Documentation
¶
Index ¶
- type Regressor
- func (m *Regressor) Fit(X, Y mat.Matrix) base.Fiter
- func (m *Regressor) GetNOutputs() int
- func (m *Regressor) IsClassifier() bool
- func (m *Regressor) LogMarginalLikelihood(Theta mat.Matrix, evalGradient bool) (lml float64, grad []float64)
- func (m *Regressor) Predict(X mat.Matrix, Y mat.Mutable) *mat.Dense
- func (m *Regressor) PredictEx(X mat.Matrix, Y mat.Mutable, returnStd, returnCov bool) (*mat.Dense, *mat.DiagDense, *mat.Dense)
- func (m *Regressor) PredicterClone() base.Predicter
- func (m *Regressor) Score(X, Y mat.Matrix) float64
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Regressor ¶
type Regressor struct { kernels.Kernel Alpha []float64 // Optimizer is always optimize.LBFGS NRestartsOptimizer int NormalizeY bool // copy_X_train is always true base.RandomState Xtrain *mat.Dense Ytrain *mat.Dense YtrainMean *mat.Dense KernelOpt kernels.Kernel L *mat.Cholesky LogMarginalLikelihoodValue float64 }
Regressor ...
func (*Regressor) GetNOutputs ¶
GetNOutputs returns Y columns count
func (*Regressor) LogMarginalLikelihood ¶
func (m *Regressor) LogMarginalLikelihood(Theta mat.Matrix, evalGradient bool) ( lml float64, grad []float64, )
LogMarginalLikelihood returns log-marginal likelihood of theta for training data
func (*Regressor) PredictEx ¶
func (m *Regressor) PredictEx(X mat.Matrix, Y mat.Mutable, returnStd, returnCov bool) (*mat.Dense, *mat.DiagDense, *mat.Dense)
PredictEx predicts using the Gaussian process regression model, returning Ymean and std or cov
func (*Regressor) PredicterClone ¶
PredicterClone clones Predicter (for KFold...)
Click to show internal directories.
Click to hide internal directories.