Documentation
¶
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Geometric ¶
type Geometric struct {
// contains filtered or unexported fields
}
Geometric implements the geometric distribution, a distribution which models the number of failures observed before the first success in independent Bernoulli trials. See: https://en.wikipedia.org/wiki/Geometric_distribution
func NewGeometric ¶
NewGeometric returns a Geometric, representing a geometric random variable with parameter `p` and non-negative integer support.
type Multinomial ¶
type Multinomial struct { // N is the number of trials. N uint32 // CategoryProb is a slice encoding the event probabilities. For each integer i, // CategoryProb[i] represents the probability of drawing a sample in the // i-th category. CategoryProb []float64 Src rand.Source }
Multinomial implements the multinomial distribution, a generalization of the binomial distribution. A multinomial sample consists of a variable number of independent samples, each having a fixed probability of being drawn into one of a fixed number of distinct categories. See: https://en.wikipedia.org/wiki/Multinomial_distribution.
func (Multinomial) CovarianceMatrix ¶
func (m Multinomial) CovarianceMatrix(dst *mat.SymDense)
TODO: Implement CovarianceMatrix. CovarianceMatrix returns the covariance matrix of the distribution.
func (Multinomial) LogProb ¶
func (m Multinomial) LogProb(x []uint32) float64
LogProb computes the natural logarithm of the value of the probability mass function at `x`.
func (Multinomial) Mean ¶
func (m Multinomial) Mean() []float64
Mean returns the mean vector of the distribution.
func (Multinomial) Prob ¶
func (m Multinomial) Prob(x []uint32) float64
Prob computes the value of the probability mass function at `x`.
func (Multinomial) Rand ¶
func (m Multinomial) Rand() map[uint32]uint32
Rand returns a random sample drawn from the distribution. The return format is a map. The (key, value) pair present in the map indicates `value` number of samples drawn from the `key` category.