README ¶
Istio Performance Benchmarking
This directory contains Python scripts to benchmark Istio's data plane performance.
See the Istio Performance and Scalability Guide for performance data against the latest Istio release.
For instructions on how to run these scripts with Linkerd, see the linkerd/ directory.
Prerequisites
Setup
-
Create a Kubernetes cluster.
We provide a GKE cluster-create script in this repo, refer to GKE Cluster Setup.
If you are using your own cluster, see resource requirment for machine type recommendations.
-
Install Istio
See Setup Istio.
-
Deploy the workloads to measure performance against. The test environment is two Fortio pods (one client, one server), set to communicate over HTTP1, using mutual TLS authentication. By default, the client pod will make HTTP requests with a 1KB payload.
export NAMESPACE=twopods-istio export INTERCEPTION_MODE=REDIRECT export ISTIO_INJECT=true export LOAD_GEN_TYPE=nighthawk export DNS_DOMAIN=v104.qualistio.org ./setup_test.sh
Note: We are currently supporting two types of load generators: nighthawk and fortio. Please specify the LOAD_GEN_TYPE environment variable to your desired one.
Prepare Python Environment
Here, pipenv shell
will create a local Python3 virtual environment, and pipenv install
will install all the Python
packages needed to run the benchmarking scripts and graph_plotter via Pipfile:
cd perf/benchmark
pipenv --three
pipenv shell
pipenv install
Run performance tests
The benchmarking script is located at runner.py. This script runs a set of Fortio or Nighthawk performance tests depending on the kind of LOAD_GEN_TYPE you set before.
The different sidecar modes and telemetry configurations of performance tests are described in the Istio performance dashboard site.
How to run:
- run with CLI argument directly
python runner/runner.py --conn <conn> --qps <qps> --duration <duration> --OPTIONAL-FLAGS
- run with config yaml
python runner/runner.py --config_file ./configs/istio/telemetryv2_stats/latency.yaml
Required fields to specified via CLI or config file:
conn
= number of concurrent connectionsqps
= queries per second for each connectionduration
= number of seconds to run each test for (the minimum value for duration should be: 92 seconds)load_gen_type
= the traffic load generator typetelemetry_mode
= the telemetry mode you enabled while installing Istio (none or telemetryv2)
optional arguments:
-h, --help show this help message and exit
--headers HEADERS a list of `header:value` should be separated by comma, e.g. --headers="foo:bar,foo1:bar1,foo2:bar2"
--conn CONN number of connections, comma separated list
--qps QPS qps, comma separated list
--duration DURATION duration in seconds of the extract
--load_gen_type LOAD_GEN_TYPE
traffic load generator type, can be either Fortio or Nighthawk
--jitter JITTER to enable or disable jitter for load generator
--size SIZE size of the payload
--mesh MESH istio or linkerd
--telemetry_mode TELEMETRY_MODE
run with different telemetry configurations:
none, telemetryv2
--client CLIENT where to run the test from
--server SERVER pod ip of the server
--perf PERF also run perf and produce flame graph
--frequency FREQUENCY sampling frequency of generating flame graph
--ingress INGRESS run traffic through ingress, should be a valid URL
--extra_labels EXTRA_LABELS
extra labels
--protocol_mode PROTOCOL_MODE
http, tcp or grpc
--config_file CONFIG_FILE
config yaml file
--cacert CACERT path to the cacert for the fortio client inside the
container
--baseline run baseline for all
--no_baseline do not run baseline for all
--serversidecar run serversidecar-only for all
--no_serversidecar do not run serversidecar-only for all
--clientsidecar run clientsidecar-only for all
--no_clientsidecar do not run clientsidecar-only for all
--bothsidecar run both clientsidecar and serversidecar
--no_sidecar do not run clientsidecar and serversidecar
Note:
runner.py
will run all combinations of the parameters given. However, in order to reduce ambiguity when generating the graph, it would be better to change one parameter at a time and fix other parameters- if you want to run with
--perf
flag to generate a flame graph, please make sure you have the permission to gather perf data, please refer to step 2 of this README - to test your system's maximum qps before choosing the range of qps you want to measure by passing
--qps 0
For example:
Example 1
python runner/runner.py --config_file ./configs/istio/telemetryv2_stats/latency.yaml
- This will run with configuration specified in the ./configs/istio/telemetryv2_stats/latency.yaml
- Run with telemetry v2 stats filter on and measure the latency
Example 2
python runner/runner.py --conn 2,4,8,16,32,64 --qps 1000 --duration 240 --baseline --load_gen_type=fortio --telemetry_mode=v2-nullvm
- This will run separate tests for the
both
andbaseline
modes with fortio as the load generator and testing telemetryv2 enabled scenario - Separate tests for 2 to 64 concurrent connections
- Each connection will send 1000 QPS
- Each test will run for 240 seconds
Example 3
python runner/runner.py --conn 16,64 --qps 1000,4000 --duration 180 --serversidecar --baseline --load_gen_type=nighthawk --telemetry_mode=none
- 12 tests total, each for 180 seconds, with all combinations of:
- 16 and 64 connections
- 1000 and 4000 QPS
both
,serversidecar
, andbaseline
modes
Example 4
Example 1 and 2 is to gather the latency results by increasing the number of connections. If you want to gather CPU and memory related results, you should increasing the number of QPS, like:
python runner/runner.py --conn 10 --qps 100,500,1000,2000,4000 --duration 240 --load_gen_type=fortio --telemetry_mode=v2-nullvm
Example 5: CPU flame graph
python runner/runner.py --conn 10 --qps 100,500,1000,2000,4000 --duration 240 --load_gen_type=fortio --telemetry_mode=v2-nullvm --perf=true
This will generate corresponding .svg
flame graph in the perf/benchmark/flame/flameoutput
repo.
Here is the sample output
Example 6
python runner/runner.py --conn 2,4,8,16,32,64 --qps 1000 --duration 240 --baseline --load_gen_type=fortio --protocol_mode=tcp
- This will run separate tests for the
both
andbaseline
modes with fortio tcp load test - Separate tests for 2 to 64 concurrent connections
- Each connection will send 1000 QPS
- Each test will run for 240 seconds
Gather Result Metrics
Once runner.py
has completed, extract the results from Fortio and Prometheus.
-
Set
FORTIO_CLIENT_URL
to thefortioclient
Service'sEXTERNAL_IP
:kubectl get svc -n $NAMESPACE fortioclient NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE fortioclient LoadBalancer xxxx xxxx 8080:31759/TCP,8079:30495/TCP,8078:31107/TCP,8077:31034/TCP 16h export FORTIO_CLIENT_URL=http://$(kubectl get services -n $NAMESPACE fortioclient -o jsonpath="{.status.loadBalancer.ingress[0].ip}"):9076
or if you don't have an external IP:
kubectl -n $NAMESPACE port-forward svc/fortioclient 9076:9076 & export FORTIO_CLIENT_URL=http://localhost:9076
-
Set
PROMETHEUS_URL
:This command can be used if you installed Prometheus over the
./setup_istio.sh
script. Otherwise your Prometheus maybe in a different namespace and differently named.kubectl -n istio-prometheus port-forward svc/istio-prometheus 9090:9090 & export PROMETHEUS_URL=http://localhost:9090
-
Run
fortio.py
:python ./runner/fortio.py $FORTIO_CLIENT_URL --prometheus=$PROMETHEUS_URL --csv StartTime,ActualDuration,Labels,NumThreads,ActualQPS,p50,p90,p99,p999,cpu_mili_avg_istio_proxy_fortioclient,cpu_mili_avg_istio_proxy_fortioserver,cpu_mili_avg_istio_proxy_istio-ingressgateway,mem_Mi_avg_istio_proxy_fortioclient,mem_Mi_avg_istio_proxy_fortioserver,mem_Mi_avg_istio_proxy_istio-ingressgateway
This script will generate two output files (one JSON, one CSV), both containing the same result metrics: Queries Per Second (QPS) attained, latency, and CPU/Memory usage.
Visualize CSV Results
Please refer to graph_plotter README
Add new config to benchmark pipeline
Currently we are running benchmark test towards different configs as prow job
To add a new config to this pipeline, we need to add a new directory under configs folder, where we can define config parameters structured as below:
- installation.yaml: install Istio with this IstioOperator overlay file on top of istioctl built-in default profile and perf testing default overlay
- cpu_mem.yaml: if provided, run cpu, memory test with this config
- latency.yaml: if provided, run latency test with this config
- prerun.sh: prerun hook we want to run before test
- postrun.sh: postrun hook we want to run after test