying array must be considered immutable.
func CSVDecode ¶
CSVDecode parses the given CSV (RFC 4180) string and, if it is valid, returns a list of objects representing the rows.
The result is always a list of some object type. The first row of the input is used to determine the object attributes, and subsequent rows determine the values of those attributes.
func Ceil ¶ added in v1.3.0
Ceil returns the closest whole number greater than or equal to the given value.
func Chunklist ¶ added in v1.3.0
Chunklist splits a single list into fixed-size chunks, returning a list of lists.
func Coalesce ¶
Coalesce returns the first of the given arguments that is not null. If all arguments are null, an error is produced.
func CoalesceList ¶ added in v1.3.0
CoalesceList takes any number of list arguments and returns the first one that isn't empty.
func Compact ¶ added in v1.3.0
Compact takes a list of strings and returns a new list with any empty string elements removed.
func Concat ¶
Concat takes one or more sequences (lists or tuples) and returns the single sequence that results from concatenating them together in order.
If all of the given sequences are lists of the same element type then the result is a list of that type. Otherwise, the result is a of a tuple type constructed from the given sequence types.
func Contains ¶ added in v1.3.0
Contains determines whether a given list contains a given single value as one of its elements.
func Distinct ¶ added in v1.3.0
Distinct takes a list and returns a new list with any duplicate elements removed.
func Element ¶ added in v1.3.0
Element returns a single element from a given list at the given index. If index is greater than the length of the list then it is wrapped modulo the list length.
func Flatten ¶ added in v1.3.0
Flatten takes a list and replaces any elements that are lists with a flattened sequence of the list contents.
func Floor ¶ added in v1.3.0
Floor returns the closest whole number lesser than or equal to the given value.
func Format ¶
Format produces a string representation of zero or more values using a format string similar to the "printf" function in C.
It supports the following "verbs":
%% Literal percent sign, consuming no value %v A default formatting of the value based on type, as described below. %#v JSON serialization of the value %t Converts to boolean and then produces "true" or "false" %b Converts to number, requires integer, produces binary representation %d Converts to number, requires integer, produces decimal representation %o Converts to number, requires integer, produces octal representation %x Converts to number, requires integer, produces hexadecimal representation with lowercase letters %X Like %x but with uppercase letters %e Converts to number, produces scientific notation like -1.234456e+78 %E Like %e but with an uppercase "E" representing the exponent %f Converts to number, produces decimal representation with fractional part but no exponent, like 123.456 %g %e for large exponents or %f otherwise %G %E for large exponents or %f otherwise %s Converts to string and produces the string's characters %q Converts to string and produces JSON-quoted string representation, like %v.
The default format selections made by %v are:
string %s number %g bool %t other %#v
Null values produce the literal keyword "null" for %v and %#v, and produce an error otherwise.
Width is specified by an optional decimal number immediately preceding the verb letter. If absent, the width is whatever is necessary to represent the value. Precision is specified after the (optional) width by a period followed by a decimal number. If no period is present, a default precision is used. A period with no following number is invalid. For examples:
%f default width, default precision %9f width 9, default precision %.2f default width, precision 2 %9.2f width 9, precision 2
Width and precision are measured in unicode characters (grapheme clusters).
For most values, width is the minimum number of characters to output, padding the formatted form with spaces if necessary.
For strings, precision limits the length of the input to be formatted (not the size of the output), truncating if necessary.
For numbers, width sets the minimum width of the field and precision sets the number of places after the decimal, if appropriate, except that for %g/%G precision sets the total number of significant digits.
The following additional symbols can be used immediately after the percent introducer as flags:
(a space) leave a space where the sign would be if number is positive + Include a sign for a number even if it is positive (numeric only) - Pad with spaces on the left rather than the right 0 Pad with zeros rather than spaces.
Flag characters are ignored for verbs that do not support them.
By default, % sequences consume successive arguments starting with the first. Introducing a [n] sequence immediately before the verb letter, where n is a decimal integer, explicitly chooses a particular value argument by its one-based index. Subsequent calls without an explicit index will then proceed with n+1, n+2, etc.
An error is produced if the format string calls for an impossible conversion or accesses more values than are given. An error is produced also for an unsupported format verb.
func FormatDate ¶
FormatDate reformats a timestamp given in RFC3339 syntax into another time syntax defined by a given format string.
The format string uses letter mnemonics to represent portions of the timestamp, with repetition signifying length variants of each portion. Single quote characters ' can be used to quote sequences of literal letters that should not be interpreted as formatting mnemonics.
The full set of supported mnemonic sequences is listed below:
YY Year modulo 100 zero-padded to two digits, like "06". YYYY Four (or more) digit year, like "2006". M Month number, like "1" for January. MM Month number zero-padded to two digits, like "01". MMM English month name abbreviated to three letters, like "Jan". MMMM English month name unabbreviated, like "January". D Day of month number, like "2". DD Day of month number zero-padded to two digits, like "02". EEE English day of week name abbreviated to three letters, like "Mon". EEEE English day of week name unabbreviated, like "Monday". h 24-hour number, like "2". hh 24-hour number zero-padded to two digits, like "02". H 12-hour number, like "2". HH 12-hour number zero-padded to two digits, like "02". AA Hour AM/PM marker in uppercase, like "AM". aa Hour AM/PM marker in lowercase, like "am". m Minute within hour, like "5". mm Minute within hour zero-padded to two digits, like "05". s Second within minute, like "9". ss Second within minute zero-padded to two digits, like "09". ZZZZ Timezone offset with just sign and digit, like "-0800". ZZZZZ Timezone offset with colon separating hours and minutes, like "-08:00". Z Like ZZZZZ but with a special case "Z" for UTC. ZZZ Like ZZZZ but with a special case "UTC" for UTC.
The format syntax is optimized mainly for generating machine-oriented timestamps rather than human-oriented timestamps; the English language portions of the output reflect the use of English names in a number of machine-readable date formatting standards. For presentation to humans, a locale-aware time formatter (not included in this package) is a better choice.
The format syntax is not compatible with that of any other language, but is optimized so that patterns for common standard date formats can be recognized quickly even by a reader unfamiliar with the format syntax.
func FormatList ¶
FormatList applies the same formatting behavior as Format, but accepts a mixture of list and non-list values as arguments. Any list arguments passed must have the same length, which dictates the length of the resulting list.
Any non-list arguments are used repeatedly for each iteration over the list arguments. The list arguments are iterated in order by key, so corresponding items are formatted together.
func GreaterThan ¶
GreaterThan returns true if a is less than b.
func GreaterThanOrEqualTo ¶
GreaterThanOrEqualTo returns true if a is less than b.
func Indent ¶ added in v1.3.0
Indent adds a given number of spaces to the beginnings of all but the first line in a given multi-line string.
func Index ¶
Index returns an element from the given collection using the given key, or returns an error if there is no element for the given key.
func Int ¶
Int removes the fractional component of the given number returning an integer representing the whole number component, rounding towards zero. For example, -1.5 becomes -1.
If an infinity is passed to Int, an error is returned.
func JSONDecode ¶
JSONDecode parses the given JSON string and, if it is valid, returns the value it represents.
Note that applying JSONDecode to the result of JSONEncode may not produce an identically-typed result, since JSON encoding is lossy for cty Types. The resulting value will consist only of primitive types, object types, and tuple types.
func JSONEncode ¶
JSONEncode returns a JSON serialization of the given value.
func Join ¶ added in v1.3.0
Join concatenates together the string elements of one or more lists with a given separator.
func LessThanOrEqualTo ¶
LessThanOrEqualTo returns true if a is less than b.
func Lookup ¶ added in v1.3.0
Lookup performs a dynamic lookup into a map. There are two required arguments, map and key, plus an optional default, which is a value to return if no key is found in map.
func MakeToFunc ¶ added in v1.3.0
MakeToFunc constructs a "to..." function, like "tostring", which converts its argument to a specific type or type kind.
The given type wantTy can be any type constraint that cty's "convert" package would accept. In particular, this means that you can pass cty.List(cty.DynamicPseudoType) to mean "list of any single type", which will then cause cty to attempt to unify all of the element types when given a tuple.
func Merge ¶ added in v1.3.0
Merge takes an arbitrary number of maps and returns a single map that contains a merged set of elements from all of the maps.
If more than one given map defines the same key then the one that is later in the argument sequence takes precedence.
func Modulo ¶
Modulo returns the remainder of a divided by b under integer division, where both a and b are numbers.
func ParseInt ¶ added in v1.3.0
ParseInt parses a string argument and returns an integer of the specified base.
func Range ¶
Range creates a list of numbers by starting from the given starting value, then adding the given step value until the result is greater than or equal to the given stopping value. Each intermediate result becomes an element in the resulting list.
When all three parameters are set, the order is (start, end, step). If only two parameters are set, they are the start and end respectively and step defaults to 1. If only one argument is set, it gives the end value with start defaulting to 0 and step defaulting to 1.
Because the resulting list must be fully buffered in memory, there is an artificial cap of 1024 elements, after which this function will return an error to avoid consuming unbounded amounts of memory. The Range function is primarily intended for creating small lists of indices to iterate over, so there should be no reason to generate huge lists with it.
func Regex ¶
Regex is a function that extracts one or more substrings from a given string by applying a regular expression pattern, describing the first match.
The return type depends on the composition of the capture groups (if any) in the pattern:
- If there are no capture groups at all, the result is a single string representing the entire matched pattern.
- If all of the capture groups are named, the result is an object whose keys are the named groups and whose values are their sub-matches, or null if a particular sub-group was inside another group that didn't match.
- If none of the capture groups are named, the result is a tuple whose elements are the sub-groups in order and whose values are their sub-matches, or null if a particular sub-group was inside another group that didn't match.
- It is invalid to use both named and un-named capture groups together in the same pattern.
If the pattern doesn't match, this function returns an error. To test for a match, call RegexAll and check if the length of the result is greater than zero.
func RegexAll ¶
RegexAll is similar to Regex but it finds all of the non-overlapping matches in the given string and returns a list of them.
The result type is always a list, whose element type is deduced from the pattern in the same way as the return type for Regex is decided.
If the pattern doesn't match at all, this function returns an empty list.
func RegexReplace ¶ added in v1.4.0
func Replace ¶ added in v1.4.0
Replace searches a given string for another given substring, and replaces all occurrences with a given replacement string.
func Reverse ¶
Reverse is a Function that reverses the order of the characters in the given string.
As usual, "character" for the sake of this function is a grapheme cluster, so combining diacritics (for example) will be considered together as a single character.
func ReverseList ¶ added in v1.3.0
ReverseList takes a sequence and produces a new sequence of the same length with all of the same elements as the given sequence but in reverse order.
func SetHasElement ¶
SetHasElement determines whether the given set contains the given value as an element.
func SetIntersection ¶
Intersection returns a new set containing the elements that exist in all of the given sets, which must have element types that can all be converted to some common type using the standard type unification rules. If conversion is not possible, an error is returned.
The intersection operation is performed after type conversion, which may result in some previously-distinct values being conflated.
At least one set must be provided.
func SetProduct ¶ added in v1.3.0
SetProduct computes the Cartesian product of sets or sequences.
func SetSubtract ¶
SetSubtract returns a new set containing the elements from the first set that are not present in the second set. The sets must have element types that can both be converted to some common type using the standard type unification rules. If conversion is not possible, an error is returned.
The subtract operation is performed after type conversion, which may result in some previously-distinct values being conflated.
func SetSymmetricDifference ¶
SetSymmetricDifference returns a new set containing elements that appear in any of the given sets but not multiple. The sets must have element types that can all be converted to some common type using the standard type unification rules. If conversion is not possible, an error is returned.
The difference operation is performed after type conversion, which may result in some previously-distinct values being conflated.
func SetUnion ¶
SetUnion returns a new set containing all of the elements from the given sets, which must have element types that can all be converted to some common type using the standard type unification rules. If conversion is not possible, an error is returned.
The union operation is performed after type conversion, which may result in some previously-distinct values being conflated.
At least one set must be provided.
func Signum ¶ added in v1.3.0
Signum determines the sign of a number, returning a number between -1 and 1 to represent the sign.
func Sort ¶ added in v1.3.0
Sort re-orders the elements of a given list of strings so that they are in ascending lexicographical order.
func Split ¶ added in v1.3.0
Split divides a given string by a given separator, returning a list of strings containing the characters between the separator sequences.
func Strlen ¶
Strlen is a Function that returns the length of the given string in characters.
As usual, "character" for the sake of this function is a grapheme cluster, so combining diacritics (for example) will be considered together as a single character.
func Substr ¶
Substr is a Function that extracts a sequence of characters from another string and creates a new string.
As usual, "character" for the sake of this function is a grapheme cluster, so combining diacritics (for example) will be considered together as a single character.
The "offset" index may be negative, in which case it is relative to the end of the given string.
The "length" may be -1, in which case the remainder of the string after the given offset will be returned.
func TimeAdd ¶ added in v1.3.0
TimeAdd adds a duration to a timestamp, returning a new timestamp.
In the HCL language, timestamps are conventionally represented as strings using RFC 3339 "Date and Time format" syntax. Timeadd requires the timestamp argument to be a string conforming to this syntax.
`duration` is a string representation of a time difference, consisting of sequences of number and unit pairs, like `"1.5h"` or `1h30m`. The accepted units are `ns`, `us` (or `µs`), `"ms"`, `"s"`, `"m"`, and `"h"`. The first number may be negative to indicate a negative duration, like `"-2h5m"`.
The result is a string, also in RFC 3339 format, representing the result of adding the given direction to the given timestamp.
func Title ¶ added in v1.3.0
Title converts the first letter of each word in the given string to uppercase.
func Trim ¶ added in v1.3.0
Trim removes the specified characters from the start and end of the given string.
func TrimPrefix ¶ added in v1.3.0
TrimPrefix removes the specified prefix from the start of the given string.
func TrimSpace ¶ added in v1.3.0
TrimSpace removes any space characters from the start and end of the given string.
func TrimSuffix ¶ added in v1.3.0
TrimSuffix removes the specified suffix from the end of the given string.
Types ¶
This section is empty.