rlwe

package
v6.0.0-...-cdc8096 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Mar 7, 2023 License: Apache-2.0 Imports: 10 Imported by: 0

Documentation

Overview

Package rlwe implements the generic operations that are common to R-LWE schemes. The other implemented schemes extend this package with their specific operations and structures.

Index

Constants

View Source
const DefaultSigma = 3.2

DefaultSigma is the default error distribution standard deviation

View Source
const GaloisGen uint64 = ring.GaloisGen

GaloisGen is an integer of order N=2^d modulo M=2N and that spans Z_M with the integer -1. The j-th ring automorphism takes the root zeta to zeta^(5j).

View Source
const MaxLogN = 17

MaxLogN is the log2 of the largest supported polynomial modulus degree.

View Source
const MaxModuliCount = 34

MaxModuliCount is the largest supported number of moduli in the RNS representation.

View Source
const MaxModuliSize = 60

MaxModuliSize is the largest bit-length supported for the moduli in the RNS representation.

View Source
const MinLogN = 4

MinLogN is the log2 of the smallest supported polynomial modulus degree (needed to ensure the NTT correctness).

View Source
const (
	// ScalePrecision is the default precision of the scale.
	ScalePrecision = uint(128)
)

Variables

View Source
var (

	// TestPN10QP27 is a set of default parameters with logN=10 and logQP=27
	TestPN10QP27 = ParametersLiteral{
		LogN:     10,
		Q:        []uint64{0x7fff801},
		Pow2Base: 2,
	}

	// TestPN11QP54 is a set of default parameters with logN=11 and logQP=54
	TestPN11QP54 = ParametersLiteral{
		LogN:     11,
		Q:        []uint64{0x15400000001},
		P:        []uint64{0x3001},
		Pow2Base: 14,
	}
	// TestPN12QP109 is a set of default parameters with logN=12 and logQP=109
	TestPN12QP109 = ParametersLiteral{
		LogN:     12,
		Q:        []uint64{0x7ffffffec001, 0x400000008001},
		P:        []uint64{0xa001},
		Pow2Base: 16,
	}
	// TestPN13QP218 is a set of default parameters with logN=13 and logQP=218
	TestPN13QP218 = ParametersLiteral{
		LogN: 13,
		Q:    []uint64{0x3fffffffef8001, 0x4000000011c001, 0x40000000120001},
		P:    []uint64{0x7ffffffffb4001},
	}

	// TestPN14QP438 is a set of default parameters with logN=14 and logQP=438
	TestPN14QP438 = ParametersLiteral{
		LogN: 14,
		Q: []uint64{0x100000000060001, 0x80000000068001, 0x80000000080001,
			0x3fffffffef8001, 0x40000000120001, 0x3fffffffeb8001},
		P: []uint64{0x80000000130001, 0x7fffffffe90001},
	}

	// TestPN15QP880 is a set of default parameters with logN=15 and logQP=880
	TestPN15QP880 = ParametersLiteral{
		LogN: 15,
		Q: []uint64{0x7ffffffffe70001, 0x7ffffffffe10001, 0x7ffffffffcc0001,
			0x400000000270001, 0x400000000350001, 0x400000000360001,
			0x3ffffffffc10001, 0x3ffffffffbe0001, 0x3ffffffffbd0001,
			0x4000000004d0001, 0x400000000570001, 0x400000000660001},
		P: []uint64{0xffffffffffc0001, 0x10000000001d0001, 0x10000000006e0001},
	}

	// TestPN16QP240 is a set of default parameters with logN=16 and logQP=240
	TestPN16QP240 = ParametersLiteral{
		LogN: 16,
		LogQ: []int{60, 60, 60},
		LogP: []int{60},
	}

	// TestPN17QP360 is a set of default parameters with logN=17 and logQP=360
	TestPN17QP360 = ParametersLiteral{
		LogN: 17,
		LogQ: []int{60, 60, 60, 60},
		LogP: []int{60, 60},
	}

	DefaultParams = []ParametersLiteral{TestPN10QP27, TestPN11QP54, TestPN12QP109, TestPN13QP218, TestPN14QP438, TestPN15QP880, TestPN16QP240, TestPN17QP360}
)

Functions

func AddPolyTimesGadgetVectorToGadgetCiphertext

func AddPolyTimesGadgetVectorToGadgetCiphertext(pt *ring.Poly, cts []GadgetCiphertext, ringQP ringqp.Ring, logbase2 int, buff *ring.Poly)

AddPolyTimesGadgetVectorToGadgetCiphertext takes a plaintext polynomial and a list of Ciphertexts and adds the plaintext times the RNS and BIT decomposition to the i-th element of the i-th Ciphertexts. This method panics if len(cts) > 2.

func AddPolyToGadgetMatrix

func AddPolyToGadgetMatrix(pt *ring.Poly, gm [][]ringqp.Poly, ringQP ringqp.Ring, logbase2 int, buff *ring.Poly)

AddPolyToGadgetMatrix takes a plaintext polynomial and a list of ringqp.Poly and adds the plaintext times the RNS and BIT decomposition to the list of ringqp.Poly.

func CheckModuli

func CheckModuli(q, p []uint64) error

CheckModuli checks that the provided q and p correspond to a valid moduli chain.

func GenModuli

func GenModuli(logN int, logQ, logP []int) (q, p []uint64, err error)

GenModuli generates a valid moduli chain from the provided moduli sizes.

func Norm

func Norm(ct *Ciphertext, dec Decryptor) (std, min, max float64)

Norm returns the log2 of the standard deviation, minimum and maximum absolute norm of the decrypted Ciphertext, before the decoding (i.e. including the error).

func NormStats

func NormStats(vec []*big.Int) (float64, float64, float64)

func PopulateElementRandom

func PopulateElementRandom(prng utils.PRNG, params Parameters, ct *Ciphertext)

PopulateElementRandom creates a new rlwe.Element with random coefficients.

func PublicKeyIsCorrect

func PublicKeyIsCorrect(pk *PublicKey, sk *SecretKey, params Parameters, log2Bound int) bool

PublicKeyIsCorrect returns true if pk is a correct RLWE public-key for secret-key sk and parameters params.

func RelinearizationKeyIsCorrect

func RelinearizationKeyIsCorrect(rlk *SwitchingKey, skIdeal *SecretKey, params Parameters, log2Bound int) bool

RelinearizationKeyIsCorrect returns true if swk is a correct RLWE relinearization-key for secret-key sk and parameters params.

func RotationKeyIsCorrect

func RotationKeyIsCorrect(swk *SwitchingKey, galEl uint64, skIdeal *SecretKey, params Parameters, log2Bound int) bool

RotationKeyIsCorrect returns true if swk is a correct RLWE switching-key for galois element galEl, secret-key sk and parameters params.

func SwitchCiphertextRingDegree

func SwitchCiphertextRingDegree(ctIn *Ciphertext, ctOut *Ciphertext)

SwitchCiphertextRingDegree changes the ring degree of ctIn to the one of ctOut. Maps Y^{N/n} -> X^{N} or X^{N} -> Y^{N/n}. If the ring degree of ctOut is larger than the one of ctIn, then the ringQ of ctIn must be provided (otherwise, a nil pointer).

func SwitchCiphertextRingDegreeNTT

func SwitchCiphertextRingDegreeNTT(ctIn *Ciphertext, ringQSmallDim, ringQLargeDim *ring.Ring, ctOut *Ciphertext)

SwitchCiphertextRingDegreeNTT changes the ring degree of ctIn to the one of ctOut. Maps Y^{N/n} -> X^{N} or X^{N} -> Y^{N/n}. If the ring degree of ctOut is larger than the one of ctIn, then the ringQ of ctIn must be provided (otherwise, a nil pointer). The ctIn must be in the NTT domain and ctOut will be in the NTT domain.

func SwitchingKeyIsCorrect

func SwitchingKeyIsCorrect(swk *SwitchingKey, skIn, skOut *SecretKey, params Parameters, log2Bound int) bool

SwitchingKeyIsCorrect returns true if swk is a correct RLWE switching-key for input key skIn, output key skOut and parameters params.

Types

type AdditiveShare

type AdditiveShare struct {
	Value ring.Poly
}

AdditiveShare is a type for storing additively shared values in Z_Q[X] (RNS domain).

func NewAdditiveShare

func NewAdditiveShare(params Parameters) *AdditiveShare

NewAdditiveShare instantiates a new additive share struct for the ring defined by the given parameters at maximum level.

func NewAdditiveShareAtLevel

func NewAdditiveShareAtLevel(params Parameters, level int) *AdditiveShare

NewAdditiveShareAtLevel instantiates a new additive share struct for the ring defined by the given parameters at level `level`.

type AdditiveShareBigint

type AdditiveShareBigint struct {
	Value []*big.Int
}

AdditiveShareBigint is a type for storing additively shared values in Z (positional domain).

func NewAdditiveShareBigint

func NewAdditiveShareBigint(params Parameters, n int) *AdditiveShareBigint

NewAdditiveShareBigint instantiates a new additive share struct composed of "n" big.Int elements.

type Ciphertext

type Ciphertext struct {
	MetaData
	Value []*ring.Poly
}

Ciphertext is a generic type for RLWE ciphertexts.

func GetSmallestLargest

func GetSmallestLargest(el0, el1 *Ciphertext) (smallest, largest *Ciphertext, sameDegree bool)

GetSmallestLargest returns the provided element that has the smallest degree as a first returned value and the largest degree as second return value. If the degree match, the order is the same as for the input.

func NewCiphertext

func NewCiphertext(params Parameters, degree, level int) (ct *Ciphertext)

NewCiphertext returns a new Ciphertext with zero values and an associated MetaData set to the Parameters default value.

func NewCiphertextAtLevelFromPoly

func NewCiphertextAtLevelFromPoly(level int, poly []*ring.Poly) (ct *Ciphertext)

NewCiphertextAtLevelFromPoly constructs a new Ciphertext at a specific level where the message is set to the passed poly. No checks are performed on poly and the returned Ciphertext will share its backing array of coefficients. Returned Ciphertext's MetaData is empty.

func NewCiphertextRandom

func NewCiphertextRandom(prng utils.PRNG, params Parameters, degree, level int) (ciphertext *Ciphertext)

NewCiphertextRandom generates a new uniformly distributed Ciphertext of degree, level.

func (*Ciphertext) Copy

func (ct *Ciphertext) Copy(ctxCopy *Ciphertext)

Copy copies the input element and its parameters on the target element.

func (*Ciphertext) CopyNew

func (ct *Ciphertext) CopyNew() *Ciphertext

CopyNew creates a new element as a copy of the target element.

func (*Ciphertext) Decode64

func (ct *Ciphertext) Decode64(data []byte) (ptr int, err error)

Decode64 decodes a slice of bytes in the target Ciphertext and returns the number of bytes decoded. The method will first try to write on the buffer. If this step fails, either because the buffer isn't allocated or because it has the wrong size, the method will allocate the correct buffer. Assumes that each coefficient is encoded on 8 bytes.

func (*Ciphertext) Degree

func (ct *Ciphertext) Degree() int

Degree returns the degree of the target Ciphertext.

func (*Ciphertext) El

func (ct *Ciphertext) El() *Ciphertext

El returns a pointer to this Element

func (*Ciphertext) Encode64

func (ct *Ciphertext) Encode64(data []byte) (ptr int, err error)

Encode64 encodes the target Ciphertext on a byte array, using 8 bytes per coefficient. It returns the number of written bytes, and the corresponding error, if it occurred.

func (*Ciphertext) GetScale

func (ct *Ciphertext) GetScale() Scale

GetScale gets the scale of the target ciphertext.

func (*Ciphertext) Level

func (ct *Ciphertext) Level() int

Level returns the level of the target Ciphertext.

func (*Ciphertext) MarshalBinary

func (ct *Ciphertext) MarshalBinary() (data []byte, err error)

MarshalBinary encodes a Ciphertext on a byte slice. The total size in bytes is 4 + 8* N * numberModuliQ * (degree + 1).

func (*Ciphertext) MarshalBinarySize

func (ct *Ciphertext) MarshalBinarySize() (dataLen int)

MarshalBinarySize returns the length in bytes of the target Ciphertext.

func (*Ciphertext) Resize

func (ct *Ciphertext) Resize(degree, level int)

Resize resizes the degree of the target element. Sets the NTT flag of the added poly equal to the NTT flag to the poly at degree zero.

func (*Ciphertext) SetScale

func (ct *Ciphertext) SetScale(scale Scale)

SetScale sets the scale of the target ciphertext.

func (*Ciphertext) UnmarshalBinary

func (ct *Ciphertext) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a previously marshaled Ciphertext on the target Ciphertext.

type CiphertextQP

type CiphertextQP struct {
	MetaData
	Value [2]ringqp.Poly
}

CiphertextQP is a generic type for RLWE ciphertexts in R_qp. It contains no MetaData.

func NewCiphertextQP

func NewCiphertextQP(params Parameters, levelQ, levelP int) CiphertextQP

NewCiphertextQP allocates a new CiphertextQP.

func (*CiphertextQP) CopyNew

func (ct *CiphertextQP) CopyNew() *CiphertextQP

CopyNew returns a copy of the target CiphertextQP.

func (*CiphertextQP) Decode64

func (ct *CiphertextQP) Decode64(data []byte) (ptr int, err error)

Decode64 decodes a slice of bytes in the target CiphertextQP and returns the number of bytes decoded. The method will first try to write on the buffer. If this step fails, either because the buffer isn't allocated or because it has the wrong size, the method will allocate the correct buffer. Assumes that each coefficient is encoded on 8 bytes.

func (*CiphertextQP) Encode64

func (ct *CiphertextQP) Encode64(data []byte) (ptr int, err error)

Encode64 encodes the target CiphertextQP on a byte array, using 8 bytes per coefficient. It returns the number of written bytes, and the corresponding error, if it occurred.

func (*CiphertextQP) MarshalBinarySize

func (ct *CiphertextQP) MarshalBinarySize() int

MarshalBinarySize returns the length in bytes of the target CiphertextQP.

type Decryptor

type Decryptor interface {
	Decrypt(ct *Ciphertext, pt *Plaintext)
	DecryptNew(ct *Ciphertext) (pt *Plaintext)
	ShallowCopy() Decryptor
	WithKey(sk *SecretKey) Decryptor
}

Decryptor is an RLWE decryption interface.

func NewDecryptor

func NewDecryptor(params Parameters, sk *SecretKey) Decryptor

NewDecryptor instantiates a new generic RLWE Decryptor.

type Encryptor

type Encryptor interface {
	Encrypt(pt *Plaintext, ct interface{})
	EncryptZero(ct interface{})

	EncryptZeroNew(level int) (ct *Ciphertext)
	EncryptNew(pt *Plaintext) (ct *Ciphertext)

	ShallowCopy() Encryptor
	WithKey(key interface{}) Encryptor
}

Encryptor a generic RLWE encryption interface.

func NewEncryptor

func NewEncryptor(params Parameters, key interface{}) Encryptor

NewEncryptor creates a new Encryptor Accepts either a secret-key or a public-key.

type EvaluationKey

type EvaluationKey struct {
	Rlk  *RelinearizationKey
	Rtks *RotationKeySet
}

EvaluationKey is a type for storing generic RLWE public evaluation keys. An evaluation key is a union of a relinearization key and a set of rotation keys.

type Evaluator

type Evaluator struct {
	Rlk             *RelinearizationKey
	Rtks            *RotationKeySet
	PermuteNTTIndex map[uint64][]uint64

	BasisExtender *ring.BasisExtender
	Decomposer    *ring.Decomposer
	// contains filtered or unexported fields
}

Evaluator is a struct that holds the necessary elements to execute general homomorphic operation on RLWE ciphertexts, such as automorphisms, key-switching and relinearization.

func NewEvaluator

func NewEvaluator(params Parameters, evaluationKey *EvaluationKey) (eval *Evaluator)

NewEvaluator creates a new Evaluator.

func (*Evaluator) Automorphism

func (eval *Evaluator) Automorphism(ctIn *Ciphertext, galEl uint64, ctOut *Ciphertext)

Automorphism computes phi(ct), where phi is the map X -> X^galEl. The method requires that the corresponding RotationKey has been added to the Evaluator. The method will panic if either ctIn or ctOut degree is not equal to 1.

func (*Evaluator) AutomorphismHoisted

func (eval *Evaluator) AutomorphismHoisted(level int, ctIn *Ciphertext, c1DecompQP []ringqp.Poly, galEl uint64, ctOut *Ciphertext)

AutomorphismHoisted is similar to Automorphism, except that it takes as input ctIn and c1DecompQP, where c1DecompQP is the RNS decomposition of its element of degree 1. This decomposition can be obtained with DecomposeNTT. The method requires that the corresponding RotationKey has been added to the Evaluator. The method will panic if either ctIn or ctOut degree is not equal to 1.

func (*Evaluator) AutomorphismHoistedLazy

func (eval *Evaluator) AutomorphismHoistedLazy(levelQ int, c0 *ring.Poly, c1DecompQP []ringqp.Poly, galEl uint64, ctQP CiphertextQP)

AutomorphismHoistedLazy is similar to AutomorphismHoisted, except that it returns a ciphertext modulo QP and scaled by P. The method requires that the corresponding RotationKey has been added to the Evaluator. Requires that the NTT domain of c0 and ctQP are the same.

func (*Evaluator) CheckBinary

func (eval *Evaluator) CheckBinary(op0, op1, opOut Operand, opOutMinDegree int) (degree, level int)

CheckBinary checks that:

Inputs are not nil
op0.Degree() + op1.Degree() != 0 (i.e at least one operand is a ciphertext)
opOut.Degree() >= opOutMinDegree
op0.IsNTT = DefaultNTTFlag
op1.IsNTT = DefaultNTTFlag

and returns max(op0.Degree(), op1.Degree(), opOut.Degree()) and min(op0.Level(), op1.Level(), opOut.Level())

func (*Evaluator) CheckUnary

func (eval *Evaluator) CheckUnary(op0, opOut Operand) (degree, level int)

CheckUnary checks that op0 and opOut are not nil and that op0 respects the DefaultNTTFlag. Also returns max(op0.Degree(), opOut.Degree()) and min(op0.Level(), opOut.Level()).

func (*Evaluator) DecomposeNTT

func (eval *Evaluator) DecomposeNTT(levelQ, levelP, nbPi int, c2 *ring.Poly, c2IsNTT bool, BuffDecompQP []ringqp.Poly)

DecomposeNTT applies the full RNS basis decomposition on c2. Expects the IsNTT flag of c2 to correctly reflect the domain of c2. BuffQPDecompQ and BuffQPDecompQ are vectors of polynomials (mod Q and mod P) that store the special RNS decomposition of c2 (in the NTT domain)

func (*Evaluator) DecomposeSingleNTT

func (eval *Evaluator) DecomposeSingleNTT(levelQ, levelP, nbPi, decompRNS int, c2NTT, c2InvNTT, c2QiQ, c2QiP *ring.Poly)

DecomposeSingleNTT takes the input polynomial c2 (c2NTT and c2InvNTT, respectively in the NTT and out of the NTT domain) modulo the RNS basis, and returns the result on c2QiQ and c2QiP, the receiver polynomials respectively mod Q and mod P (in the NTT domain)

func (*Evaluator) Expand

func (eval *Evaluator) Expand(ctIn *Ciphertext, logN, logGap int) (ctOut []*Ciphertext)

Expand expands a RLWE Ciphertext encrypting sum ai * X^i to 2^logN ciphertexts, each encrypting ai * X^0 for 0 <= i < 2^LogN. That is, it extracts the first 2^logN coefficients, whose degree is a multiple of 2^logGap, of ctIn and returns an RLWE Ciphertext for each coefficient extracted.

func (*Evaluator) GadgetProduct

func (eval *Evaluator) GadgetProduct(levelQ int, cx *ring.Poly, gadgetCt GadgetCiphertext, ct *Ciphertext)

GadgetProduct evaluates poly x Gadget -> RLWE where

p0 = dot(decomp(cx) * gadget[0]) mod Q p1 = dot(decomp(cx) * gadget[1]) mod Q

Expects the flag IsNTT of ct to correctly reflect the domain of cx.

func (*Evaluator) GadgetProductLazy

func (eval *Evaluator) GadgetProductLazy(levelQ int, cx *ring.Poly, gadgetCt GadgetCiphertext, ct CiphertextQP)

GadgetProductLazy applies the gadget prodcut to the polynomial cx:

ct.Value[0] = dot(decomp(cx) * gadget[0]) mod QP (encrypted input is multiplied by P factor) ct.Value[1] = dot(decomp(cx) * gadget[1]) mod QP (encrypted input is multiplied by P factor)

Expects the flag IsNTT of ct to correctly reflect the domain of cx.

func (*Evaluator) GadgetProductSinglePAndBitDecompLazy

func (eval *Evaluator) GadgetProductSinglePAndBitDecompLazy(levelQ int, cx *ring.Poly, gadgetCt GadgetCiphertext, ct CiphertextQP)

GadgetProductSinglePAndBitDecompLazy applies the key-switch to the polynomial cx:

ct.Value[0] = dot(decomp(cx) * evakey[0]) mod QP (encrypted input is multiplied by P factor) ct.Value[1] = dot(decomp(cx) * evakey[1]) mod QP (encrypted input is multiplied by P factor)

Expects the flag IsNTT of ct to correctly reflect the domain of cx.

func (*Evaluator) InnerSum

func (eval *Evaluator) InnerSum(ctIn *Ciphertext, batchSize, n int, ctOut *Ciphertext)

InnerSum applies an optimized inner sum on the Ciphertext (log2(n) + HW(n) rotations with double hoisting). The operation assumes that `ctIn` encrypts SlotCount/`batchSize` sub-vectors of size `batchSize` which it adds together (in parallel) in groups of `n`. It outputs in ctOut a Ciphertext for which the "leftmost" sub-vector of each group is equal to the sum of the group.

func (*Evaluator) KeyswitchHoisted

func (eval *Evaluator) KeyswitchHoisted(levelQ int, BuffQPDecompQP []ringqp.Poly, evakey *SwitchingKey, c0Q, c1Q, c0P, c1P *ring.Poly)

KeyswitchHoisted applies the key-switch to the decomposed polynomial c2 mod QP (BuffQPDecompQ and BuffQPDecompP) and divides the result by P, reducing the basis from QP to Q.

BuffQP2 = dot(BuffQPDecompQ||BuffQPDecompP * evakey[0]) mod Q BuffQP3 = dot(BuffQPDecompQ||BuffQPDecompP * evakey[1]) mod Q

func (*Evaluator) KeyswitchHoistedLazy

func (eval *Evaluator) KeyswitchHoistedLazy(levelQ int, BuffQPDecompQP []ringqp.Poly, evakey *SwitchingKey, c0Q, c1Q, c0P, c1P *ring.Poly)

KeyswitchHoistedLazy applies the key-switch to the decomposed polynomial c2 mod QP (BuffQPDecompQ and BuffQPDecompP)

BuffQP2 = dot(BuffQPDecompQ||BuffQPDecompP * evakey[0]) mod QP BuffQP3 = dot(BuffQPDecompQ||BuffQPDecompP * evakey[1]) mod QP

func (*Evaluator) Merge

func (eval *Evaluator) Merge(ctIn map[int]*Ciphertext) (ctOut *Ciphertext)

Merge merges a batch of RLWE, packing the first coefficient of each RLWE into a single RLWE.

Given P(Y) = sum[ct(P(X) = sum[a_{ij} * X^{j}]) * Y^{i}] returns ct(P(X) = sum[a_{0j} * X^{j}])

This method is not inplace and will modify the input ciphertexts. The operation will require N/gap + log(gap) key-switches, where gap is the minimum gap between two non-zero coefficients of the final Ciphertext. The method takes as input a map of Ciphertext, indexing in which coefficient of the final Ciphertext the first coefficient of each Ciphertext of the map must be packed. All input ciphertexts must be in the NTT domain; otherwise, the method will panic.

func (*Evaluator) Parameters

func (eval *Evaluator) Parameters() Parameters

Parameters returns the parameters used to instantiate the target evaluator.

func (*Evaluator) Relinearize

func (eval *Evaluator) Relinearize(ctIn *Ciphertext, ctOut *Ciphertext)

Relinearize applies the relinearization procedure on ct0 and returns the result in ctOut. The method will panic if the corresponding relinearization key to the ciphertext degree is missing.

func (*Evaluator) Replicate

func (eval *Evaluator) Replicate(ctIn *Ciphertext, batchSize, n int, ctOut *Ciphertext)

Replicate applies an optimized replication on the Ciphertext (log2(n) + HW(n) rotations with double hoisting). It acts as the inverse of a inner sum (summing elements from left to right). The replication is parameterized by the size of the sub-vectors to replicate "batchSize" and the number of times 'n' they need to be replicated. To ensure correctness, a gap of zero values of size batchSize * (n-1) must exist between two consecutive sub-vectors to replicate. This method is faster than Replicate when the number of rotations is large and it uses log2(n) + HW(n) instead of 'n'.

func (*Evaluator) ShallowCopy

func (eval *Evaluator) ShallowCopy() *Evaluator

ShallowCopy creates a shallow copy of this Evaluator in which all the read-only data-structures are shared with the receiver and the temporary buffers are reallocated. The receiver and the returned Evaluators can be used concurrently.

func (*Evaluator) SwitchKeys

func (eval *Evaluator) SwitchKeys(ctIn *Ciphertext, switchingKey *SwitchingKey, ctOut *Ciphertext)

SwitchKeys re-encrypts ctIn under a different key and returns the result in ctOut. It requires a SwitchingKey, which is computed from the key under which the Ciphertext is currently encrypted and the key under which the Ciphertext will be re-encrypted. The method will panic if either ctIn or ctOut degree isn't 1.

func (*Evaluator) Trace

func (eval *Evaluator) Trace(ctIn *Ciphertext, logN int, ctOut *Ciphertext)

Trace maps X -> sum((-1)^i * X^{i*n+1}) for n <= i < N Monomial X^k vanishes if k is not divisible by (N/n), otherwise it is multiplied by (N/n). Ciphertext is pre-multiplied by (N/n)^-1 to remove the (N/n) factor. Examples of full Trace for [0 + 1X + 2X^2 + 3X^3 + 4X^4 + 5X^5 + 6X^6 + 7X^7]

1.

  [1 + 2X + 3X^2 + 4X^3 + 5X^4 + 6X^5 + 7X^6 + 8X^7]
+ [1 - 6X - 3X^2 + 8X^3 + 5X^4 + 2X^5 - 7X^6 - 4X^7]  {X-> X^(i * 5^1)}
= [2 - 4X + 0X^2 +12X^3 +10X^4 + 8X^5 - 0X^6 + 4X^7]

2.

  [2 - 4X + 0X^2 +12X^3 +10X^4 + 8X^5 - 0X^6 + 4X^7]
+ [2 + 4X + 0X^2 -12X^3 +10X^4 - 8X^5 + 0X^6 - 4X^7]  {X-> X^(i * 5^2)}
= [4 + 0X + 0X^2 - 0X^3 +20X^4 + 0X^5 + 0X^6 - 0X^7]

3.

  [4 + 0X + 0X^2 - 0X^3 +20X^4 + 0X^5 + 0X^6 - 0X^7]
+ [4 + 0X + 0X^2 - 0X^3 -20X^4 + 0X^5 + 0X^6 - 0X^7]  {X-> X^(i * -1)}
= [8 + 0X + 0X^2 - 0X^3 + 0X^4 + 0X^5 + 0X^6 - 0X^7]

func (*Evaluator) WithKey

func (eval *Evaluator) WithKey(evaluationKey *EvaluationKey) *Evaluator

WithKey creates a shallow copy of the receiver Evaluator for which the new EvaluationKey is evaluationKey and where the temporary buffers are shared. The receiver and the returned Evaluators cannot be used concurrently.

type GadgetCiphertext

type GadgetCiphertext struct {
	Value [][]CiphertextQP
}

GadgetCiphertext is a struct for storing an encrypted plaintext times the gadget power matrix.

func NewGadgetCiphertext

func NewGadgetCiphertext(params Parameters, levelQ, levelP, decompRNS, decompBIT int) (ct *GadgetCiphertext)

NewGadgetCiphertext returns a new Ciphertext key with pre-allocated zero-value. Ciphertext is always in the NTT domain.

func (*GadgetCiphertext) CopyNew

func (ct *GadgetCiphertext) CopyNew() (ctCopy *GadgetCiphertext)

CopyNew creates a deep copy of the receiver Ciphertext and returns it.

func (*GadgetCiphertext) Decode

func (ct *GadgetCiphertext) Decode(data []byte) (ptr int, err error)

Decode decodes a slice of bytes on the target ciphertext.

func (*GadgetCiphertext) Encode

func (ct *GadgetCiphertext) Encode(data []byte) (ptr int, err error)

Encode encodes the target ciphertext on a pre-allocated slice of bytes.

func (*GadgetCiphertext) Equals

func (ct *GadgetCiphertext) Equals(other *GadgetCiphertext) bool

Equals checks two Ciphertexts for equality.

func (*GadgetCiphertext) LevelP

func (ct *GadgetCiphertext) LevelP() int

LevelP returns the level of the modulus P of the target Ciphertext.

func (*GadgetCiphertext) LevelQ

func (ct *GadgetCiphertext) LevelQ() int

LevelQ returns the level of the modulus Q of the target Ciphertext.

func (*GadgetCiphertext) MarshalBinary

func (ct *GadgetCiphertext) MarshalBinary() (data []byte, err error)

MarshalBinary encodes the target Ciphertext on a slice of bytes.

func (*GadgetCiphertext) MarshalBinarySize

func (ct *GadgetCiphertext) MarshalBinarySize() (dataLen int)

MarshalBinarySize returns the length in bytes of the target GadgetCiphertext.

func (*GadgetCiphertext) UnmarshalBinary

func (ct *GadgetCiphertext) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a slice of bytes on the target Ciphertext.

type GadgetPlaintext

type GadgetPlaintext struct {
	Value []*ring.Poly
}

GadgetPlaintext stores a RGSW plaintext value.

func NewGadgetPlaintext

func NewGadgetPlaintext(params Parameters, value interface{}, levelQ, levelP, logBase2, decompBIT int) (pt *GadgetPlaintext)

NewGadgetPlaintext creates a new gadget plaintext from value, which can be either uint64, int64 or *ring.Poly. Plaintext is returned in the NTT and Mongtomery domain.

type KeyGenerator

type KeyGenerator interface {
	GenSecretKey() (sk *SecretKey)
	GenSecretKeyGaussian() (sk *SecretKey)
	GenSecretKeyWithDistrib(p float64) (sk *SecretKey)
	GenSecretKeyWithHammingWeight(hw int) (sk *SecretKey)
	GenPublicKey(sk *SecretKey) (pk *PublicKey)
	GenKeyPair() (sk *SecretKey, pk *PublicKey)
	GenRelinearizationKey(sk *SecretKey, maxDegree int) (evk *RelinearizationKey)
	GenSwitchingKey(skInput, skOutput *SecretKey) (newevakey *SwitchingKey)
	GenSwitchingKeyForGalois(galEl uint64, sk *SecretKey) (swk *SwitchingKey)
	GenRotationKeys(galEls []uint64, sk *SecretKey) (rks *RotationKeySet)
	GenSwitchingKeyForRotationBy(k int, sk *SecretKey) (swk *SwitchingKey)
	GenRotationKeysForRotations(ks []int, inclueSwapRows bool, sk *SecretKey) (rks *RotationKeySet)
	GenSwitchingKeyForRowRotation(sk *SecretKey) (swk *SwitchingKey)
	GenRotationKeysForInnerSum(sk *SecretKey) (rks *RotationKeySet)
	GenSwitchingKeysForRingSwap(skCKKS, skCI *SecretKey) (stdToci, ciToStd *SwitchingKey)
}

KeyGenerator is an interface implementing the methods of the KeyGenerator.

func NewKeyGenerator

func NewKeyGenerator(params Parameters) KeyGenerator

NewKeyGenerator creates a new KeyGenerator, from which the secret and public keys, as well as the evaluation, rotation and switching keys can be generated.

type MetaData

type MetaData struct {
	Scale
	IsNTT        bool
	IsMontgomery bool
}

MetaData is a struct storing metadata.

func (*MetaData) Decode64

func (m *MetaData) Decode64(data []byte) (ptr int, err error)

Decode64 decodes a slice of bytes in the target MetaData and returns the number of bytes decoded. The method will first try to write on the buffer. If this step fails, either because the buffer isn't allocated or because it has the wrong size, the method will allocate the correct buffer. Assumes that each coefficient is encoded on 8 bytes.

func (*MetaData) Encode64

func (m *MetaData) Encode64(data []byte) (ptr int, err error)

Encode64 encodes the target MetaData on a byte array, using 8 bytes per coefficient. It returns the number of written bytes, and the corresponding error, if it occurred.

func (*MetaData) Equal

func (m *MetaData) Equal(other MetaData) (res bool)

Equal returns true if two MetaData structs are identical.

func (*MetaData) MarshalBinary

func (m *MetaData) MarshalBinary() (data []byte, err error)

MarshalBinary encodes a MetaData on a byte slice.

func (*MetaData) MarshalBinarySize

func (m *MetaData) MarshalBinarySize() int

MarshalBinarySize returns the length in bytes of the target MetaData.

func (*MetaData) UnmarshalBinary

func (m *MetaData) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a previously marshaled MetaData on the target MetaData.

type Operand

type Operand interface {
	El() *Ciphertext
	Degree() int
	Level() int
	GetScale() Scale
	SetScale(Scale)
}

Operand is a common interface for Ciphertext and Plaintext types.

type PRNGEncryptor

type PRNGEncryptor interface {
	Encryptor
	WithPRNG(prng utils.PRNG) PRNGEncryptor
}

PRNGEncryptor is an interface for encrypting RLWE ciphertexts from a secret-key and a pre-determined PRNG. An Encryptor constructed from a secret-key complies to this interface.

func NewPRNGEncryptor

func NewPRNGEncryptor(params Parameters, key *SecretKey) PRNGEncryptor

NewPRNGEncryptor creates a new PRNGEncryptor instance.

type Parameters

type Parameters struct {
	// contains filtered or unexported fields
}

Parameters represents a set of generic RLWE parameters. Its fields are private and immutable. See ParametersLiteral for user-specified parameters.

func NewParameters

func NewParameters(logn int, q, p []uint64, pow2Base, h int, sigma float64, ringType ring.Type, defaultScale Scale, defaultNTTFlag bool) (Parameters, error)

NewParameters returns a new set of generic RLWE parameters from the given ring degree logn, moduli q and p, and error distribution parameter sigma. It returns the empty parameters Parameters{} and a non-nil error if the specified parameters are invalid.

func NewParametersFromLiteral

func NewParametersFromLiteral(paramDef ParametersLiteral) (Parameters, error)

NewParametersFromLiteral instantiate a set of generic RLWE parameters from a ParametersLiteral specification. It returns the empty parameters Parameters{} and a non-nil error if the specified parameters are invalid.

If the moduli chain is specified through the LogQ and LogP fields, the method generates a moduli chain matching the specified sizes (see `GenModuli`).

If the secrets' density parameter (H) is left unset, its value is set to 2^(paramDef.LogN-1) to match the standard ternary distribution.

If the error variance is left unset, its value is set to `DefaultSigma`.

If the RingType is left unset, the default value is ring.Standard.

func (Parameters) CopyNew deprecated

func (p Parameters) CopyNew() Parameters

CopyNew makes a deep copy of the receiver and returns it.

Deprecated: Parameter is now a read-only struct, except for the UnmarshalBinary method: deep copying should only be required to save a Parameter struct before calling its UnmarshalBinary method and it will be deprecated when transitioning to a immutable serialization interface.

func (Parameters) DecompPw2

func (p Parameters) DecompPw2(levelQ, levelP int) (c int)

DecompPw2 returns ceil(p.MaxBitQ(levelQ, levelP)/bitDecomp).

func (Parameters) DecompRNS

func (p Parameters) DecompRNS(levelQ, levelP int) int

DecompRNS returns the number of element in the RNS decomposition basis: Ceil(lenQi / lenPi)

func (Parameters) DefaultNTTFlag

func (p Parameters) DefaultNTTFlag() bool

DefaultNTTFlag returns the default NTT flag.

func (Parameters) DefaultScale

func (p Parameters) DefaultScale() Scale

DefaultScale returns the default scale, if any.

func (Parameters) Equals

func (p Parameters) Equals(other Parameters) bool

Equals checks two Parameter structs for equality.

func (Parameters) GaloisElementForColumnRotationBy

func (p Parameters) GaloisElementForColumnRotationBy(k int) uint64

GaloisElementForColumnRotationBy returns the Galois element for plaintext column rotations by k position to the left. Providing a negative k is equivalent to a right rotation.

func (Parameters) GaloisElementForExpand

func (p Parameters) GaloisElementForExpand(logN int) (galEls []uint64)

GaloisElementForExpand returns the list of Galois elements required to perform the Expand operation.

func (Parameters) GaloisElementForRowRotation

func (p Parameters) GaloisElementForRowRotation() uint64

GaloisElementForRowRotation returns the Galois element for generating the row rotation automorphism

func (Parameters) GaloisElementsForMerge

func (p Parameters) GaloisElementsForMerge() (galEls []uint64)

GaloisElementsForMerge returns the list of Galois elements required to perform the Merge operation.

func (Parameters) GaloisElementsForRowInnerSum

func (p Parameters) GaloisElementsForRowInnerSum() (galEls []uint64)

GaloisElementsForRowInnerSum returns a list of all Galois elements required to perform an InnerSum operation. This corresponds to all the left rotations by k-positions where k is a power of two and the row-rotation element.

func (Parameters) GaloisElementsForTrace

func (p Parameters) GaloisElementsForTrace(logN int) (galEls []uint64)

GaloisElementsForTrace generates the Galois elements for the Trace evaluation. Trace maps X -> sum((-1)^i * X^{i*n+1}) for 2^{LogN} <= i < N.

func (Parameters) HammingWeight

func (p Parameters) HammingWeight() int

HammingWeight returns the number of non-zero coefficients in secret-keys.

func (Parameters) InverseGaloisElement

func (p Parameters) InverseGaloisElement(galEl uint64) uint64

InverseGaloisElement takes a Galois element and returns the Galois element corresponding to the inverse automorphism

func (Parameters) LogN

func (p Parameters) LogN() int

LogN returns the log of the degree of the polynomial ring

func (Parameters) LogP

func (p Parameters) LogP() int

LogP returns the size of the extended modulus P in bits

func (Parameters) LogQ

func (p Parameters) LogQ() int

LogQ returns the size of the extended modulus Q in bits

func (Parameters) LogQP

func (p Parameters) LogQP() int

LogQP returns the size of the extended modulus QP in bits

func (Parameters) MarshalBinary

func (p Parameters) MarshalBinary() ([]byte, error)

MarshalBinary returns a []byte representation of the parameter set.

func (Parameters) MarshalBinarySize

func (p Parameters) MarshalBinarySize() int

MarshalBinarySize returns the length of the []byte encoding of the receiver.

func (Parameters) MarshalJSON

func (p Parameters) MarshalJSON() ([]byte, error)

MarshalJSON returns a JSON representation of this parameter set. See `Marshal` from the `encoding/json` package.

func (Parameters) MaxBit

func (p Parameters) MaxBit(levelQ, levelP int) (c int)

MaxBit returns max(max(bitLen(Q[:levelQ+1])), max(bitLen(P[:levelP+1])).

func (Parameters) MaxLevel

func (p Parameters) MaxLevel() int

MaxLevel returns the maximum level of a ciphertext.

func (Parameters) MaxLevelP

func (p Parameters) MaxLevelP() int

MaxLevelP returns the maximum level of the modulus P.

func (Parameters) MaxLevelQ

func (p Parameters) MaxLevelQ() int

MaxLevelQ returns the maximum level of the modulus Q.

func (Parameters) N

func (p Parameters) N() int

N returns the ring degree

func (Parameters) NewScale

func (p Parameters) NewScale(scale interface{}) Scale

NewScale creates a new scale using the stored default scale as template.

func (Parameters) NoiseBound

func (p Parameters) NoiseBound() uint64

NoiseBound returns truncation bound for the noise distribution.

func (Parameters) P

func (p Parameters) P() []uint64

P returns a new slice with the factors of the ciphertext modulus extension P

func (Parameters) PBigInt

func (p Parameters) PBigInt() *big.Int

PBigInt return the ciphertext-space extention modulus P in big.Integer, reconstructed, representation.

func (Parameters) PCount

func (p Parameters) PCount() int

PCount returns the number of factors of the ciphertext modulus extension P

func (Parameters) ParametersLiteral

func (p Parameters) ParametersLiteral() ParametersLiteral

ParametersLiteral returns the ParametersLiteral of the target Parameters.

func (*Parameters) PiOverflowMargin

func (p *Parameters) PiOverflowMargin(level int) int

PiOverflowMargin returns floor(2^64 / max(Pi)), i.e. the number of times elements of Z_max{Pi} can be added together before overflowing 2^64.

func (Parameters) Pow2Base

func (p Parameters) Pow2Base() int

Pow2Base returns the base 2^x decomposition used for the key-switching keys. Returns 0 if no decomposition is used (the case where x = 0).

func (Parameters) Q

func (p Parameters) Q() []uint64

Q returns a new slice with the factors of the ciphertext modulus q

func (Parameters) QBigInt

func (p Parameters) QBigInt() *big.Int

QBigInt return the ciphertext-space modulus Q in big.Integer, reconstructed, representation.

func (Parameters) QCount

func (p Parameters) QCount() int

QCount returns the number of factors of the ciphertext modulus Q

func (Parameters) QP

func (p Parameters) QP() []uint64

QP return the extended ciphertext-space modulus QP in RNS representation.

func (Parameters) QPBigInt

func (p Parameters) QPBigInt() *big.Int

QPBigInt return the extended ciphertext-space modulus QP in big.Integer, reconstructed, representation.

func (Parameters) QPCount

func (p Parameters) QPCount() int

QPCount returns the number of factors of the ciphertext modulus + the modulus extension P

func (Parameters) QiFloat64

func (p Parameters) QiFloat64(level int) float64

QiFloat64 returns the float64 value of the Qi at position level in the modulus chain.

func (*Parameters) QiOverflowMargin

func (p *Parameters) QiOverflowMargin(level int) int

QiOverflowMargin returns floor(2^64 / max(Qi)), i.e. the number of times elements of Z_max{Qi} can be added together before overflowing 2^64.

func (Parameters) RingP

func (p Parameters) RingP() *ring.Ring

RingP returns a pointer to ringP

func (Parameters) RingQ

func (p Parameters) RingQ() *ring.Ring

RingQ returns a pointer to ringQ

func (Parameters) RingQP

func (p Parameters) RingQP() *ringqp.Ring

RingQP returns a pointer to ringQP

func (Parameters) RingType

func (p Parameters) RingType() ring.Type

RingType returns the type of the underlying ring.

func (Parameters) RotationFromGaloisElement

func (p Parameters) RotationFromGaloisElement(galEl uint64) (k uint64)

RotationFromGaloisElement returns the corresponding rotation from the Galois element, i.e. computes k given 5^k = galEl mod NthRoot.

func (Parameters) RotationsForInnerSum

func (p Parameters) RotationsForInnerSum(batch, n int) (rotations []int)

RotationsForInnerSum generates the rotations that will be performed by the `Evaluator.RotationsForInnerSum` operation when performed with parameters `batch` and `n`.

func (Parameters) RotationsForReplicate

func (p Parameters) RotationsForReplicate(batch, n int) (rotations []int)

RotationsForReplicate generates the rotations that will be performed by the `Evaluator.Replicate` operation when performed with parameters `batch` and `n`.

func (Parameters) Sigma

func (p Parameters) Sigma() float64

Sigma returns standard deviation of the noise distribution

func (Parameters) StandardParameters

func (p Parameters) StandardParameters() (pci Parameters, err error)

StandardParameters returns a RLWE parameter set that corresponds to the standard dual of a conjugate invariant parameter set. If the receiver is already a standard set, then the method returns the receiver.

func (*Parameters) UnmarshalBinary

func (p *Parameters) UnmarshalBinary(data []byte) error

UnmarshalBinary decodes a []byte into a parameter set struct.

func (*Parameters) UnmarshalJSON

func (p *Parameters) UnmarshalJSON(data []byte) (err error)

UnmarshalJSON reads a JSON representation of a parameter set into the receiver Parameter. See `Unmarshal` from the `encoding/json` package.

type ParametersLiteral

type ParametersLiteral struct {
	LogN           int
	Q              []uint64
	P              []uint64
	LogQ           []int `json:",omitempty"`
	LogP           []int `json:",omitempty"`
	Pow2Base       int
	Sigma          float64
	H              int
	RingType       ring.Type
	DefaultScale   Scale
	DefaultNTTFlag bool
}

ParametersLiteral is a literal representation of BFV parameters. It has public fields and is used to express unchecked user-defined parameters literally into Go programs. The NewParametersFromLiteral function is used to generate the actual checked parameters from the literal representation.

Users must set the polynomial degree (LogN) and the coefficient modulus, by either setting the Q and P fields to the desired moduli chain, or by setting the LogQ and LogP fields to the desired moduli sizes.

Optionally, users may specify - the base 2 decomposition for the gadget ciphertexts - the error variance (Sigma) and secrets' density (H) and the ring type (RingType). If left unset, standard default values for these field are substituted at parameter creation (see NewParametersFromLiteral).

type Plaintext

type Plaintext struct {
	MetaData
	Value *ring.Poly
}

Plaintext is a common base type for RLWE plaintexts.

func NewPlaintext

func NewPlaintext(params Parameters, level int) (pt *Plaintext)

NewPlaintext creates a new Plaintext at level `level` from the parameters.

func NewPlaintextAtLevelFromPoly

func NewPlaintextAtLevelFromPoly(level int, poly *ring.Poly) (pt *Plaintext)

NewPlaintextAtLevelFromPoly constructs a new Plaintext at a specific level where the message is set to the passed poly. No checks are performed on poly and the returned Plaintext will share its backing array of coefficients. Returned plaintext's MetaData is empty.

func (*Plaintext) Copy

func (pt *Plaintext) Copy(other *Plaintext)

Copy copies the `other` plaintext value into the receiver plaintext.

func (*Plaintext) Degree

func (pt *Plaintext) Degree() int

Degree returns the degree of the target Plaintext.

func (*Plaintext) El

func (pt *Plaintext) El() *Ciphertext

El returns the plaintext as a new `Element` for which the value points to the receiver `Value` field.

func (*Plaintext) GetScale

func (pt *Plaintext) GetScale() Scale

GetScale gets the scale of the target Plaintext.

func (*Plaintext) Level

func (pt *Plaintext) Level() int

Level returns the level of the target Plaintext.

func (*Plaintext) SetScale

func (pt *Plaintext) SetScale(scale Scale)

SetScale sets the scale of the target Plaintext.

type PublicKey

type PublicKey struct {
	CiphertextQP
}

PublicKey is a type for generic RLWE public keys. The Value field stores the polynomials in NTT and Montgomery form.

func NewPublicKey

func NewPublicKey(params Parameters) (pk *PublicKey)

NewPublicKey returns a new PublicKey with zero values.

func (*PublicKey) CopyNew

func (pk *PublicKey) CopyNew() *PublicKey

CopyNew creates a deep copy of the receiver PublicKey and returns it.

func (*PublicKey) Equals

func (pk *PublicKey) Equals(other *PublicKey) bool

Equals checks two PublicKey struct for equality.

func (*PublicKey) LevelP

func (pk *PublicKey) LevelP() int

LevelP returns the level of the modulus P of the target. Returns -1 if P is absent.

func (*PublicKey) LevelQ

func (pk *PublicKey) LevelQ() int

LevelQ returns the level of the modulus Q of the target.

func (*PublicKey) MarshalBinary

func (pk *PublicKey) MarshalBinary() (data []byte, err error)

MarshalBinary encodes a PublicKey in a byte slice.

func (*PublicKey) MarshalBinarySize

func (pk *PublicKey) MarshalBinarySize() (dataLen int)

MarshalBinarySize returns the length in bytes of the target PublicKey.

func (*PublicKey) UnmarshalBinary

func (pk *PublicKey) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a previously marshaled PublicKey in the target PublicKey.

type RelinearizationKey

type RelinearizationKey struct {
	Keys []*SwitchingKey
}

RelinearizationKey is a type for generic RLWE public relinearization keys. It stores a slice with a switching key per relinearizable degree. The switching key at index i is used to relinearize a degree i+2 ciphertexts back to a degree i + 1 one.

func NewRelinearizationKey

func NewRelinearizationKey(params Parameters, maxRelinDegree int) (evakey *RelinearizationKey)

NewRelinearizationKey creates a new EvaluationKey with zero values.

func (*RelinearizationKey) CopyNew

func (rlk *RelinearizationKey) CopyNew() *RelinearizationKey

CopyNew creates a deep copy of the receiver RelinearizationKey and returns it.

func (*RelinearizationKey) Equals

func (rlk *RelinearizationKey) Equals(other *RelinearizationKey) bool

Equals checks two RelinearizationKeys for equality.

func (*RelinearizationKey) MarshalBinary

func (rlk *RelinearizationKey) MarshalBinary() (data []byte, err error)

MarshalBinary encodes an EvaluationKey key in a byte slice.

func (*RelinearizationKey) MarshalBinarySize

func (rlk *RelinearizationKey) MarshalBinarySize() (dataLen int)

MarshalBinarySize returns the length in bytes of the target EvaluationKey.

func (*RelinearizationKey) UnmarshalBinary

func (rlk *RelinearizationKey) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a previously marshaled EvaluationKey in the target EvaluationKey.

type RotationKeySet

type RotationKeySet struct {
	Keys map[uint64]*SwitchingKey
}

RotationKeySet is a type for storing generic RLWE public rotation keys. It stores a map indexed by the galois element defining the automorphism.

func NewRotationKeySet

func NewRotationKeySet(params Parameters, galoisElement []uint64) (rotKey *RotationKeySet)

NewRotationKeySet returns a new RotationKeySet with pre-allocated switching keys for each distinct galoisElement value.

func (*RotationKeySet) Equals

func (rtks *RotationKeySet) Equals(other *RotationKeySet) bool

Equals checks to RotationKeySets for equality.

func (*RotationKeySet) GetRotationKey

func (rtks *RotationKeySet) GetRotationKey(galoisEl uint64) (*SwitchingKey, bool)

GetRotationKey return the rotation key for the given galois element or nil if such key is not in the set. The second argument is true iff the first one is non-nil.

func (*RotationKeySet) Includes

func (rtks *RotationKeySet) Includes(other *RotationKeySet) bool

Includes checks whether the receiver RotationKeySet includes the given other RotationKeySet.

func (*RotationKeySet) MarshalBinary

func (rtks *RotationKeySet) MarshalBinary() (data []byte, err error)

MarshalBinary encodes a RotationKeys struct in a byte slice.

func (*RotationKeySet) MarshalBinarySize

func (rtks *RotationKeySet) MarshalBinarySize() (dataLen int)

MarshalBinarySize returns the length in bytes of the target RotationKeys.

func (*RotationKeySet) UnmarshalBinary

func (rtks *RotationKeySet) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a previously marshaled RotationKeys in the target RotationKeys.

type Scale

type Scale struct {
	Value big.Float
	Mod   *big.Int
}

Scale is a struct used to track the scaling factor of Plaintext and Ciphertext structs. The scale is managed as an 128-bit precision real and can be either a floating point value or a mod T prime integer, which is determined at instantiation.

func NewScale

func NewScale(s interface{}) Scale

NewScale instantiates a new floating point Scale. Accepted types for s are int, int64, uint64, float64, *big.Int, *big.Float and *Scale. If the input type is not an accepted type, returns an error.

func NewScaleModT

func NewScaleModT(s interface{}, mod uint64) Scale

NewScaleModT instantiates a new integer mod T Scale. Accepted types for s are int, int64, uint64, float64, *big.Int, *big.Float and *Scale. If the input type is not an accepted type, returns an error.

func (Scale) Cmp

func (s Scale) Cmp(s1 Scale) (cmp int)

Cmp compares the target scale with s1. Returns 0 if the scales are equal, 1 if the target scale is greater and -1 if the target scale is smaller.

func (*Scale) Decode

func (s *Scale) Decode(data []byte) (err error)

Decode decodes the input slice of bytes on the target scale. If the input slice of bytes is smaller than .MarshalBinarySize(), the method will return an error.

func (Scale) Div

func (s Scale) Div(s1 Scale) Scale

Div multiplies the target s with s1^-1, returning the result in a new Scale struct. If mod is specified, performs the multiplication modulo t with the multiplicative inverse of s1. Otherwise, performs the quotient operation.

func (Scale) Encode

func (s Scale) Encode(data []byte) (err error)

Encode encode the target scale on the input slice of bytes. If the slice of bytes given as input is smaller than the value of .MarshalBinarySize(), the method will return an error.

func (Scale) Float64

func (s Scale) Float64() float64

Float64 returns the underlying scale as a float64 value.

func (Scale) MarshalBinarySize

func (s Scale) MarshalBinarySize() int

MarshalBinarySize returns the size in bytes required to encode the target scale.

func (Scale) Max

func (s Scale) Max(s1 Scale) (max Scale)

Max returns the a new scale which is the maximum between the target scale and s1.

func (Scale) Min

func (s Scale) Min(s1 Scale) (max Scale)

Min returns the a new scale which is the minimum between the target scale and s1.

func (Scale) Mul

func (s Scale) Mul(s1 Scale) Scale

Mul multiplies the target s with s1, returning the result in a new Scale struct. If mod is specified, performs the multiplication modulo mod.

func (Scale) Uint64

func (s Scale) Uint64() uint64

Uint64 returns the underlying scale as an uint64 value.

type SecretKey

type SecretKey struct {
	Value ringqp.Poly
}

SecretKey is a type for generic RLWE secret keys. The Value field stores the polynomial in NTT and Montgomery form.

func NewSecretKey

func NewSecretKey(params Parameters) *SecretKey

NewSecretKey generates a new SecretKey with zero values.

func (*SecretKey) CopyNew

func (sk *SecretKey) CopyNew() *SecretKey

CopyNew creates a deep copy of the receiver secret key and returns it.

func (*SecretKey) LevelP

func (sk *SecretKey) LevelP() int

LevelP returns the level of the modulus P of the target. Returns -1 if P is absent.

func (*SecretKey) LevelQ

func (sk *SecretKey) LevelQ() int

LevelQ returns the level of the modulus Q of the target.

func (*SecretKey) MarshalBinary

func (sk *SecretKey) MarshalBinary() (data []byte, err error)

MarshalBinary encodes a secret key in a byte slice.

func (*SecretKey) MarshalBinarySize

func (sk *SecretKey) MarshalBinarySize() (dataLen int)

MarshalBinarySize returns the length in bytes of the target SecretKey.

func (*SecretKey) UnmarshalBinary

func (sk *SecretKey) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a previously marshaled SecretKey in the target SecretKey.

type SwitchingKey

type SwitchingKey struct {
	GadgetCiphertext
}

SwitchingKey is a type for generic RLWE public switching keys. The Value field stores the polynomials in NTT and Montgomery form.

func NewSwitchingKey

func NewSwitchingKey(params Parameters, levelQ, levelP int) *SwitchingKey

NewSwitchingKey returns a new public switching key with pre-allocated zero-value

func (*SwitchingKey) CopyNew

func (swk *SwitchingKey) CopyNew() *SwitchingKey

CopyNew creates a deep copy of the target SwitchingKey and returns it.

func (*SwitchingKey) Equals

func (swk *SwitchingKey) Equals(other *SwitchingKey) bool

Equals checks two SwitchingKeys for equality.

func (*SwitchingKey) MarshalBinary

func (swk *SwitchingKey) MarshalBinary() (data []byte, err error)

MarshalBinary encodes the target SwitchingKey on a slice of bytes.

func (*SwitchingKey) UnmarshalBinary

func (swk *SwitchingKey) UnmarshalBinary(data []byte) (err error)

UnmarshalBinary decodes a slice of bytes on the target SwitchingKey.

Directories

Path Synopsis
Package ringqp is implements a wrapper for both the ringQ and ringP.
Package ringqp is implements a wrapper for both the ringQ and ringP.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL